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A spectral model of luminescence of the two-component exciton-activated semiconductor quantum dot (QD)
layered plasmon composite nanoparticle (CNP) with a dielectric core and a conductive shell in an external magnetic

field is constructed, taking into account the inhomogeneity of the quasi-stationary electric field generated by QD in

the CNP region, outside the framework of the approximation of the dipole polarizability of the CNP. The tensor

formalism of describing the characteristics of the field in each of the layers of the CNP, as well as outside the CNP,

is used. It is established that with a change in the structure of the nanocomposite, the parameters of its core or shell

layer, the spectral response of the system to external magnetic field action changes. It is shown that the special form

of the response is associated with the characteristic magnetic properties of the nanoparticle components acquired

(under the action of the field).
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Introduction

Currently, hybrid nanostructures formed from single plas-

monic and exciton nanoparticles (NP) are of great interest

in connection with development of biosensors, ultrasensitive

sensors and other nanophotonic devices, the principle of

operation of which is based on the localization of the near

electromagnetic field [1–5]. Exciton-plasmon interaction

in such nanostructures makes it possible to control the

processes of absorption and radiation, to control energy

transfer from quantum dots (QDs) to composite NPs [6,7].
One of the important tasks of nanophotonics is to control

the luminescence intensity of nanostructures formed from

QDs, molecules, plasmonic NPs of various shapes, and

also layered structures. Fundamental research in this area

is important for understanding the features of the exciton-

plasmon interaction and introducing new results into the

industry of nanosystems [8–12].

Composite conductive NPs, in comparison with con-

tinuous homogeneous systems, make it possible to more

flexibly control both the rates of intermolecular non-

radiative transfer of electronic excitation energy [13] and

the luminescence intensity of emitters [14–16]. In the

article [15], the features of photoluminescence of quantum

dipole emitters located near metal spherical NPs with a

dielectric shell are theoretically considered. It is shown that

in the case of a shelled NP, photoluminescence can be more

intense than in the case of the same metal NP without a

shell. In [16], an increase in emissivity of QDs near layered

NPs with a dielectric shell was experimentally studied. The

possibility of amplifying the QD radiation depending on NP

shell thickness is demonstrated.

In articles [17–20], the real and imaginary parts of the

dipole polarizability of single and cluster NPs in a quasi-

homogeneous (on small scales) dipole field were studied.

The possibility to control absorption and radiative processes

in layered NPs by changing the electron-optical parameters

of the system and the ratio of the radii of its core and shell

is shown.

In some articles [21–23], the authors have shown that

not only dipole but also multipole bands of higher orders

are observed in the absorption spectra and scattering cross

sections. In articles [24–26], it was experimentally found

that the photoluminescence spectra of a two-component

system of quantum emitters and metal NPs change in an

external magnetic field. In the presence of magnetic field in

such a system, a pronounced enhancement of luminescence

was observed, while in the absence of plasmonic NPs, the

effect of magnetic field enhancement of the luminescence

was not observed.

In the present article, as well as in the article [11], the
object of study was a two-particle cluster formed from

an exciton-activated semiconductor QD and a two-layer

plasmonic NP with the
”
core-shell“structure. However, in

contrast to the article [11], where the consideration was

carried out within the framework of the approximation of

the dipole polarizability of a layered nanocomposite, in the

present study, we went beyond the framework of the dipole

approximation by taking into account multipole terms of

a higher rank. A hybrid nanocomposite is considered, in
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Figure 1. The geometrical configuration of the
”
layered NP−QD“

system in magnetic field.

which the core and its conjugate shell form the
”
dielectric-

metal“combination.

The two-particle system under study is an exciton-

activated spherical semiconductor QD with radius RQD

(with an electron-hole pair or a Wannier-Mott exciton

contained in it) and a globular layered metal-hybrid NP

with radius R2 with a core with radius R1 located at a

distance r0 > RQD + R2 from QD (Fig. 1). The field E

of a QD dipole source with electric dipole moment

p = p0 exp(−iωt) oscillates with frequency ω. In the sim-

plest approximation of quasi-homogeneous field, it induces

dipole moment p2 = ε3
↔

α (ω|B)E in NP, where
↔

α (ω|B) —

magnetically dependent dipole dynamic polarizability tensor

of a composite nanoparticle (CNP). Precisely this simplified

approach was implemented earlier in the articles [11,27].

In metal components of NPs placed in monochromatic

field E(ω), plasmon oscillations arise with a characteristic

spectral composition determined by the radii of the shell

and core, as well as by the dielectric permittivities ε1(ω)

and ε2(ω).

The dielectric permittivity εQD of QDs was assumed to

be constant in the frequency range of the exciton transition.

The environment is assumed to be transparent at exciton

frequencies and is characterized by a dielectric constant ε3.

Then, for a layered spherical NP, we will consider the case

with a non-conducting core made of a material without

dispersion, ε1 = const. The shell is a conducting layer with

strong frequency dispersion ε2(ω).

In external magnetic induction field B, the electron

plasma of metal acquires anisotropic properties, and the

dielectric permittivity of the conducting part of CNP

becomes a tensor of the second rank ε2(ω) → ↔

ε2(ω|B) [28]:

↔

ε 2(ω|B) =











1− ω2
p

ωκ
0 0

0 1− ω2
pκ

ω(κ2−�2
L)

i
ω2

p�L

ω(κ2−�2
L)

0 −i
ω2

p�L

ω(κ2−�2
L)

1− ω2
pκ

ω(κ2−�2
L)











,

(1)
where κ = ω + iγ , γ — frequency of electron colli-

sions (dissipation factor), ωp =
√

4πe2ne/m∗ — Langmuir

(plasma) frequency of metal electrons, �L = eB/m∗c —
Larmor (cyclotron) frequency of an electron with effective

mass m∗ in magnetic induction field B . The dielectric

permittivity tensor
↔

ε (ω|B) becomes (1) as the magnetic

field induction vector B is directed along the X axis of the

Cartesian coordinate system, and in the general case of an

arbitrary orientation of the magnetic field induction vector,

all nine components of this tensor are nonzero [28].

In the system under study, NP is located at the origin of

coordinates, and QD is located at a distance r0 from it along

Z axis. Also, the dipole moment vector p of QD is directed

parallel to the vector r0. To observe the effect of external

magnetic field on the optical properties of a nanosystem, the

condition must be satisfied under which the vector B is not

parallel to the vectors p and E. Therefore, the direction of

the magnetic field vector along the X axis is selected.

Description of the QD electric field in the
dipole approximation

In case of homogeneous spherical particles made of

conducting material with dielectric permittivity ε(ω), their
dipole dynamic polarizability α(ω) in magnetic induction

field B and in a non-dispersive dielectric medium with

permittivity ε3 takes the following tensor form [27]:

↔

α (ω|B) = [
↔

ε (ω|B) − ε3
↔

I ][
↔

ε (ω|B) + 2ε3
↔

I ]−1. (2)

The dipole polarizability of a layered metal core compos-

ite is expressed as follows [29]:

↔

α (ω|B) =
[

(
↔

ε1(ω|B) + 2ε2
↔

I )(ε2 − ε3)

+ (
↔

ε1(ω|B) − ε2
↔

I )(2ε2 + ε3)ξ
3
][

(
↔

ε1(ω|B) + 2ε2
↔

I )

× (ε2 + 2ε3) + 2(
↔

ε1(ω|B) − ε2
↔

I )(ε2 − ε3)ξ
3
]−1

R3
2, (3)

where ξ = R1/R2,
↔

I — the identity matrix with 3× 3

dimension.
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Dipole polarizability of composite with a magnetized

conducting shell and a dielectric core [29] has the form

↔

α (ω|B) =
[

(ε1
↔

I + 2
↔

ε2(ω|B))(
↔

ε2(ω|B) − ε3
↔

I )

+ (ε1
↔

I − ↔

ε2(ω|B))(2
↔

ε2(ω|B) + ε3
↔

I )ξ3
]

×
[

(ε1
↔

I + 2
↔

ε2(ω|B))(
↔

ε2(ω|B) + 2ε3
↔

I )

+ 2(ε1
↔

I − ↔

ε2(ω|B))(
↔

ε2(ω|B) − ε3
↔

I )ξ3
]−1

R3
2. (4)

The resonant frequencies of the imaginary part of the

dipole polarizability of continuous and layered NPs differ

from each other due to addition of an outer layer. In

the dipole polarizability spectra of a layered particle with

a metal (core)–dielectric (shell) structure, one characteristic

spectral plasmon band appears, and in case of a reversed

dielectric (core)–metal (shell) structure, two plasmonic spec-

tral bands appear.

Heterogeneous quasi-stationary electric
field of QD and polarized CNP

At small distances r0 from QD or relatively large radii

R2 ∼ r0 of CNP, field E(ω) of the dipole p can no longer be

considered homogeneous, and the method of electric dipole

polarizability (2)−(4) often used to describe the response

to homogeneous field becomes insufficiently correct. Below,

we describe the model of magnetized anisotropic CNP

polarized in an heterogeneous quasi-stationary electric field

of exciton-activated QD.

Potentials ϕ j(r, θ) ( j = 1, 2, 3) of the electric field

inside the core ( j = 1, r < R1), inside the shell

( j = 2, R1 < r < R2) and outside the composite ( j = 3,

r > R2) — in medium with dielectric permittivity ε3 created

by a point charge q placed at the point (r0, 0) (r0 > R2)
outside the layered ball, can be written as

ϕ1(r, θ; r0|B) =

∞
∑

l=0

r0
↔

Dl(ω|B)r0
r l

r20Rl
1

P l(cos θ), r < R1,

(5)

ϕ2(r, θ; r0|B) =

∞
∑

l=0

[

r0
↔

B l(ω|B)r0
r l

r20Rl
1

+ r0
↔

C l(ω|B)r0
Rl+1
2

r20r l+1

]

P l(cos θ), R1 < r < R2, (6)

ϕ3(r, θ; r0|B) =
q

ε3RM

+

∞
∑

l=0

r0
↔

Al(ω|B)r0
Rl+1
2

r20r l+1
P l(cos θ), r > R2, (7)

where P l(cos θ) — the Legendre polynomial of degree l,
θ — the angle defining the direction of the radius-vector

r of the point where potential ϕ j(r, θ) is calculated,

RM = |r− r0| — distance between the center of the QD

and the observation point M.

Tensors
↔

Al(ω|B),
↔

B l(ω|B),
↔

C l(ω|B) and
↔

Dl(ω|B) can be

found based on the boundary conditions on the interfaces

of the NP layers, and the tensor
↔

Al(ω|B), (up to a

factor) is the 2l -pole polarizability of spherical magnetized

nanocomposite. All tensors
↔

Al ,
↔

B l ,
↔

C l and
↔

Dl have

dimension of the potential ϕ j . We also take into account

that

1/RM =
∞
∑

l=0

k l

r l+1
0

P l(cos θ), r < r0. (8)

Relations between unknown tensors
↔

Al ,
↔

Bl ,
↔

C l and
↔

Dl are

found based on the conditions on the boundary spheres

S(R1) and S(R2) taking into account (8):

ϕ1(R1, θ) = ϕ2(R1, θ), ϕ2(R2, θ) = ϕ3(R2, θ), (9)

ε1
↔

I

(

∂ϕ1

∂r

)

R1

= ε2

(

∂ϕ2

∂r

)

R1

,

ε2

(

∂ϕ2

∂r

)

R2

= ε3
↔

I

(

∂ϕ3

∂r

)

R1

. (10)

Then from (5)−(7) and (9), (10) it follows

↔

Dl =
↔

B l +
↔

C l

(

R2

R1

)l+1

,
qRl

2

ε3r l+1
0

↔

I +
↔

Al =
↔

Bl

(

R2

R1

)l

+
↔

C l,

(11)

ε1
↔

Dl =
↔

ε2(ω)

[

↔

B l −
↔

C l
(l + 1)

l

(

R2

R1

)l+1]

, (12)

qRl−1
2

r l+1
0

↔

I − ε3
↔

Al
(l + 1)

lR2

=
↔

ε2(ω)

[

↔

B l
Rl−1
2

Rl
1

−
↔

C l
(l + 1)

lR2

]

.

(13)
Sequentially eliminating tensors through linear transfor-

mations
↔

Al ,
↔

C l and
↔

Dl from equations (11)−(13), for the

tensor we obtain
↔

B l expression

↔

B l =
q(2l + 1)Rl−1

2

r l+1
0

↔

ρl, (14)

where

↔

ρl(ω) =

{

↔

η
l
2(ω|B)

Rl−1
2

Rl
1

+ [ε3
↔

I − ↔

ε2(ω)][
↔

η
l
1(ω|B)]−1

× [
↔

ε2(ω) − ε1
↔

I ]
l(l + 1)

R2

(

R1

R2

)l+1}−1

,

↔

η
l
j(ω|B) = (l + 1)

↔

ε j+1(ω|B) + l
↔

ε j(ω|B),
↔

ε3 = ε3
↔

I ,

↔

ε1 = ε1
↔

I , and tensor [
↔

η
l
j(ω|B)]−1 opposite to tensor

↔

η
l
j(ω|B). Tensor

↔

ρl has length dimension.
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For the tensor
↔

C l(ω|B) we obtain

↔

C l(ω|B) =
q(2l + 1)lRl−1

2

r l+1
0

(

R1

R2

)l+1

× [
↔

ε2(ω) − ε1
↔

I ][
↔

η
l
1(ω|B)]−1↔

ρl . (15)

The
↔

Dl(ω|B) tensor is defined by the first equation (11)

↔

Dl(ω|B) =
q(2l + 1)Rl−1

2

r l+1
0

×
{↔

I + l[
↔

ε2(ω) − ε1
↔

I ][
↔

η
l
1(ω|B)]−1

}

↔

ρl, (16)

and for the
↔

Al tensor proportional to the 2l -pole polariz-

ability of layered composite with an anisotropic shell, the

second equation (11) implies

↔

Al(ε1,
↔

ε2, ε3) =
qRl

2

ε3r l+1
0

↔

I +
[

ξ−l
↔

I + lξ l+1[
↔

ε2(ω) − ε1
↔

I ]

× [
↔

η
l
1(ω|B)]−1

]q(2l + 1)Rl−1
2

r l+1
0

↔

ρl . (17)

When the magnetic field is turned off, all tensor quantities

are reduced to scalars, so the tensors (14)−(17) are

transformed to the previously obtained scalar expressions

for isotropic composite.

Potentials δϕ j(r, θ|B), ( j = 1, 2, 3) of the NP near

electric field initiated by a radially aligned p0 = qδr0
point dipole, we obtain by differentiating the potentials

ϕ j(r, θ) given by the expressions (5)−(7), by variable r0:
δϕ j(r, θ) = ∇(r0)ϕ j (r, θ)|r ))δr0,

δϕ1(r,θ; r0|B) = −
∞
∑

l=0

p0
[
↔

I + l[
↔

ε2(ω) − ε1
↔

I ]

× [
↔

η
l
1(ω|B)]−1

]↔

ρlr0
(2l + 1)(l + 1)Rl−1

2 r l

r l+3
0 Rl

1

× P l(cos θ), r < R1, (18)

δϕ2(r, θ; r0|B) = −
∞
∑

l=0

(2l + 1)(l + 1)Rl−1
2

r l+3
0

× p0

[

r l

Rl
1

↔

I + [
↔

ε2(ω) − ε1
↔

I ][
↔

η
l
1(ω|B)]−1l

Rl+1

r l+1

]

× ↔

ρlr0P l(cos θ), R1 < r < R2, (19)

δϕ3(r, θ; r0|B) =
p0

ε3R3
M

(r cos θ − r0) −
∞
∑

l=0

p0
(l + 1)

r l+1

× P1(cos θ)

{

− R2l+1
2

ε3r l+3
0

↔

I +
[

ξ−l
↔

I + ξ l+1[
↔

ε2(ω) − ε1
↔

I ]

× [
↔

η
l
1(ω|B)]−1

] (2l + 1)lR2l
2

r l+3
0

↔

ρl

}

r0, r > R2.

(20)
The quasi-stationary field (20) with the potential

δϕ3(r, θ; r0|B) determines the non-radiative energy transfer

from the exciton-activated QD near the conducting NP

to the molecule, a molecular cluster, or a small acceptor

particle with radius rM in magnetic field. The speed wDA

of such a process is proportional to the square of the scalar

product of vectors, wDA ∼
(

pA∇δϕ3(r, θ; r0|B)
)2

[27].

Luminescence of binary
”
layered

plasmonic NP–QD“ complexes in
magnetic field

Identified with the luminescence signal, the spectral

density N of the number of photons emitted by the

combined
”
QD–layered NP“ system at frequency ω has the

form [11,12]

N(ω|B, r0) =
1

2π

w2
s p(ω|B, r0)Ŵ(ω|B, r0)

(ω − ωi j)2 + Ŵ2(ω|B, r0)
, (21)

where the function of the spectral width of the

Lorentz luminescence line Ŵ(ω|B, r0) = ws p(ω|B, r0) +
+U(ω|B, r0) + K.

When the CNP dipole moment p2 is formed in the het-

erogeneous field of QD, the formula for the rate ws p(ω|B, r)
of spontaneous radiation by a combined binary

”
QD–layered

NP“ system can be written in the following form:

ws p(ω|B, r0) =

=
4

3

ω3

~c3

∣

∣

∣

∣

p2(r0|B) +
3ε3

ε1 + 2ε3

Rc
∫

0

P(r)4πr2dr

∣

∣

∣

∣

2

. (22)

The polarization vector P(r) of an activated QD in the

regime of strong confinement of an electron and a hole is

defined by the expression [11,12]

P(r) =
p0

2πRc

sin2(πr/Rc)

r2
,

where p0 — the vector matrix element of the interband

electronic dipole transition moment, r – the distance from

the QD center to the localization point of the e−h-pair
(r = re = rh).
The integral p2(r0|B) in (22) is the induced CNP dipole

moment in the heterogeneous field of the activated QD and
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in the induction magnetic field B:

p2(r0|B) = −1

2
[
↔

ε2(ω)]−1

×
R1

∫

0

π
∫

0

[ε1
↔

I − ↔

ε2(ω)]∇rδϕ1(r, θ|B)r2dr sin θdθ

− 1

2ε3

R2
∫

R1

π
∫

0

[
↔

ε2(ω) − ε3
↔

I ]∇rδϕ2(r, θ|B)r2dr sin θdθ.

(23)
To calculate the induced dipole moment in a layered

composite particle, it is necessary to determine the potential

gradients (18) and (19) in the core and shell of the

nanocomposite. The potential gradient (20) will determine

the rate of non-radiative transfer of electronic excitation

energy from the layered NP to the acceptor particle, if it

is in the near region of the QD and CNP.

It is easy to show that both integrals in (23) contain

only dipole-type contributions from the multipole series (18)
and (19). Indeed, by calculating the gradient from the

potential (18), we obtain the expressions

∇r [r
lP l(cos θ)] =

√
4πlr l−1Yl−1

l0 (θ),

where Yl
lm(θ, ϕ) — a spherical vector [30]. Considering that

the integral of the spherical vector Yl
lm(θ, ϕ) over the solid

angle is equal to
∫

YL
JM(θ, ϕ)d� =

√
4πδJ1δl0eM ,

we come to the conclusion that only the dipole term with

l = 1 from the sum (18) makes a nonzero contribution

to the integral (23). We arrive at a similar result when

calculating the gradient from the potential (19). For the

second part (19) we obtain

∇r [r
−(l+1)P l(cos θ)] =

√

4π(l + 1)r−(l+2)Yl+1
l0 (θ),

whence it follows that the integrals of this part are equal to

zero for all indices l .
The rate U(ω|B, r0) of non-radiative energy transfer from

QD to CNP in case of heterogeneous QD field can be

represented by the sum of two integrals of the imaginary

parts of the quadratic forms of the local field intensity

vectors −∇rδϕ1,2(r, θ|B) = E1,2(r, θ|ω) inside the layered

NP:

U(ω|B, r0) =
1

2π~

×
R1

∫

0

π
∫

0

ImE∗

1(r, θ|ω)ε1E1(r, θ|ω) sin θdθr2dr

+
1

2π~

R2
∫

R1

π
∫

0

ImE∗

2(r, θ|ω)
↔

ε2(ω)E2(r, θ|ω) sin θdθr2dr.

(24)

Now the integrals in (24) for the rate U(ω|B, r0) contain

the quadratic form of the potential gradient, which means

that the nonzero contribution to the total rate U(ω|B, r0)
will now also be made by higher terms of the series of

potentials (18) and (19).
In case of an isotropic core (scalar dielectric con-

stant ε1) in the first integral (24) for the subintegral

function we obtain |E(r, θ|ω)|2, and the double sum over

the indices l and l′ of the integrals for this quantity,

taking into account the orthonormality relation for spherical

vectors,
∫

YL′∗

JM (θ, ϕ)YL
JM(θ, ϕ)d� = δJ′JδL′LδM′M

turns into a sum over only one index l of the integral terms

of the form

R1
∫

0

r2(l−1)r2dr =
1

2l + 1
R2l+1
1 ,

i.e. now the contribution from all higher terms of the series

to the first integral (24) is nonzero. We come to a similar

conclusion when calculating the second integral in (24).
In case of zero imaginary part (Imε1 = 0) of the di-

electric permittivity of the dissipativeless material of the

CNP core, the first integral in (24) does not contribute

to the general expression for the energy transfer rate.

Then, the irreversible non-radiative energy transfer from

QD is directed exclusively to the CNP shell (the second

integral (24)).

Discussion of results

When calculating the rate spectra of radiative

and non-radiative processes, the following

values of the system parameters were used:

ωp = 13.87 · 1015 s−1, γ = 1.6 · 1014 s−1, B = 0T,

R1 = 5 nm, R2 = 8 nm, Rc = 4 nm, RQD = 5 nm,

rB = 5 nm, r0 = R2 + RQD + 2 nm, p0 = 12D, ϕ1 = 1.2,

ϕ3 = 2, ϕQD = 6, ωi f = 6.3 · 1015 s−1, K = 1014 s−1.

The values of the quantities that changed in the course

of the calculations are additionally indicated in the captions

to the figures. The values of quantities typical for QDs

are taken from [31]. As NPs with pronounced plasmonic

properties, the authors of many experimental works often

use single-component or composite gold NPs. For this

reason, in the present article, the values of parameters

typical for such metals as Au or Ag were selected for

calculations.

The rate of non-radiative energy transfer from QD
to CNP. The contribution of terms of different orders for

the potentials of the electric field inside NP was taken

into account by summing over the index l of a finite

number n of the first terms of the series (
∑∞

l=0 →
∑n

l=0) in
formulas (18) and (19).
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Figure 2. Rate spectra of non-radiative energy transfer from QD

to layered NP at different values n: 1 — 1, 2 — 2, 3 — 3, 4 — 4.

R1 = 5, 1NP = 3 nm.

Figure 2 (for n = 1) shows two spectral bands that

differ from each other in amplitude and are located at

frequencies ω1 = 5 · 1015 s−1 and ω2 = 1.2 · 1016 s−1. For a

system with NPs, consisting of a dielectric core and a metal

shell with thickness 1NP = R2 − R1, two spectral bands are

observed associated with the presence of two characteristic

plasmonic resonances, in contrast to a system with NPs of

a metal core and a dielectric shell, where only one spectral

band is observed. Appearance of an additional spectral

band is explained by the presence of two metal-dielectric

interfaces: the metal shell – the dielectric core and the metal

shell – the environment.

It follows from Fig. 2 (R1 > 1NP) that as the integer num-

ber n increases, new spectral bands appear, the amplitude

of which is larger than the previous ones, and for R1 < 1NP

(Fig. 3) with an increase in n, the amplitude of such bands,

on the contrary, decreases. So, for n = 1 two spectral bands

are observed, n = 2 — four bands, n = 3 — six, n = 4 —

eight bands.

Rate of spontaneous radiation of the
”
layered

NP−QD“system. The rate of spontaneous radiation of

the combined binary
”
layered NP−QD“ system was calcu-

lated by formula (22).

Figure 4 shows the rate spectra of spontaneous emission

of a two-particle system with an increase in the thickness

of the CNP metal layer: in the low-frequency region, the

amplitudes of the spectral peaks increase, while in the high-

frequency region, they decrease. This shifts the resonant

frequencies of both peaks.

As the distance r0 between two particles increases, the

rate of spontaneous emission decreases. The opposite

situation is observed with an increase in the dipole moment

of the interband transition p0 in QD.

Luminescence of the
”
layered NP−QD“system.

The spectral density of the number of photons (lumines-

cence intensity) emitted by the combined binary
”
layered

NP−QD“ system was calculated by formula (21).
With an increase in the core radius R1 of a layered NP

at constant thickness 1NP of the shell, the amplitude of the

high-frequency spectral band increases in the luminescence

spectrum of the system (Fig. 5). In the low-frequency

region of the spectrum, a comparatively sharp decrease in

the amplitude of the characteristic spectral band occurs. In

this case, the spectral bands in the low- and high-frequency

regions are shifted in opposite directions.

In case of small core radius and sufficiently large shell

thickness, the parameter ξ ≪ 1, and then the only notice-

able, high-amplitude plasmon resonance of the composite

polarizability occurs at frequency ωres:

ωres =
ωp√

ε∞ + 2ε3

[

1− 1

8

γ2

ω2
p
(ε∞ + 2ε3)

]

, (25)

i.e. as in the case of a homogeneous metal sphere with

dielectric permittivity ε2(ω). When writing (25), we took

into account that γ2/ω2
p ≪ 1. In the more general case

of an arbitrary value of the parameter ξ ≤ 1, the plasmon

resonance in the absorption (scattering) of light, as well as

in the considered case of the luminescence of a two-particle

system, will be observed when the following tensor from

formula (4) tends to zero:

[

(ε1
↔

I + 2
↔

ε2(ω|B))(
↔

ε2(ω|B) + 2ε3
↔

I )

+ 2(ε1
↔

I − ↔

ε2(ω|B))(
↔

ε2(ω|B) − ε3
↔

I )ξ3
]

→ 0.

(26)

Further considering for simplicity the scalar version of the

problem (i.e. in the absence of magnetic field) for two zeros

of the function (26), in this case we obtain

ε±2 (ωres) = −β ±
√

β2 − ε1ε3, (27)
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Figure 3. Rate spectra of non-radiative energy transfer from QD

to layered NP at different values n: 1 — 1, 2 — 2, 3 — 3, 4 — 4.

R1 = 3, 1NP = 5 nm.
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Figure 4. Rate spectra of spontaneous emission of the

”
QD−CNP“ complex depending on the thickness 1NP of the CNP

metal shell. Values for 1NP : 1 — 3, 2 — 4, 3 — 5, 4 — 6 nm.
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Figure 5. Luminescence spectra of the
”
layered NP−QD“ system

depending on the radius of the dielectric core R1. Values R1: 1 —
4, 2 — 5, 3 — 6, 4 — 7 nm.

where

β =
[(ε1 + 4ε3) + 2ξ3(ε1 + ε3)]

4(1− ξ3)
. (28)

From equation (27) we obtain two resonant frequencies ω±
res

for collective electron oscillations of the shell. They can be

obtained in a simple way, as, for example, in [32]:

ω±

res =
ωp

√

ε∞ + β0 ±
√

β2
0 − ε1ε3

×
[

1− 1

8

γ2

ω2
p

(

ε∞ + β0 ±
√

β2
0 − ε1ε3

)

]

. (29)

Here in (29) the zero approximation value β0 is defined by

expression (28) for ε1 ≈ const.

In the particular case of hollow nanocomposite consisting

of only one plasmonic shell (ε1 = ε3 = ε∞ = 1) in air

(vacuum), the formula (27) goes into

ε±2 (ωres) = − 5 + 4ξ3

4(1− ξ3)
± 3

√

(1 + 8ξ3)

4(1− ξ3)
, (27′)

and formula (29), neglecting the plasmon attenuation

constant γ ≪ ωp — into the formula

ω±

res =
ωp√
2

[

1±
√

(1 + 8ξ3)

3

]

. (29′)

It is in the form (27′) and (29′) that the quantities are

given, for example, in the article [33].
”
Scattering“ of

resonant frequencies of shell spherical NPs with increasing

core radius is a well-known result in nanoplasmonics, which

directly follows from formulas (29) and (29′).
A change in the dielectric permittivity ε1 of the non-

conducting core of composite affects the luminescence

spectrum of the system differently. Thus, with an increase

in ε1, the luminescence intensity increases in the high-

frequency region, but decreases in the low-frequency region

(Fig. 6, a). And an increase in the dielectric permittivity

of the environment ε3 leads to a gradual decrease in the

radiation rate at all frequencies (Fig. 6, b). Both plots show

a shift of the spectral bands to the low-frequency region.

Figure 7 shows the influence of the magnetic field on

the luminescence of the
”
layered NP−QD“system. As the

frequency γ of shell metal electron collisions decreases by

three orders of magnitude, the luminescence intensity of the

complex of CNPs with a metal shell increases by 12 orders

of magnitude, in connection with this, the conditionally

exciton band at the frequency ωi f = 6.3 · 1015 s−1 becomes

invisible due to the incommensurability in amplitude with

two plasmonic bands, which experience splitting into two

characteristic components in magnetic field. Spectral

luminescence curves are deformed in magnetic field, first

decreasing in amplitude and then splitting into two compo-

nents, the distance between which increases with increasing

magnetic field intensity. Figure 8 shows the luminescence

spectrum of an inverted system consisting of NPs with a

metal core and a dielectric shell. The difference between

this CNP and composites with a conducting shell is that,

with such a sequence of NP layers, only one spectral band

is observed in its luminescence spectrum.

Conclusion

Based on the developed theoretical model, the rates of

non-radiative energy transfer from QDs to layered NPs

with a conducting shell, spontaneous radiation rates, and

luminescence spectra of two-particle systems consisting of

layered NPs and QDs placed in constant magnetic field

were calculated. It is found that of all the components of

the multipole series for the field in CNP, only dipole-type

terms contribute to the radiation spectra of the considered

systems, while the higher terms of the multipole series for

the field potentials in the core and shell of CNP will also
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Figure 6. Luminescence spectra of the
”
layered NP−QD“ system depending on the dielectric permittivity of the core ε1 (a) and the

environment ε3 (b). Values ε1 : 1 — 1.1, 2 — 1.3, 3 — 1.5, 4 — 1.7. Values ε3 : 1 — 2, 2 — 2.1, 3 — 2.2, 4 — 2.3.
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Figure 7. Luminescence spectra of the
”
layered NP

(metal/dielectric)−QD“ system depending on the induction B of

the external magnetic field. γ = 1.6 · 1011 s−1. Values B : 1 — 0,

2 — 1, 3 — 2, 4 — 3 t.

make a nonzero contribution to the rate of non-radiative

energy transfer from QD to NCP. In this connection, in the

rate spectra of non-radiative energy transfer, an increase in

the number of spectral bands is observed with an increase

in the number of terms of the series taken into account for

the field potential in CNP.

It has been established that when induction of the exter-

nal magnetic field changes, the radiative and non-radiative

spectra of the energy transfer rate and luminescence spectra

are transformed, the plasmon bands of which decrease

in amplitude and split into two spectral components, the

distance between which increases with increasing magnetic

field induction.

The results obtained provide additional information for

understanding the features of the exciton-plasmon interac-

tion in magnetized nanosystems and can be used in the

formation of the industry of metal-hybrid nanosystems, in
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Figure 8. Luminescence spectra of the inverted
”
layered NP

(metal/dielectric)−QD“ system depending on the induction B of

the external magnetic field. γ = 1.6 · 1011 s−1 . Values B : 1 — 0,

2 — 1, 3 — 2, 4 — 3 t.

development of non-contact optical sensors and devices for

measuring the characteristics of constant magnetic field.
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