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The properties of the FCC-of the gold crystal were calculated using an analytical method (without computer

modeling) in the temperature range: T = 10−1337K and pressures: P = 0−110GPa. The following properties

were calculated: state equation, Debye temperature, first and second Gruneisen parameters, elastic modulus (BT ),
thermal expansion coefficient (αp), isochoric (Cv ) and isobaric (C p) heat capacity, specific surface energy.

Derivatives of these properties also have been calculated both by temperature along three isobars and by pressure

along three isotherms. The obtained results showed good agreement with the other authors results. It was shown

that there is a certain temperature TB in which the product αpBT does not change during the crystal compression.

At T > TB , the αpBT function increases, and at T < TB , it decreases with an increase in pressure. For FCC-Au

has been received TB = 132K. It was shown that the isotherms of the baric derivative of elastic modulus B ′(P)
intersect at the point: P > 21.58GPa, and B ′(P) = 7.43. At P < 21.58GPa, the C′

v (P) function increases, and at

P > 21.58GPa, it decreases with increasing temperature. It was shown that the isotherm of the baric derivative

of the isochoric heat capacity C′

v(P) has a minimum, and the isotherm of the baric derivative of the isobaric heat

capacity C′

p(P) has both a minimum and a maximum. Based on the obtained dependencies, some approximations,

which are used to calculate the properties of the crystal under high P−T -conditions, have been analyzed.

Keywords: gold, pressure, elastic modulus, thermal expansion, heat capacity, Debye temperature, Gruneisen

parameter, surface energy.
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1. Introduction

When studying the properties of a crystal in the region

of high temperatures (T ) and pressures (P), it is most

difficult to estimate the dependence of the thermal expan-

sion coefficient (αp = (∂ lnV/∂T )P) on P−T -arguments.

Meanwhile, it is the function αp(P, T ) that determines both

the change in pressure upon isochoric heating of the crystal

and the change in entropy (S) upon isothermal change in

the volume (V ) of the crystal

αpBT =

(

∂P
∂T

)

V

=

(

∂S
∂V

)

T

, (1)

where BT = −V (∂P/∂V )T is isothermal modulus of elasti-

city.

The function αp(P, T ) also determines the dependence

of the isobaric heat capacity of the crystal (C p) on P−T -
arguments, which is very important for applications. There-

fore, in order to somehow estimate the functions αp, αpBT ,

and C p under high P−T -conditions, several approximations

were proposed, among which the Birch approximation.

In 1952, Francis Birch in his article [1] suggested that for

silicates and oxides at high temperatures the product αpBT

is independent of pressure

αpBT = const. (2)

In 1975 in the article [2] in an experimental study of

inert gas crystals, it was found that at high temperatures

(T > 2 — Debye temperature) the function (∂P/∂T )V is

independent of temperature and volume. In [3], when

studying alkali halide crystals, it was found that the product

αpBT varies slightly with volume. In [4] it was shown that

for many metals and ionic crystals the
”
product αpBT varies

by less than a few per cent between the Debye and melting

temperatures“. It was also pointed out in the article [5] that
for many minerals at high temperatures the product αpBT

does not depend on temperature.

Thus, despite its simplicity, approximation (2) has re-

ceived wide recognition and is used to calculate properties

not only for crystalline substances, but also for amor-

phous, liquid and nanostructured substances [6–12]. The

approximation (2) is sometimes also called as αB rule [8].
At the same time, it must be remembered that the

approximation (2) arose and is still used due to the fact that

it is calculated within the framework of a single method

(analytical or computer) of the function BT (P, T ), αp(P, T )
and C p(P, T ) is still extremely difficult even for a single-

component crystal [13–15]. As for the derivatives of the

functions αp(P, T ) and C p(P, T ) with respect to pressure

along the isotherm, there are no such estimates in the

literature yet. The same is the case with the study of the
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specific (per unit area) surface energy (σ ) of a crystal and

the derivatives of the σ function with respect to temperature

along the isobar and pressure along the isotherm.

In this regard, three problems were solved in this article.

1. A relatively simple analytical method for calculating

the thermodynamic properties of a single-component sub-

stance crystal is proposed.

2. Using this method, the properties of gold were calcu-

lated in a wide range of P−T−V -arguments.

3. On the basis of the dependences obtained, both the

approximation (2) and a number of other approximations,

which are used to estimate the crystal properties under high

P−T -conditions, were studied.

In this case, the calculations of the properties in this

article were carried out both for an isobaric increase

in temperature (along three isobars) and for isothermal

compression of the crystal (along three isotherms). Using

gold as an example, it was analyzed — how applicable

various approximations are in various P−T−V -conditions.

Gold was selected because it is low oxidizable, inert

and ductile metal that does not experience polymorphic

phase transitions. The thermoelastic properties of gold have

been relatively well studied experimentally under various

P−T -conditions. In addition, gold is the most commonly

used pressure calibration standard in experiments under

high P−T -conditions.

2. Calculation method for properties of
a single-component substance crystal

To calculate the lattice properties of a single-component

crystal, it is necessary to determine both the interaction

potential of its atom pair and the calculation method based

on this potential. Let us represent the pair interatomic

interaction as four parametric Mie−Lennard-Jones potential,

which has the following form [16, ch. 7]:

ϕ(r) =
D

(b − a)

[

a

(

r0
r

)b

− b

(

r0
r

)a]

, (3)

where D and r0 are the depth and the coordinate of the po-

tential minimum and b > a > 1 are numerical parameters.

Then, using the approximation of
”
the interaction of only

nearest neighbors“ the Debye temperature as a function of

the first coordination number and the distance between the

centers of the nearest atoms can be determined from the

expression [17]:

2(kn, c) = Aw(kn, c)ξ

[

−1 +

(

1 +
8D

kBAw(kn, c)ξ2

)1/2]

.

(4)

Here kB = 1.3807 · 10−23 J/K is Boltzmann constant,

kn is first coordination number, c = (6k pv/π)1/3 is distance

between centers of the nearest atoms, k p is structure packing

factor, v = V/N is specific volume, V and N are volume and

number of crystal atoms.

The Aw function arises due to taking into account the

energy of
”
zero vibrations“ of atoms in a crystal and has

the following form:

Aw(kn, c) = KR
5knab(b + 1)

144(b − a)

(

r0
c

)b+2

, (5)

KR =
~
2

kBr20m
, ξ =

9

kn
,

where m is atomic mass, ~ = 1.0546 · 10−34 J · s — Plank’s

constant.

If we apply the approximation of
”
the interaction of

only nearest neighbors“ and use the Einstein model for the

crystal vibrational spectrum, then for the specific (per atom)
Helmholtz free energy of the crystal, we can adopt the

expression [16,18]:

f H(kn, c, T ) =

(

kn

2

)

DU(R) + 3kB2E(kn, c)

×

{

1

2
+

(

T
2E(kn, c)

)

ln

[

1− exp

(

−
2E(kn, c)

T

)]}

,

(6)

where 2E is the Einstein temperature, which is related to

the Debye temperature by the [16,18]: 2 = (4/3)2E ratio,

R = r0/c is relative linear density of the crystal, U(R) is

potential energy function, which, in accordance with (3), is
equal to

U(R) =
aRb − bRa

b − a
.

Based on the expression (6) for the state equation (P)
and the isothermal modulus of elasticity (BT ) one can

obtain [19]:

P = −

(

∂ f H

∂v

)

T

=

[

kn

6
DU ′(R) + 3kB2EγEw

(

2E

T

)]

1

v
,

(7)

BT = −v

(

∂P
∂v

)

T

= P +

[

kn

18
DU ′′(R) + 3kB2E γ(γ − q)

× Ew

(

2E

T

)

− 3kB γ
2T FE

(

2E

T

)]

1

v
. (8)

The following functions are introduced here:

Ew(y) = 0.5 +
1

[exp(y) − 1]
,

FE(y) =
y2 exp(y)

[exp(y) − 1]2
,

U ′(R) = R

[

∂U(R)

∂R

]

=
ab(Rb − Ra)

b − a
,

U ′′(R) = R

[

∂U ′(R)

∂R

]

=
ab(Rb − Ra)

b − a
. (9)
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Table 1. Properties of FCC-Au at P = 0 and T = 300K (The data known from the literature are given in the bottom line)

Properties V , cm3/mol 2, K γ αp, 10
−6K−1 BT , GPa B ′(P) = (∂BT/∂P)T

Calculation 10.1973 197.098 2.951 43.039 164.365 8.245

Literature 10.2055 [14] 170 [25] 2.52−3.38 [25] 42.24 [31] 162.6−168.2 [14] 4.62± 0.1 [14]
data 162−168 [30] 2.95−3.15 [30] 42.6 [32] 161.7−171.7 [25] 5.26−6 [25]

10.215 [25] 162.5 [31] 2.96 [31] 42−42.8 [33] 166.5−166.9 [30] 6.05−6.35 [30]
10.210 [31] 165−180 [32] 2.95−3.215 [32] 41.47 [34] 167−171 [32] 5.0−6.2 [32]
10.207 [32] 171−190 [33] 2.888 [34] 173.5−180.9 [33] 6.2−9.65 [33]
10.215 [34] 179−179.5 [34] 167 [34] 5.81−5.90 [34]

From formula (4) it is easy to find expressions for the

first (γ) and second (q) Gruneisen parameters, which have

the form

γ = −

(

∂ ln2

∂ ln v

)

T

=
b + 2

6(1 + Xw)
,

q =

(

∂ ln γ

∂ ln v

)

T

= γ
Xw(1 + 2Xw)

(1 + Xw)
. (10)

Here, the function Xw = Awξ/2 is introduced, which

determines the role of quantum effects in calculating

the Gruneisen parameters. Since the Debye temperature

from (4) does not depend on temperature during isochoric

heating, the isochoric and isobaric heat capacities can be

determined in the form [16,18]:

Cv = 3NkB FE

(

2E

T

)

,

C p = Cv(1 + γαpT ), (11)

where the isobaric thermal volume-expansion coefficient can

be calculated from the Gruneisen equation

αp =
1

v

(

∂v

∂T

)

P

= γ
Cv

V BT
=

γCv

NBT [πr30/(6k p)]

(

v0

v

)

,

v0 =
πr30
6k p

. (12)

The resulting expressions (4)−(12) enable to calcu-

late the dependence of both the state equation and

the specified properties on the normalized volume

v/v0 = (c/r0)3 = R−3 and temperature for a single-

component crystal with a given structure (i.e. for given

values of kn and k p), if the parameters of the interatomic

potential (3) are known. This method has been successfully

applied in calculating the properties of various polymorphic

modifications of iron [19,20], silicon and germanium [21],
isotopically different diamonds [22], and also for binary

alloys [23].
Note that expressions (4)−(12) do not take into account

either vacancies or self-diffusion of atoms, because, as was

shown in [24], their influence becomes negligible when the

crystal is compressed. Here, as well as in [19–24], the

contribution of the electronic subsystem to the thermody-

namic parameters is not taken into account, because the

potential (3) describes the pair interaction of electrically

neutral atoms. In addition, as was shown in articles [25–28],
the errors that arise in the lattice properties calculation

due to the exclusion of the electronic subsystem from

consideration are negligibly small. For example, as indicated

in [25], for gold the contribution of the electronic subsystem

to the pressure is 0.01 and 0.5 GPa at 1000 and 5000 K,

respectively. This contribution is much smaller than the

error in pressure measurements at these temperatures.

The question arises: how accurate will be the calculations

using the relatively simple analytical expressions presented

here (4)−(12)? The answer to this question in relation to

gold is contained below.

3. Calculation results of gold properties

To calculate the crystal properties using

formulas (4)−(12), gold (Au, m(Au) = 196.967 a.m.u.)
was taken, whose melting point at P = 0 is

Tm(P = 0) = 1337.58K. Gold has a face centered

cubic (FCC) structure (kn = 12, k p = 0.7405) and does

not experience polymorphic phase transitions.

The parameters of pair interatomic potential for

FCC-Au (3) were determined in [29], and have the

following values:

r0 = 2.87 · 10−10 m, D/kB = 7446.04K,

b = 15.75, a = 2.79. (13)

Table 1 presents the properties of FCC-Au calculated

using the potential parameters from (13) at P = 0 and

T = 300K. As can be seen in Table 1, the agreement

between the calculated data and the experimental and

theoretical estimates of other authors is quite good.

3.1. State equations

Figure 1, a shows the behavior of the thermal state

equation of the FCC-Au, i.e. the isothermal dependences

of the pressure (P , in GPa) on volume (V , in cm3/mol)
along three isotherms (bottom−up): 100, 300, 1337 K. Solid
curve is an experimental isotherm T = 300K from [25].
Our calculations: for T = 100K — lower dashed curve,

for T = 300K — middle dashed curve, for T = 1337K —
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Figure 1. Isotherms of the state equation (a), Debye temperature (b), first (c) and second (on inset) Gruneisen parameters for FCC-Au.

upper dashed curve. As can be seen in Fig. 1, a, the

agreement between the calculated dependence P(V, 300K)
and the experimental isotherm from [25] is quite good.

By calculating the dependence P(V ) and the dependence

of some parameter X(V ) along a certain isotherm, one can

obtain the pressure dependence of this parameter X(P)
along the same isotherm. Figure 1, b, c shows the baric

dependences of the Debye temperature calculated in this

way, the derivative of the Debye temperature with respect

to pressure (2′(P) = (∂2/∂P)T , in K/GPa), the first and

second Gruneisen parameters for FCC-Au along isotherms

100, 300, 1337K. It can be seen on these graphs that

while the functions 2, γ and q, do not have an explicit

temperature dependence in expressions (4) and (10), with

an isobaric increase in temperature, they change: the

quantities 2 and q decrease, while 2′(P) and γ increase.

As can be seen in formula (4), our method uses the ap-

proximation: 2′(T ) = (∂2/∂T )v = 0, which is called
”
the

Debye−Gruneisen quasi-harmonic approximation“ [35]. If

this approximation is not used, then, as shown in [36],
the formulas for the heat capacity and thermal expansion

coefficient will include the first and second derivatives of

the function 2(T ) with respect to temperature. This will

significantly complicate the calculations, especially since the

correct definition of the function 2(T ) is very difficult [36].
In many articles (for example, in [13,14,25,26,32]) the

dependence of the Gruneisen parameter on volume is

described by the expression

γ(V ) = γ(V0)

(

V
V0

)q

,

where it is assumed that the second Gruneisen parameter

does not depend on V/V0, i.e., on pressure: q = const. As

can be seen on the inset in Fig. 1, c the function q(P) on the

interval from 0 to 100GPa almost doubles. It was shown

in the articles [17,19,24] that the functions 2(V ) and q(V )
increase as the crystal is compressed, while the function

γ(V ) decreases

lim
V/V0→0

2 = 2max =
4knD
9kB

, lim
V/V0→0

γ = γmin = 0,

lim
V/V0→0

q = qmax =
b + 2

3
.
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Figure 2. Dependence of the modulus of elasticity on temperature along three isobars (a), on pressure (b), and on normalized volume (c)
along three isotherms for FCC-Au. The insets in Fig. 2, d, c show the dependence of the derivative of the modulus of elasticity with respect

to pressure (B ′(P)) on pressure (b) and on the normalized volume (c).

Thus, the assumption about the constancy of the value q
is not correct.

3.2. Modulus of elasticity

Figure 2, a shows the change in the isothermal modulus

of elasticity (BT , in GPa) for FCC-Au with an isobaric

change in temperature along three isobars (bottom−up):
0, 24, 60GPa. Solid lines show our calculations. As

can be seen, the calculated isobar dependence BT (T ) at

P = 0 (lower solid line) is in good agreement with the

experimental dependences from the articles [25] (open
triangles) and [30] (solid circles). The dashed line shows

the theoretical isobar dependence BT (T ) from [32] for

P = 24GPa. In the article [32] the gold properties were

calculated based on the
”
first principles“ within

”
density-

functional theory“ (DFT) using the local density approx-

imation. The asterisks in Fig. 2, a show the results of

calculations at P = 0 from [34], which were obtained
”
by

simultaneously optimizing of shock-wave data, ultrasonic,

X-ray, dilatometric and thermochemical measurements“.

Fig. 2, b shows the change in the BT func-

tion for FCC-Au at an isothermal change in pres-

sure, while Fig. 2, c — at isothermal change of nor-

malized volume: V/V0 = v/v0 = (c/r0)3 = R−3, where

value v0 is defined in (12). Using the value r0
from (13) we get: V0 = v0NA = 10.0663 cm3/mol, where

NA = 6.0221367 · 1023 mol−1 is Avogadro constant. The

symbols in Fig. 2, b show the theoretical results obtained

for T = 300K: open circles — from [32], solid aste-

risks — from [34]. The insets in Fig. 2, b, c show the

dependences of the derivative of the modulus of elasticity

with respect to pressure calculated along three isotherms

(B ′(P) = (∂BT/∂P)T ) on pressure and on normalized

volume, respectively. As can be seen, the isotherms of

the function B ′(P) intersect at the point: P = 21.58GPa,

B ′(P) = 7.43. At this pressure, the function B ′(P) does not
depend on temperature.
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with respect to pressure (α′
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In 1944, F.D. Murnaghan in [37] proposed to calculate the

baric dependence of the isothermal modulus of elasticity

of solid matter at T ≫ 2 by restricting with a linear

dependence, i.e. using an approximation of the form

BT (P) ≡ BT (0) +

(

∂BT

∂P

)

P=0

P

= BT (0) + B ′(P)0 P.
(14)

As it turned out later, the approximation (14), despite its

simplicity, is satisfied well for many substances and, there-

fore, was called the
”
Murnaghan approximation“ [7] in the

literature. As can be seen in Fig. 2, b, approximation (14)

is satisfied quite well, but it must be borne in mind that

with increasing temperature, the value of BT (0) decreases,

and the value of B ′(P)0 increases. As for the isothermal

dependence BT (V/V0), then, as can be seen in Fig. 2, c, this

dependence is non-linear.

3.3. Thermal expansion coefficient

Figure 3, a shows the change in the thermal expansion

coefficient (αp, in 10−6 1/K) for FCC-Au at isobaric tem-

perature change along three isobars (top−down): 0, 24,

60GPa. Solid lines show our calculations. As can be seen,

the calculated isobar dependence αp(T ) at P = 0 (upper
solid line) is in good agreement with the experimental data

from the article [33] (solid circles). Asterisks show the

results of calculations for P = 0 from [34]. The dashed

line, which merges with our solid line, shows the theoretical

isobar dependence αp(T ) for P = 24GPa from [32].
Figure 3, b shows the change in the αp function for

FCC-Au with an isothermal change in pressure αp(P),
while Figure 3, c — under an isothermal change in the nor-

malized volume αp(V/V0). The isotherms 100, 300, 1337 K

are shown bottom−up, respectively. The symbols in Fig. 3, b

show the theoretical results obtained at T = 300K: open

circles — from [32], solid asterisks — from [34]. The

insets in Fig. 3, b, c show the dependences of the derivative

of the thermal expansion coefficient with respect to pres-
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Figure 4. Dependence of the αpBT function on the temperature along three isobars (a), on the pressure (b), and on the normalized

volume (c) along three isotherms

sure calculated along three isotherms (α′

p(P) = (∂αp/∂P)T ,

in 10−6 1/(GPa ·K)) on pressure and normalized volume

respectively.

It follows from formulas (7)−(11) that under ulti-

mate compression, i.e. at V/V0 → 0, the following is

true: P → ∞, BTV → ∞, γ → 0 and Cv → const. Then

from (12) it is easy to obtain

lim
V/V0→0

αp = (αp)min = +0.

It can be seen in Fig. 3, b that the baric dependences

αp(P) are non-linear. As was shown in [19] using iron

as an example, the isothermal dependence αp(P) is well

approximated by a second-order exponential decay function

of the following type:

αp(P) = y0 + A1 exp

(

−
P
t1

)

+ A2 exp

(

−
P
t2

)

, (15)

where the adjustable constants y0 ≥ 0, A1, A2, t1, t2 depend

on the temperature.

Note that in some articles, to approximate the function

αp(P) or αp(V/V0), a finite power dependence is used

αp(P) = a0 +
k

∑

i=1

a i

(

P
P0

)i

,

αp

(

V
V0

)

= a ′

0 +
k

∑

i=1

a ′

i

(

V
V0

)i

. (16)

Having determined the adjusting constants in (16) based

on the experimental data in the low pressure region, the

authors of the approximations (16) then extrapolate them

to the high pressure region, i.e. to P → ∞ or V/V0 → 0.

In this way, they get that starting from a certain value Px

or (V/V0)x , the function αp moves into the negative region.

It is this result that was obtained in a number of articles

(for example, in [38,39]). However, if approximation (15) is
used, then this erroneous result will not be obtained.
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3.4. Product of αpBT

Figure 4, a shows the temperature dependence of the

function αpBT (in 10−3 GPa/K) for FCC-Au along three

isobars (bottom−up): 0, 24, 60GPa. Solid lines show

our calculations. The dashed line and asterisks show

the dependences obtained for P = 0GPa in [4] and [34],
respectively. Figure 4, b shows the change in the αpBT

function for FCC-Au at an isothermal change in pressure,

and Figure 4, c — at an isothermal change of the normalized

volume. The isotherms 100, 300, 1337K are shown

bottom−up, respectively.

As can be seen on these plots, the isobar αpBT (T )
has a maximum, which shifts towards higher temperatures

with increasing pressure on the isobar. It can be seen in

Fig. 4, b, c that the value of αpBT at T > 2 increases at an

isothermal increase in pressure or at an isothermal decrease

in the normalized volume. Therefore, in the general case,

approximation (2) is not satisfied for isothermal crystal

compression. At the same time, there is a certain tem-

perature TB , in the region of which the approximation (2)
can be considered applicable. As can be seen in Fig. 4, a

for FCC-Au the value TB = 132K is obtained.

3.5. Isochoric and isobaric heat capacity

Figure 5, a shows the change in the normalized isobaric

heat capacity for FCC-Au as the temperature changes along

three isobars (top−down): 0, 24, 60GPa. Solid lines show

our calculations. Solid circles show experimental data for

P = 0 from [33]. The asterisks show the results for P = 0

from [34]. The dashed line merging with our solid line is

the theoretical dependence obtained at P = 24GPa in [32].

Figure 5, b shows the change in the normalized isobaric

(solid lines) and isochoric (dashed lines) heat capacity for

FCC-Au at an isothermal change in pressure, and Fig-

ure 5, c — at an isothermal change in the normalized

volume. The isotherms 100, 300, 1337K are shown

bottom−up, respectively. The symbols in Fig. 5, b show
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the theoretical results obtained for T = 300K: circles —
from [32], asterisks — from [34].
In some articles, when studying the dependence of

the crystal heat capacity on P−T -arguments at T > 2,

approximations are used that follow from the Dulong−Petit

law (Dulong−Petit law):

C p
∼= Cv = 3NkB,

(

∂C p

∂T

)

P

≡

(

∂Cv

∂T

)

P

= 0,

(

∂C p

∂P

)

T>2

≡

(

∂Cv

∂P

)

T>2

= 0,

(

∂C p

∂(V/V0)

)

T>2

≡

(

∂Cv

∂(V/V0)

)

T>2

= 0. (17)

It can be seen in Fig. 5 that the approximations from (17)
can lead to noticeable errors.

At ultimate compression i.e. at V/V0 → 0, the Debye tem-

perature increases and the following relations are fulfilled:

2 → 2max and C p → Cv . In this case, if the Dulong−Petit

law was satisfied at low pressures, and the condition

T < 2(P) begins to be satisfied upon compression, then

the heat capacity becomes less than 3NkB. In this case, the

baric derivatives will already be different from zero.

At ultimate compression, if T < 2max, it is possible to

reach the value: C p = Cv
∼= +0. Based on the parameters

of the potential (13), for fcc-Au we get

lim
V/V0→0

2 = 2max =
4knD
9kB

= 39721K.

However, all these considerations are valid if, when a crystal

is compressed, its crystal structure and parameters of the

interatomic potential do not change, i.e. the structure of the

atom is preserved.

3.6. Baric derivatives

Figure 6 shows the temperature dependences of the

baric derivatives of the following functions: modulus

of elasticity (B ′(P) = (∂BT /∂P)T — Fig. 6, a), thermal

expansion coefficient (α′

p(P) = (∂αp/∂P)T — Fig. 6, b,

in 10−6 1/(GPa · K)), normalized isobaric (i = p, solid
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lines) and isochoric (i = v , dashed lines) heat capacity

(C′

i (P)/(NkB)=(NkB)−1(∂C i/∂P)T — Fig. 6, c, in GPa−1).
The calculations are performed along three isobars: 0, 24,

60GPa. In Fig. 6, a the symbols show the results for

P = 0GPa from [30] (circles) and from [34] (asterisks).
As can be seen in Fig. 6, a and on the inset in Fig. 2, b,

the function B ′(P) at P < 21.58GPa increases linearly,

and at P > 21.58GPa the function B ′(P) slightly decreases

with an isobaric increase in temperature. In the region

17 < P < 27GPa, the function B ′(P) is practically inde-

pendent of temperature during isobaric heating.

It can be seen in Fig. 6, a, c that the function

α′

p(P) weakly depends on temperature at T > 150K and

P > 24GPa. The functions C′

v(P) and C′

p(P) have minima,

which are located at the points

T=41K and C′

i(P)/(NkB)= − 0.0335GPa−1 forP=0GPa,

T=59K and C′

i(P)/(NkB)=−0.0166GPa−1 forP=24GPa,

T=70K and C′

i(P)/(NkB)=−0.0097GPa−1 forP=60GPa.

The function C′

p(P) have maximum, which is located at

the point

T=265K and C′

p(P)/(NkB)=−0.007GPa−1 forP=0GPa,

T=421K andC′

p(P)/(NkB)=−0.0025GPa−1 forP=24GPa,

T=602K andC′

p(P)/(NkB)=−0.0012GPa−1 forP=60GPa.

4. Calculation of the surface energy
of gold

The value of the specific (per unit area) surface ener-

gy (σ ) of a crystal is one of the most important parameters

that determine its strength and adhesion properties. In this

regard, several different methods for calculating the σ

value for a single-component substance crystal have been

proposed to date (e.g. see[40–50]). But most of these

methods (e.g. [40,41,43,45,46,48,49]) work only at T = 0K

and P = 0. Therefore, the issue of the dependence of

the value σ on the P−T -conditions in which the crystal

is located is topical.

In articles [42,44,47,50] various methods for calculating

the derivative of the σ function with respect to temperature

were proposed: σ ′(T ) = (∂σ/∂T ). But, due to the absence

of the state equation for the studied substances in these

articles, it remains unclear — whether the expression for

σ ′(T ) proposed in these articles is isochoric (σ ′(T )v) or

isobaric (σ ′(T )P) derivative?

As for the surface energy dependence on pressure,

there are no expressions for calculating the function

σ ′(P) = (∂σ/∂P)T in the literature yet, and therefore no

one has estimated this value. The problem here is related

to the fact that in the theoretical models within which

the function σ was calculated, the state equation of the

crystal taking into account the surface was not obtained.

Meanwhile, the dependence σ (P) is necessary for studying

both the initiation of a crack under pressure action on

a macrocrystal and for obtaining the state equation for a

nanocrystal.

To calculate the surface properties of both macro- and

nanocrystals, we developed the RP-model [51], which uses

the potential of pair interatomic interaction (3). Within the

framework of the RP-model, for the specific surface energy

of the face (100) of a macrocrystal (σ ), its isochoric

and isobaric derivatives with respect to temperature, the

following expressions [51] were obtained:

σ = −
knDR2

12α2/3r20
[U(R) + 3Hw(R, T )], (18)

σ ′(T )v =

(

∂σ

∂T

)

v

= −
3kBR2γ

2α2/3(b + 2)r20
FE

(

2E

T

)

, (19)

σ ′(T )P =

(

∂σ

∂T

)

P

= σ ′(T )v + vαP

(

∂σ

∂v

)

T

= σ ′(T )v −
2

3
σαP1P . (20)

The functions introduced here have the following form:

α = π/(6k p),

Hw(R, T ) =
6γ

(b + 2)

kB2E

Dkn
Ew

(

2E

T

)

,

1P = −
1

2

[

∂ ln(σ )

∂ ln(c)

]

T

= −
3

2

[

∂ ln(σ )

∂ ln(V/V0)

]

T

= 1 +
U ′(R) −

[

q − γty
(

2E
T

)]

9Hw(R, T )

2[U(R) + 3Hw(R, T )]
, (21)

ty (y) = 1−
2y exp(y)

[exp(2y) − 1]
.

At T → 0K, the functions from (19) and (20) tend to

zero for any value R, which agrees with the third law of

thermodynamics in Planck’s
”
strong“ formulation.

Table 2 shows the results of calculations using formu-

las (18)−(21) and potential parameters from (13) of surface
properties of FCC-Au at P = 0 and at three temperatures:

T = 100, 300, 1337 K. The bottom line shows experimental

and theoretical data known from the literature (in paren-

theses). As can be seen, the agreement between our

calculations and experimental data is quite good.

Figure 7, a shows the calculated baric dependences of the

specific surface energy (in 10−3 J/m2) of the face (100) for

FCC-Au along isotherms (top−down) 100, 300, 1337K. It

can be seen that at a certain pressure the function σ (P)
reaches its maximum with the following coordinates:

σ = 1.628 J/m2 and P = 27GPa for T = 100K,

σ = 1.613 J/m2 and P = 28.6GPa for T = 300K,

σ = 1.555 J/m2 and P = 36GPa for T = 1337K.
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Table 2. Values of surface properties calculated for FCC-Au at P = 0 for three temperatures. (The bottom line shows experimental and

theoretical (in brackets) data of other authors)

T , K v/v0 σ (100), 10−3 J/m2
−σ ′(T )v , mkJ/(m2K) −σ ′(T )p, mkJ/(m2K) σ ′(P)T , mJ/(m2GPa) 1p

100 1.00487 1561.19 43.52 80.53 6.13 1.0299

300 1.01302 1542.47 51.17 99.43 6.82 1.0903

1337 1.06874 1422.80 50.37 133.85 12.20 1.4207

Experimental 1500−1506 [40], (1627) [40], 125−156 [52]
and (theoretical) 1500−1510 [41], (1630−1800) [41], 500 [54]

data 1500 [42,43], (1542) [42], (92) [56]
(864−1627) [43],

1510± 160 [48], (850−1710) [48],
1500−1540 (0K), 1333 (Tm) [52],

1410± 37 [53], 1363 [54]
(1530 (300K) – 1420 (1337K)) [55]
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Figure 7, b shows the calculated pressure dependences of

the derivative of the specific surface energy of the face (100)

with respect to temperature (in 10−6 J/(m 2 ·K)) along

isotherms (top−down) 100, 300, 1337K. Solid lines are

isobaric derivative, dashed lines are isochoric derivative. It

can be seen that at low pressures (i.e. at P < 27GPa for

T = 100K, at P < 28.5GPa for T = 300K, at P < 36GPa

for T = 1337K) the following inequality is satisfied

|σ ′(T )P | > |σ ′(T )v |.

However, at high pressures, this inequality is reversed.

Therefore, for a crystal, it is impossible to equate the

isochoric and isobaric derivatives of the σ function with

respect to temperature, as is done in some articles.

Figure 7, c shows the calculated baric dependence of the

derivative of the specific surface energy with respect to pres-

sure (in 10−3 J/(m2 ·GPa)) for FCC-Au along isotherms

(bottom−up) 100, 300, 1337K. It can be seen that at the

maximum point of the function σ (P), its derivative σ ′(P)
moves into the negative region of values. The inset shows

the baric dependence of the function 1p from (21) along

three isotherms (bottom−up): 100, 300, 1337K. As can be

seen, the function 1p(P) decreases linearly with increasing

pressure, and at the maximum point of the function σ (P),
the function 1p(P) moves into the negative region of values.

Figure 8, a shows the temperature dependences of the

specific surface energy (in 10−3 J/m2) of the face (100) for

FCC-Au along isobars 0, 24, 60GPa. The dependence for

the 60GPa isobar lies between the dependences of the 0

and 24GPa isobars. This is due to the fact that, as can be

seen in Fig. 7, a, the pressure 60GPa is located after the

maximum of the σ (P) function.

Figure 8, b shows the temperature dependences of the

derivative of the specific surface energy with respect

to temperature (in 10−6 J/(m
2
· K)) for FCC-Au along

isobars (bottom−up) 0, 24, 60GPa. Solid lines show

isobaric derivatives: σ ′(T )P , dashed lines show isochoric

derivatives: σ ′(T )v . It can be seen that with an isobaric

increase in temperature, the value of σ decreases at any

pressure. Therefore, in some articles, for the isobaric or

isochoric temperature dependence of the specific surface

energy, a linear approximation of the following form was
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used [42,47,50,57]:

σ (T ) = σ (T = 0K) +

(

∂σ

∂T

)

i,T=0 K

T

= σ (0) + σ ′(T )i,T=0 K T. (22)

However, as can be seen in Fig. 8, approximation (22) is

valid only at high temperatures and pressures. The use of

the approximation (22) at low temperatures can lead both

to quantitative errors and to violation of the third law of

thermodynamics. This is due to the fact that the contribution

of the surface to the specific (per atom) entropy and heat

capacity (both isochoric: i = v , and isobaric: i = p) of

the system is determined precisely by the function σ ′(T )v ,
i.e. the derivative of the specific surface energy with respect

to temperature [58]:

s surf = −

(

6

N

)(

∂σ

∂T

)

v,N

,

(

C i

N

)

surf

= T

(

∂s surf
∂T

)

i,N

= −

(

6

N

)

T

[

∂

∂T

(

∂σ

∂T

)

v,N

]

i,N

.

Here 6 is the surface area of the system.

At T = 0K, according to the third law of thermody-

namics in Planck’s
”
strong“ formulation, for the specific

entropy (s), heat capacity, and function αpBT the following

conditions must be satisfied:

lim
T→0 K

s = +0, lim
T→0 K

C i

N
= +0, lim

T→0 K
αpBT = +0.

In this regard, as was shown in [58], the function σ must

satisfy the following conditions:

lim
T→0 K

(

∂σ

∂T

)

i,N

= −0, lim
T→0 K

[

∂(∂σ/∂T )v,N
∂v

]

T,N

= −0,

lim
T→0 K

T

[

∂

∂T

(

∂σ

∂T

)

v,N

]

i,N

= −0. (23)

Conditions (23) are valid for any crystal structure, at

any specific volume and pressure, and also at any size

and shape of a nanocrystal. Therefore, the use of the

approximation (22) is not correct for extrapolating the σ (T )
function to the region of low temperatures.

Figure 8, c shows the calculated temperature dependence

of the derivative of the specific surface energy with respect

to pressure (σ ′(P)T , in 10−3 J/(m2 · GPa)) for FCC-Au

along isobars (top−down) 0, 24, 60GPa. As can be seen,

at P > 24GPa the function σ ′(P)T changes linearly with

increasing temperature.

Note that earlier in the article [55], this method was

used to calculate the state equation and baric dependences

of the properties of FCC-Au along the isotherms 300

and 1337K. However, as it was shown in [59], the

parameters of the interatomic potential (3) that were used

in [55] provide smaller values of the modulus of elasticity

and the Gruneisen parameter than the experimental ones.

Therefore, further, in [29] and in this article, more correct

parameters of the potential from (13) were used.

5. Conclusions

1. An analytical method is proposed that uses three

adjustable parameters in the pair potential of the Mie–
Lennard-Jones (3) interatomic interaction. The method was

tested on FCC-Au, and it was shown that the method

enables to calculate all crystal thermodynamic properties

both along an isotherm and along an isobar or isochore.

2. Using this method, the state equation and proper-

ties of gold are calculated in the temperature range:

T = 10−1337K and pressure: P = 0−110GPa. Both tem-

perature dependences of properties along three isobars and

pressure dependences of properties along three isotherms

are obtained. The results obtained showed good agreement

with the experimental and theoretical data of other authors.

3. It is shown that there exists a certain temperature TB at

which the product αpBT does not change under isothermal

compression of the crystal. I.e. in the region TB approxi-

mation (2) can be considered applicable. At T > TB the

function αpBT increases, and at T < TB the function αpBT

decreases with an isothermal increase in pressure. For gold,

TB = 132K is obtained. It is shown that the isobar αpBT (T )
has a maximum, which shifts towards higher temperatures

with increasing pressure on the isobar.

4. For the first time, the baric derivatives of the Debye

temperature, modulus of elasticity, thermal expansion co-

efficient, isochoric and isobaric heat capacity, and specific

surface energy are calculated. It is shown that the

isotherms of the function B ′(P) intersect at the point:

P = 21.58GPa, B ′(P) = 7.43. The function B ′(P) at

P < 21.58GPa increases linearly, and at P > 21.58GPa the

function B ′(P) slightly decreases with an isobaric increase in

temperature. In the region 17 < P < 27GPa, the function

B ′(P) is practically independent of temperature during

isobaric heating. It is shown that the C′

v(P) isotherm has a

minimum, while the C′

p(P) isotherm has both a minimum

and a maximum.

5. Calculations of the baric dependence of the specific

surface energy showed that the function σ (P) has a

maximum, the position of which shifts towards higher

pressures with increasing temperature. The isochoric and

isobaric derivatives of the specific surface energy with

respect to temperature are calculated for the first time. It is

shown that the inequality |σ ′(T )P | > |σ ′(T )v | is satisfied

at low pressures. But at high pressures, this inequality

is reversed.

6. Based on the dependences obtained, the applicability

of approximations (2), (14), (16), (17) and (22), which

are used to calculate the crystal properties under various

P−T -conditions, is analyzed. It is pointed out that

the second Gruneisen parameter cannot be considered a

constant independent of pressure.

7. It is shown that approximation (22) is applicable

only at high temperatures and pressures. The use of the

approximation (22) at low temperatures can lead both to

quantitative errors and to violation of the third law of

thermodynamics.
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We studied FCC-Au in [60]. In this article, the follow-

ing parameters were calculated: Gibbs energy, enthalpy,

entropy, and volume, both for the process of electrically

neutral vacancies formation and for the atom self-diffusion

process.

Acknowledgments

The author would like to thank S.P. Kramynin, K.N. Ma-

gomedov, Z.M. Surkhayeva and M.M. Gadzhieva for fruitful

discussions and assistance in work.

Conflict of interest

The author declares that he has no conflict of interest.

References

[1] F. Birch. J. Geophys. Res. 57, 2, 227 (1952).
DOI: 10.1029/JZ057i002p00227

[2] M.S. Anderson, C.A. Swenson. J. Phys. Chem. Solids 36, 2,

145 (1975). DOI: 10.1016/0022-3697(75)90004-9
[3] T. Yagi. J. Phys. Chem. Solids 39, 5, 563 (1978).

DOI: 10.1016/0022-3697(78)90037-9
[4] J.L. Tallon. J. Phys. Chem. Solids 41, 8, 837 (1980).

DOI: 10.1016/0022-3697(80)90028-1
[5] O.L. Anderson. Phys. Earth Planetary Interiors 22, 3–4, 165

(1980). DOI: 10.1016/0031-9201(80)90029-1
[6] O.L. Anderson, K. Zou. Phys. Chem. Minerals 16, 7, 642

(1989). DOI: 10.1007/BF00223312
[7] J. Shanker, M. Kumar. Phys. Status Solidi B 179, 2, 351

(1993). DOI: 10.1002/pssb.2221790209
[8] J. Rault. Eur. Phys. J. B 92, 1, 1 (2019).

DOI: 10.1140/epjb/e2018-90452-6

[9] K. Kholiya, K. Pandey. J. Taibah Univer. Sci. 13, 1, 592

(2019). DOI: 10.1080/16583655.2019.1611369
[10] M. Goyal, B.R.K. Gupta. Mod. Phys. Lett. B 33, 26, 19503101

(2019). DOI: 10.1142/s021798491950310X
[11] M. Goyal. Chin. J. Phys. 66, 453 (2020).

DOI: 10.1016/j.cjph.2020.05.002

[12] R.L. Jaiswal, B.K. Pandey, D. Mishra, H. Fatma. Int. J. Ther-

modynam. 24, 1, 1 (2021). DOI: 10.5541/ijot.869865
[13] X. Qi, N. Cai, S. Wang, B. Li. J. Appl. Phys. 128, 10, 105105

(2020). DOI: 10.1063/5.0022536
[14] D. Ikuta, E. Ohtani, H. Fukui, T. Sakamaki, D. Ishikawa,

A.Q. Baron. Large density deficit of Earth’s core revealed by

a multi-megabar primary pressure scale. arXiv preprint 2021.

arXiv:2104.02076.

https://arxiv.org/ftp/arxiv/papers/2104/2104.02076.pdf

[15] C. Malica, A. Dal Corso. J. Phys.: Condens. Matter 33, 47,

475901 (2021). DOI: 10.1088/1361-648X/ac2041
[16] E.A. Moelwyn-Hughes. Physical Chemistry. Pergamon Press,

London (1961). 1333 p.

[17] M.N. Magomedov. Techn. Phys. 58, 9, 1297 (2013).
DOI: 10.1134/S106378421309020X

[18] L.A. Girifalco. Statistical Physics of Materials. Wiley and Sons

Ltd., N.Y. (1973). 346 p.

[19] M.N. Magomedov. Techn. Phys. 60, 11, 1619 (2015).
DOI: 10.1134/S1063784215110195

[20] M.N. Magomedov. Techn. Phys. 65, 10, 1659 (2020).
DOI: 10.1134/S1063784220100138

[21] M.N. Magomedov. Phys. Solid State 59, 6, 1085 (2017).
DOI: 10.1134/S1063783417060142

[22] M.N. Magomedov. Techn. Phys. 64, 6, 834 (2019).
DOI: 10.1134/S1063784219060100.

[23] M.N. Magomedov. Phys. Solid State 62, 12, 2280 (2020).
DOI: 10.1134/S1063783420120197

[24] M.N. Magomedov. Phys. Met. Metallography 114, 3, 207

(2013). DOI: 10.1134/S0031918X13030113
[25] M. Matsui. J. Phys.: Conf. Ser. IOP Publ. 215, 1, 012197

(2010). DOI: 10.1088/1742-6596/215/1/012197
[26] X. Huang, F. Li, Q. Zhou, Y. Meng, K.D. Litasov, X. Wang,

B. Liu, T. Cui. Sci. Rep. 6, 19923 (2016).
DOI: 10.1038/srep19923

[27] A.M. Molodets, A.A. Golyshev, D.V. Shakhrai. J. Exp. Theor.

Phys. 124, 3, 469 (2017). DOI: 10.1134/S1063776117030049
[28] D.K. Belashchenko. Phys.−Uspekhi 63, 12, 1161 (2020).

DOI: 10.3367/UFNe.2020.01.038761

[29] M.N. Magomedov. Phys. Solid State 63, 9, 1595 (2021).
DOI: 10.1134/S1063783421090250

[30] W.B. Holzapfel, M. Hartwig, W. Sievers. J. Phys. Chem. Ref.

Data 30, 2, 515 (2001). DOI: 10.1063/1.1370170
[31] G.K. White, J.G. Collins. J. Low Temper. Phys. 7, 1, 43

(1972). DOI: 10.1007/BF00629120
[32] T. Tsuchiya. J. Geophys. Res. 108, B10, 2462 (2003).

DOI: 10.1029/2003JB002446

[33] M.G. Pamato, I.G. Wood, D.P. Dobson, S.A. Hunt,
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