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NIR diffuse reflectance spectroscopic spectra can be mathematically modelled to extract quantitative information

by suitable multivariate calibration models. The analysis of spectral data becomes complex as the data is more

prone to noise due to light scattering and baseline effects. These errors reduces the robustness and reliability of

the developed calibration model. Hence data pre-processing becomes the most important aspect in data analysis.

Different mathematical transformations are applied to remove the noise present in the data. This work focuses

on the various empirical data pre-processing techniques like baseline correction, multiplicative scatter correction

(MSC), robust MSC, extended multiplicative signal correction (EMSC), orthogonal signal correction (OSC) and

(−log R) followed by standard normal variate (SNV) techniques for Partial Least Square Regression (PLSR) model

in the prediction of blood glucose non-invasively. The performance of the PLSR model for the acquired (raw)
spectral data and the same data subjected to different pre-processing techniques is analyzed. The model complexity

and robustness is evaluated in terms of the number of latent variables (LVs) required to build the calibration model

and obtained mean square prediction error after cross validation. This study utilizes the spectral data collected from

207 subjects from a diabetic center using Diffuse Reflectance Spectrometer (DRS). The analyzed results show

that pre-processing based on (−log R) followed by SNV is found to perform well with reduced model complexity

and minimum estimated mean square prediction error of 0.23mg/dl among the other empirical pre-processing

techniques.

Keywords: multiplicative scatter correction (MSC), orthogonal signal correction (OSC), standard normal variate

(SNV), Diffuse Reflectance Spectrometer (DRS).
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Introduction

There are various optical measurement techniques for

blood glucose detection such as Mid-infrared (MIR) spec-

troscopy, Raman spectroscopy, Fluorescence spectroscopy,

Optical Coherence Tomography (OCT), Optical polarime-

try, Near – infrared (NIR) spectroscopy [1]. The advantages

and limitation of each technique is listed in Table 1.

Among all these techniques NIR spectroscopy is found

to be a prominent and most commonly used technique.

The rationale for choosing NIR method discussed in this

paper are its simplicity, increased detection sensitivity. The

weak interaction of light with the tissue allows for deeper

penetration up to 100mm in depth. NIR light is known

to be safe for cells, does not induce auto fluorescence in

cells. It has no strong cellular biological emitters, has more

structural information and is inexpensive [2].

NIR spectroscopic techniques are rapid, non-destructive

and non-invasive and are successfully used in the ex-

traction of relevant information from biological samples

by suitable multivariate calibration models. Partial least

square regression (PLSR) method is one of the most

prominent linear calibration model that is used to describe

the relationship between the concentration of the chemical

composition of the samples and the acquired spectra. Model

development using PLSR involves pre-processing, model

selection and model validation [3–5]. NIR spectroscopic

measurements are highly influenced by non-linearity and

baseline shift due to light scatter. The simplicity and

robustness of the calibration model is highly affected

by these detrimental effects accompanied in the spectral

data. NIR diffuse reflectance spectroscopic measurements

include both specular and diffuse reflectance. Specular

reflectance is a mirror like reflection that occurs from the

surface which can be avoided by proper placement of

probe. Diffuse reflectance occurs when an incident light

energy gets scattered at many angles from layers beneath

the surface, thereby carrying the molecular information

(chemical composition) in the underlying region of interest.

As diffuse reflectance energy is from light scattered in

different angles, the data has an inherent noise within. For

biological samples, the scattering properties are excessively

complex [6]. Hence pre-processing becomes the most

critical part in chemometric modelling.

Pre-processing aims at reducing the unmodeled variability

in the data thereby enhancing the linear correlation with the
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Table 1. Comparison of various optical methods for blood glucose detection [1,2]

S. No. Optical method Advantage Disadvantage

1 Mid-infrared (MIR) Low scattering and high absorption Low penetration depth

2 Raman Provides sharper Instability of laser wavelength

and less overlapped spectra and intensity, long acquisition time

3 Fluorescence Very sensitive and can High scattering

detect even single molecules

4 Optical Coherence Tomography (OCT) High resolution and penetration depth Sensitive to individual’s

motion and temperature

5 Optical polarimetry Glucose is the main component High errors due to eye movement

in aqueous humor present in the eye, and motion artefact

hence high correlation with glucose exists

in the measured signal

6 Near infrared (NIR) High penetration depth, Weak correlation

water is transparent to signal

bandwidth of NIR, Less expensive

spectral data and the chemical composition. Therefore, vari-

ous pre-processing techniques are proposed to eliminate the

insignificant variations present in the data. Pre-processing

technique not only improves the prediction ability but also

results in a more parsimonious model that is robust and

reliable. Pre-processing techniques are used to remove the

variability present in the data. A complete pre-processing

technique involves baseline correction, scatter correction,

noise removal and scaling [7].
The present work focuses on performance of various pre-

processing techniques suitable for NIR diffuse reflectance

spectroscopy for blood glucose prediction using PLSR

model. Model simplicity is evaluated with respect to the

number of latent variables required to build the calibration

model. The efficiency is determined using mean square

prediction error obtained using cross validation. This

study is executed using the diffuse reflectance spectral data

collected from 207 subjects including both diabetic and non-

diabetic subjects. NIR spectral range from 750nm -1040nm

wavelength is considered for this analysis.

Materials and methods

The physical features of spectroscopic method and ex-

perimental setup used for data acquisition and the various

pre-processing techniques used for spectroscopic data are

elaborated in the following sections.

Characteristic Features of NIR Spectroscopy

NIR spectroscopy which is a subset of IR spectroscopy

spans the spectral range of 750 nm to 2500 nm. The NIR

spectrum is categorized into two regions according to the

absorption characteristics namely long wavelength region

(1300 nm to 2500 nm) and short wavelength region (700 nm

to 1300 nm). NIR spectroscopy works on the basic principle

of interaction of electromagnetic radiation with matter

thereby producing the corresponding spectral signals. When

NIR light interacts with the molecules of the given sample,

exhibits a large number of weak, overlapping absorption

bands in the spectral window. This proves that NIR spectra

are generated by the excitation of the functional groups that

have strong interatomic bonds. Absorption of energy in

NIR band is dependent on the overtone and combination

bands that are caused due to N−H, O−H, and C−H bonds

in the long wavelength region. Hence these absorption

peaks are weaker than that produced by the fundamental

vibrations caused in the mid IR region. Absorptions in

the long wavelength regions are stronger and sharper than

the absorption corresponding to the vibration in the short

wavelength region. But the shallow penetration depth of

light in the long wavelength region makes it unsuitable for

most of the biological applications. As water presents a

relatively weak absorption signal from deep tissue in the

region 700nm to 1300 nm region, this band is also called as

the therapeutic optical window (identification of informative

wavelength). For these reasons NIR is considered to be

ideal for non-invasive measurements [8].

Diffuse Reflectance Spectroscopic System

Diffuse reflectance is an optical phenomenon which is

commonly used in NIR region to obtain the spectral char-

acteristics of samples. When light is incident on a sample, it

gets reflected in all directions. Reflection can be categorized

as specular or regular reflection and diffuse reflection.

Specular reflectance finds its major application in total

internal spectroscopy to obtain spectroscopic information.

Specular reflection can be described by Snell’s law and

Fresnel equations. Diffuse reflection results due to multiple

reflections when light is incident on an inhomogeneous
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medium. The angular distribution of the diffuse reflected

signal is independent of the incident angle [9]. Moreover,

diffuse reflectance measurements preserve the mechanical

and biochemical degradation of the samples.

Diffuse reflectance relies on the projection of a focused

beam of light in the tissue. The light that propagates through

the tissue undergoes absorption and scattering events due to

its constituent particle size. The light experiences multiple

scattering events during propagation through the tissue and

is almost isotropic when it emerges out of the tissue. Hence,

it is considered to be diffuse reflected signal. The path

traversed by the diffuse reflected light depends on the tissue

optical properties. Thus, the diffuse reflectance spectrum

contains the information pertaining to tissue composition.

The backscattered light is collected by the fiber optic probe

and sent to the detector. Thus NIR diffuse reflectance

spectroscopy proves to be a powerful tool in the analysis

of human tissue [10].
The basic building blocks of NIR instrument are the

radiation source, wavelength selectors, sample presentation

facility and detector. NIR radiation sources used can be

categorized as thermal and non-thermal. The current study

involves the use of tungsten halogen white light source

(LS-1) which is a non-thermal radiation source. The

tungsten halogen light source is capable of radiating a broad

bandwidth light in the spectral range of 350 nm to 2500 nm.

The USB 4000 spectrometer with a CCD device serves

the purpose of both wavelength selection and detection.

The sample presentation is done using a reflectance probe

(R400) which is used as both illumination and collection

probe. The light impinged on the skin undergoes multiple

reflections in the area under study which provides a unique

spectral signature. The acquired spectrum is extracted by

interfacing the spectrometer to a computer loaded with

Spectra Suite software for further analysis [11]. Figure 1

shows the experimental set up for acquiring the diffuse

reflectance spectrum.

Interferers in the acquired spectra

The major factors that influence the accuracy of NIR

based techniques are sampling, instrument setup, environ-

ment factors and modelling. The impact of these factors

can be easily minimized by taking precautionary steps

during the experimental setup, data acquisition and model

development and validation process [12].
The USB4000 spectrometer used in this study has an

optical resolution of 1.5 nm and high sensitivity detector.

Data acquisition settings like integration time and number

of scans can be optimized. As the current study is pertaining

to blood glucose prediction in human tissue in vivo,

the interference due to sampling like sample preparation,

sample size, sample packing and packing density does not

affect the obtained diffuse reflectance spectrum.

The environmental features like temperature, ambient

light, vibration and scanning pressure will affect the pre-

cision of the measured blood glucose. The attenuation of

Tungsten
halogen
source

Spectrometer

Fiber
optic
probe

Tissue

Computer

Collector fiber

Illumination fiber

Figure 1. The schematic diagram of diffuse reflectance spec-

troscopy system.

light energy at each wavelength is a function of chemical

composition of the tissue. Fluctuations in tissue temperature

leads to increase in spectral variance thereby making it

difficult to extract the blood glucose information [13]. The

NIR light is focused on the measurement site for not more

than 10 seconds. Thus, the temperature variations that is

propagated to the skin tissue is very minimal and does not

have a significant impact on the reflected signal. Moreover,

the instrument is calibrated with white light standard before

starting the measurement process thereby minimizing the

effect of ambient conditions. The scanning probe is mounted

on a holder which is then placed on the measurement site.

This results in uniform pressure and reduced vibration for

all measurements.

The most challenging factor in NIR region that causes

interference when light interacts with human skin is the

light scattering effect. Significant differences in the obtained

spectra can be observed due to the complex nature of skin;

variations in the thickness and composition of skin within

and between individuals and the consequent difficulties with

variations in light scattering; overlap of glucose absorption

bands with absorption bands from water and other tissue

components. Subtle effects such as changes in skin tempera-

ture and hydration further complicate the problem [14]. The
uncontrollable physical variations namely the pigmentation,

inhomogeneous distribution of the particles and changes

in refractive index. These factors result in varying the

path length thereby introducing additive, multiplicative and

wavelength dependent effects. The wavelength dependent

scattering effects is more pronounced in longer wavelength

region of the spectrum. As the current study is concentrated

towards short wavelength region (750 nm to 1100 nm),
wavelength dependent scattering has minimal impact. The

additive and multiplicative scattering can be minimized by

the choice of suitable data pretreatment method and proper

mathematical model.
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Spectral Data Acquisition

Blood glucose measurement is performed invasively using

clinical measurement procedure for the same subjects

and simultaneously spectral data is collected non-invasively

using the Diffuse Reflectance Spectrometer. For obtaining

an accurate spectral measurement and to ensure the safety

of the patient from any infectious diseases, the probe head,

and the measurement site is cleansed with an alcohol

solution. As the instrument is calibrated in reflectance

mode, the acquired spectrum gives the corresponding

reflection intensities across the wavelength range of 360 nm

to 1100 nm. For the current study, wavelength range of

750 nm to 1040 nm is considered. The analysis for selection

of spectral range for glucose detection is carried out in detail

and reported in [15]. From the analysis, it is found that

the spectral range of 750.1000 nm is found to have the

information related to glucose content. It is also found that

the informative wavelengths corresponding to loading peaks

are 763.64 nm, 970.67 nm, 982.54 nm. A reference dataset

has been created by mapping the clinically obtained blood

glucose values to their corresponding NIR spectral data

which is collected simultaneously from the same subject.

The observed NIR spectral information is disturbed by

various non- linearity and baseline effects. To overcome

these effects, the data are treated with different pre-

processing techniques.

Pre-processing techniques

Insignificant variation is introduced in the acquired spec-

tra due to measurement noise and background interferences.

This noise in turn destroys the information on chemical

variations in the analyte and increase the complexity of

the calibration model. Pre-processing techniques removes

the undesired variability in the acquired spectra thereby

increasing the signal to noise ratio (SNR). Hence different

pre-processing methods are suggested to eliminate the

irrelevant variations and background noises from NIR spec-

trum. Scatter correction methods and spectral derivatives

are the two broad categories of pre-processing techniques

commonly applied for NIR spectroscopy. Scatter-corrective

pre-processing methods includes multiplicative scatter cor-

rection (MSC), Inverse multiplicative scatter correction

(IMSC), extended multiplicative scatter correction (EMSC),
extended inverse multiplicative scatter correction, de-

trending, standard normal variate (SNV), and normalization.

Norris-Williams derivatives and Savitzky-Golay polynomial

derivative falls under spectral derivative method [6].
Pre-processing of spectral data comprises of numerous

steps each one correcting a particular artifact. So, ap-

plication of consecutive pre-processing technique helps to

improve the SNR and removes the outliers present in the

data [16]. Selection of appropriate pre-processing technique

should be considered with respect to the calibration model

to be developed and is difficult to evaluate prior to

model validation. Hence, the identification of suitable

pre-processing technique relies on model validation. The

selected pre-processing technique should be such that it

reduces the model complexity with improved prediction

accuracy.

Reduction of nonlinearity

A simple pre-processing technique for NIR diffuse re-

flectance spectroscopy that corrects for the non-linearity

effects in the measured spectral data is to show a linear

relationship between the spectra and the concentration of

the constituents as shown in equation (1).

Aλ = − log10(R) = ελ lc, (1)

where Aλ is the wavelength dependent absorbance, R is

the reflectance, ελ is the wavelength dependent molar

absorptivity, l is the path length and c is the concentration

of the constituent of interest. If the acquired spectral data

does not obey Beer Lambert law, then the non-linearity

effect might be compensated by increased number of latent

variables thus increasing the model complexity [6].

Multiplicative scatter correction (MSC)

MSC is the most commonly applied pre-processing

technique for NIR spectroscopy. MSC compensates for

different scatter and particle sizes within the acquired

spectra. Every individual spectrum is corrected to have the

same scatter level as the reference spectrum which is the

mean spectrum of the representative data set [17]. The fit

for the individual and the average spectrum is obtained by

least square regression.

x i = a i + bi x̄ j + ei , i = 1, 2, . . . , n and j = 1, 2, . . . , p,
(2)

where x i is the individual spectrum, x̄ j is the average

spectrum of the data set, ei is the residual spectrum, n
is the number of samples, p is the number of wavelengths,

a i is the offset and bi is the slope. The corrected spectrum

(Xi,MSC) is given by,

Xi j,MSC =
(

(Xi j − a i)|bi
)

, (3)

where Xi j is the intensity of the i th spectrum and j th

wavelength of the spectral data. The region which represents

the baseline with no chemical information is identified

to determine a i and bi which is used to determine the

corrected spectra. Thus all samples of the MSC corrected

spectra appears to have same scatter level.

Robust MSC

Robust MSC considers the median spectrum as the

reference spectrum and the robust least trimmed square

regression. The regression model is given by

x i, j = αi + βi(med(x) j ) + ei, j ,
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i = 1, 2, . . . , n and j = 1, 2, . . . , p, (4)

where βi the slope of the regression model, αi is the

intercept of the regression model, n is the number of

samples and p is the number of wavelengths. The slope

and the intercept in the regression line for every sample

are estimated by the robust least trimmed square (LTS)
estimator. The corrected spectral data x∗

i, j of the corrected

spectrum x∗

i is given by,

X∗

i, j = ((Xi, j − α̂i)|β̂i ), (5)

where α̂, β̂ are robust estimates of the regression coefficient.

Thus, robust MSC shifts each spectrum vertically and

scales proportionally to make it close to the reference

spectrum [5,18].

Extended multiplicative scatter correction (EMSC)

The EMSC is the extended form of MSC and it includes

both polynomial fitting to the reference spectrum, baseline

fitting and uses apriori knowledge of the spectra of interest

or spectral interferes. The first order polynomial is

commonly used for reference correction [19,20].

Orthogonal signal correction (OSC)

The deviation present in the spectral data that are

orthogonal to the response can be eliminated by OSC. OSC

also reduces the light scatter effects and other interferences

that has zero correlation with the reference value of the

response variable. OSC retains all the information pertaining

to the response variable. OSC computes the loading weights

such that the score vector explains the maximum variance

in the data set. Then it is subtracted before computing the

new component. Thus OSC requires minimum components

for correction. The residuals after OSC are used for model

calibration [21].

Baseline offset

The vertical offset or slope observed in the acquired

spectra due to low frequency detector variation leads to

baseline effects. Initially, the baseline is estimated, and

is then, subtracted from the measured spectrum. This

process assists in removing the baseline offsets. Estimation

of baseline can be done by detrending or asymmetric least

squares smoothing. The derivatives of the input signal also

help in eliminating the baseline effects [22,23].

Standard normal variate (SNV)

In addition to MSC technique, the SNV technique is also

commonly adopted for scatter correction for NIR data. The

SNV technique eliminates the slope variation in the spectra

and incorporates the corrections of the scattering effects.

Each individual spectrum is transformed independently in

order to eliminate the slope variations in the spectra by

applying equation (6), which is given as

x i j(SNV ) = ((x i j − x i )|SD),

i = 1, 2, . . . , n and j = 1, 2, . . . , p, (6)

where x i j(SNV ) denote transformed spectra x i j is the original

spectra, x i is the mean spectrum of i th sample, SD is the

standard deviation, n denotes the number of samples and

p denotes the number of wavelengths. Thus SNV corrects

individual spectrum by initially mean centering the spectral

data. Thereafter, the centered spectrum is scaled down by

the SD of the individual spectral values [6,17].

Spectral Derivatives

Derivatives removes both additive and multiplicative

effects present in the spectra and increases the spectral

resolution by removing the background variation. The

baseline effects and the linear background variation can

be eliminated by I (D1) and II (D2) order derivatives

respectively. The II order derivative is the most commonly

used technique as it is easier for data interpretation. As

the derivatives amplify the noise present in the spectral data

proper smoothing has to be performed before finding the

spectral derivatives. Commonly used spectral derivatives

are Norris-Williams derivation and Savitzky-Golay deriva-

tion [6,17].

Comparative results of pre-processing
techniques

This section deals with the investigation of the effective-

ness of various empirical pre-processing techniques applied

on the VIS-NIR diffuse reflectance spectral data in terms

of the ability to predict blood glucose using partial least

square regression model. Diffuse reflectance spectral data

of 207 subjects including both diabetic and non-diabetic are

used in this study. The study involves the spectral data

collected from the subjects under fasting and post prandial

state. The subjects include both male and female within

the age group of 30−70 years. This study deals with

the spectral pretreatments like baseline shift, MSC using

mean scaling, robust MSC, EMSC, OSC, (−logR) followed
by SNV. All preprocessing techniques are executed using

Unscrambler X 10.3.

NIR spectroscopy in biological samples is highly influ-

enced by light scattering due to comparable size of the

particle and the wavelength band. Thus, NIR spectroscopy

is more prone to non-linearities generated due to scattering

effects [6]. Thus, there is a need to apply suitable pre-

processing technique to remove these non-linearities. After

the suitable pre-processing is done, variation present in the

raw data is removed which is the reason for large variations

between raw data and pre-processed data.

The variation in acquired raw spectral data and the pre-

processed data are analyzed in terms of variance, standard

Optics and Spectroscopy, 2022, Vol. 130, No. 5
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Table 2. Variance, Standard deviation and coefficient of variance in raw data

Pre-Processing Technique Mean Variance Standard deviation (SD) CV= SD/Mean

Raw data 26.37 519.81 22.79 0.86

Baseline 22.68 514.18 22.67 0.99

MSC mean scaling 0.07 0.88 0.94 13.4

Robust MSC 0.24 1.88 1.37 5.71

EMSC 11.87 50.40 7.09 0.59

OSC 9.93 0.17 0.41 0.04

(−logR) followed by SNV 9.83 1.00 1.00 0.10

(Proposed pre-processing technique)

deviation (SD) and coefficient of variance (CV) and are

tabulated in Table 2.

The reason for large variation between raw data and

(−logR) followed by SNV preprocessing technique is that

in SNV technique, each spectral data is mean centered and

scaled by the standard deviation [6,17]. This results in unity

variance, thereby reducing the noise components present in

the data and resulting in variations between the raw data

and data after pre-processing.

Figure 2 demonstrates the plot of raw and pre-processed

spectral data for all the 207 subjects. It is found from

Fig. 2, a, that the measured reflection intensity is found to

have large variations with respect to wavelength. However

after applying pre-processing techniques such as baseline

correction and EMSC the variations are found to still

remain the same as shown in Fig. 2, b and 2, e respectively.

Figure 2, c, d, f shows spectral overlapping at some regions,

though variability is reduced. This might tend to lower the

prediction performance. It can be inferred form Figure 2, g

that the variability is present in the data is highly reduced

and the spectral data is found to be more linear throughout

the spectral interval.

odel complexity evaluation

The spectral data after transformation using the pre-

processing techniques mentioned above are used in model

development using PLS regression model. The model

complexity and prediction accuracy of the various pre-

treated data for the PLS regression model is analyzed in

this section.

The model complexity mainly depends on the number of

latent variables that are needed to develop the calibration

model. Too many latent variables result in overfitting while

less number of latent variables can cause loss of informa-

tion [7,24–26]. Hence, the choice of selecting the optimal

number of latent variables plays an important role in model

development. As a first step, PLS model is applied to the

spectral data without applying any preprocessing technique.

Then the model complexity is evaluated with respect to

the number of latent variables (LVs) that maximizes the

variance in the data corresponding to the response (glucose)
for various preprocessing techniques listed above. Once

the required number of latent variables are determined,

blood glucose is predicted using the regression model for

all the above mentioned preprocessing techniques. Figure 3

illustrates the scatter plot of the clinically calculated blood

glucose concentration against the predicted blood glucose

concentration for the various preprocessing techniques.

From Figure 3, it is noted that the scatter plot of

the predicted glucose concentration is poor for raw data,

baseline corrected and OSC spectra respectively as most of

the scatter points doesn.t lie close to the fitted response.

An improvement in prediction is observed for MSC mean

centered and robust MSC pre-processed spectral data as

shown in Fig. 3, c, d. The scatter plots lie closer to the

fitted response curve for EMSC as shown in Fig. 3, e. A

more linear relationship is exhibited for (−logR) followed

by SNV technique as most of the scatter plots lie on or

very close to the fitted response as shown in Fig. 3, g. This

concludes that (−logR) followed by SNV technique results

in a good fit.

Model efficacy estimation

The prediction accuracy is further evaluated using 35 fold

cross validation and the estimated mean square prediction

error (MSPECV) is determined. The number of latent

variables required for model development without prepro-

cessing and by the application of various preprocessing

techniques and their corresponding range of MSPECV are

summarized in Table 3.

From Table 3, it is evident that the number of latent

variables required to build the calibration model is greater

for raw data, baseline and OSC and is less for other pre-

processing techniques. MSC mean scaling and (−logR)
followed by SNV pre-processing methods produces 28

latent variables. Thus it is evident from the above

table that linearization of the spectral data prior to the

application of pre-processing technique tends to reduce the

model complexity. Also the minimum estimated mean

square prediction error is 0.18mg/dl for (−logR) followed

by SNV preprocessing technique for 36 latent variables.

Moreover, it is observed that MSC mean centering and

SNV techniques behave similarly with minimum difference

in their prediction ability. Figure 4 shows the estimated

mean square prediction error plotted across the number of

folds for various preprocessing techniques. It is clear from

Optics and Spectroscopy, 2022, Vol. 130, No. 5
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Figure 2. Raw and transformed spectra using different pre-processing techniques: (a) Raw spectra, (b) baseline correction, (c) MSC

mean scaling, (d) robust MSC, (e) EMSC, (f) OSC, (g) (−logR) followed by SNV.

Table 3. Statistical parameters for PLSR model with various

pre-processing techniques

Pre-processing technique Number Range of mean square

of latent prediction error for

variables cross validation (mg/dl)

Raw data 58 [1.33.5.29]
Baseline 56 [1.10.4.88]

MSC mean scaling 28 [0.40.5.29]
Robust MSC 30 [0.31.5.29]

EMSC 31 [0.34.4.88]
OSC 54 [0.55.4.88]

(−logR) followed by SNV 28 [0.18.4.88]
(Proposed pre-processing

technique)

Figure 4 that the mean square prediction error tends to

decrease with increase in the number of folds.

It is also inferred form Fig. 4 that the mean square

prediction error is minimum for (−logR) followed by SNV

pre-processing technique whereas for the raw data, error is

maximum. Thus, it is concluded form this study that, the

proposed pre-processing technique i. e. (−logR) followed

by SNV technique is the best pre-processing technique

amongst the various other techniques discussed in this paper

for the PLSR model development in the prediction of blood

glucose.

Discussion

Oliver Devos et al [27] in his study has proposed

the parallel genetic algorithm co-optimization technique

to simultaneously optimize spectral pre-processing and

variable selection using PLSR model. Three near infrared

spectroscopic data sets namely corn data, tecator data and

sugar beet data are subjected to 31 pre-processing functions.

The authors have proved that genetic algorithm performs

better for simultaneous optimization with improved predic-

tion ability. Yiming Bi et al [28] has proposed a localized

version of SNV pre-processing technique. The prediction

ability was compared with three different data sets namely

meat data, pharmaceutical data and wheat data. The

data sets were subjected to pre-processing techniques like

SNV, MSC, Extended Inverted Signal Correction (EISC),
EMSC, first order derivative (D1), second order derivative

(D2), localized SNV (LSNV) and proved that LSNV gives

good prediction with minimum RMSECV. S.N. Thennadil,

E.B. Martin [29] in their study analyzed the performance

of empirical preprocessing methods to extract information

Optics and Spectroscopy, 2022, Vol. 130, No. 5
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Figure 3. Scatter plot of predicted glucose Vs clinically measured glucose for raw and transformed spectra using different pre-processing

techniques: (a) Raw spectra, (b) baseline, (c) MSC mean scaling, (d) robust MSC, (e) EMSC, (f) OSC, (g) (−logR) followed by SNV.
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about chemical species in a system. They inferred that

EMSCL, a form of EMSC that uses log term for wavelength

dependencies was found to be statistically significant than

other methods. The proposed study focusses on the

performance of various pre-processing methods by imple-

menting PLSR model for predicting the blood glucose. It

is found that the proposed pre-processing technique based

on logarithmic linearization of data subjected to classical

SNV technique performs better than other techniques with

minimum mean square error for prediction.

Conclusion

The current research work presents various empirical pre-

processing methods that are suitable for NIR spectroscopic

study in order to predict the blood glucose concentration

using PLSR calibration model. This paper has shown that

the complicated NIR spectra can yield good prediction

results with suitable pre-processing technique. It also

emphasises on the importance of pre-processing techniques

in NIR study.

The suggested pre-processing technique of linearizing the

spectral data (−logR) prior to SNV aided in a PLSR

model with better prediction of blood glucose from the data

acquired using the diffuse reflectance spectroscopic setup

discussed in this paper. Although the current research work

provides promising results for the proposed pre-processing

technique, the choice of adopting an optimal pre-processing

technique is challenging as it depends on the instrumental

setup, data acquisition and application based prediction

model development.
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