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The Monte Carlo method is used to study phase transitions in the two-dimensional Potts model with the number

of states spin q = 3 on square and hexagonal lattices. Considered systems with linear dimensions L × L = N,

L = 21÷ 102. The obtained numerical data indicate that in the considered In the Potts model, a second-order

phase transition is observed in accordance with the analytical theory. The Binder cumulants method of the fourth

order determines the values of the critical points of the Potts model on different lattices.
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1. Introduction

In statistical physics, the Potts model is one of the

widely used in describing various objects and phenomena.

This model was proposed in 1952 by Domb [1] is still a

theoretical tool used to study a wide class of phenomena

and objects in condensed matter physics.

By now, it is known that in the Potts model with the

number of spin states q > qc(D), where D- is the dimension

of the system, there is a PT of the first order, and a

PT of the second order in the case of q < qc(d) [2,3].
For the 2D-Potts model the value is qc = 4, while for

the 3D-model it is qc = 2.45 [1,3 ]. Moreover, for

qc(d = 2) = 4, a PT of the second order is observed, and

for qc(d = 3) = 2.45 — a weakly expressed PT of the first

order. In addition, for two-dimensional Potts models with

the number of spin states q, from considerations of the

duality of square, triangular, and hexagonal lattices, simple

polynomial expressions were obtained that allow one to

determine the critical point [4,5]

ν =
√

q, (1)

ν3 + 3ν2 = q, (2)

q2 + 3qν = ν3, (3)

where ν = eJ/kB T − 1. The validity of these expressions

has been rigorously established only for ferromagnetic Potts

models with q ≥ 4 and q = 2 [5].
Of particular interest is the Potts model on a hexagonal

lattice [6] associated with the variety of its structural prop-

erties. As an example of substances with a hexagonal lattice

structure, one can provide adsorbed films, in particular,

adsorbed hydrogen atoms (2× 2) — 2H/Ni (111) on the

nickel surface Ni (111) are located at nodes of hexagonal

lattice [6]. Phase transitions in such adsorbed structures are

described by the universality class of the two-dimensional

Potts model with q = 4.

The Potts model for q = 2 turns into the Ising model

for which the exact solution was obtained on a hexagonal

lattice more than fifty years ago [7]. At the same time,

when trying to calculate the critical parameters for the

Potts model, analytical methods encounter insurmountable

difficulties, in particular, the validity of expression (3) for

this model at q = 3 on a hexagonal lattice has not yet been

proved [5]. It is of great interest to determine the value of

the critical points by the Monte Carlo (MC) method and

compare them with the theoretical values arising from the

expressions (1)−(3).

In this regard, the purpose of this article is to study

the thermodynamic properties of the Potts model with

the number of spin states q = 3 on hexagonal and square

lattices, determine their critical points and compare the

obtained data with the data of analytical methods, where

possible.

2. Two-dimensional Potts model
with q = 3 spin states
on a hexagonal lattice

The ferromagnetic (FM) Potts model is a natural gen-

eralization of the Ising model. In the Ising model, there

are N discrete objects, called lattice nodes, each of which

can be in one of two states. In the Potts model, each

node can already be in one of the q ≥ 2-states. Therefore,

when constructing a two-dimensional ferromagnetic Potts
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Figure 1. Two-dimensional Potts model with q = 3 spin states

on a hexagonal lattice.

model with the number of spin states q = 3, in particular

on a hexagonal lattice, it is necessary to keep in mind the

following features [1].
1) Spins Si are located at the hexagonal lattice nodes,

which can orient themselves in 3-x symmetric directions of

the hypertetrahedron in space of dimension q − 1, so that

the angles between any two directions of the spins are equal

(see Fig. 1). Note that a hexagonal lattice is a triangular

lattice with one third of the nodes removed in a regular

manner.

2) The binding energy between two nodes is equal to

zero if they are in different states (it doesn’t matter which

ones) and equals J if the interacting nodes are in the same

states (again, it doesn’t matter which states).
Taking into account these features, a microscopic Hamil-

tonian of such a system can be presented as follows [5]:

H = −1

2
J

∑

i, j

δ(Si , S j), Si = 1, 2, 3, (4)

where

δ(Si , S j) =

{

1, if Si = S j,

0, if Si 6= S j .

In computer simulation, we used the Wolf cluster

algorithm of the Monte Carlo method [8]. At the same

time, at each Monte Carlo step, a cluster is first built, then

it is turned over. This algorithm is considered in more

detail in [9]. The initial configurations were set in such

a way that all spins were in the same states. To bring the

system to an equilibrium state, the relaxation time τ0 was

calculated for all systems with linear dimensions L. This

nonequilibrium section was discarded. Then the averaging

was carried out over a section of the Markov chain with

the length τ = 160τ0 . For the biggest system L = 102,

τ0 = 2× 108 MK steps/spin. In addition, to improve the

accuracy of calculations, averaging was carried out over

15 different initial configurations. Then these data were

used to calculate the average values of thermodynamic

parameters.

3. Results of the numerical experiment

Fluctuation relations [10] were used to observe the

temperature behavior of the heat capacity and susceptibility:

C =
(

NK2
)(

〈U2〉 − 〈U〉2
)

, (5)

χ = (NK)
(

〈m2
F〉 − 〈mF〉2

)

, (6)

where K = |J|/kBT , N = 0.75 · L2 is the number of mag-

netic nodes on the hexagonal lattice and N = L2 is the

number of magnetic nodes on a square lattice, U-internal

energy, mF is system order parameter, angle brackets denote

ensemble averaging. The following expression was used

as the magnetization (mF) for FM Potts model [11,12]:

mF =

[

q
(

Nmax

N

)

− 1
]

q − 1
, (7)

where, Nmax = max{N1, N2, N3}, N1 is the number of spins

in the state with q = 1, N2 is the number of spins in the

state with q = 2, N3 is the number of spins in the state with

q = 3, angle brackets mean thermodynamic averaging.

Figures 2 and 3 show the temperature dependences

for the susceptibility χ and heat capacity C for the two-

dimensional FM Potts model on hexagonal and square
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Figure 2. Temperature dependence of the susceptibility χ for the

two-dimensional Potts model with q = 3 on various lattices.
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Figure 3. Temperature dependence of the heat capacity C for the

two-dimensional Potts model with q = 3 on various lattices.
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Figure 4. Temperature dependence of the magnetization mF for

the two-dimensional Potts model with q = 3 on various lattices.

lattices for systems with linear dimensions L = 120. Here

and below, all the figures include a data error, which

does not exceed dimensions of symbols used for plotting.

Note that the dependences of the susceptibility χ and

heat capacity C on temperature for all the systems under

study exhibit clearly pronounced maxima characteristic of

phase transitions. Figure 4 shows the dependences of the

magnetization mF on temperature T for the considered

Potts model on various lattices. As can be seen in Fig. 4,

there is a monotonic decrease in the value of mF with

increasing temperature and a noticeable decrease in high-

temperature
”
tails“.

To determine the critical temperatures and analyze the

nature of the phase transition, we used the fourth-order

Binder cumulant method [13]:

VL(T ) = 1− 〈E4〉L

3〈E2〉2L
, (8)

UL(T ) = 1− 〈m4(T, L)〉L

3〈m2(T, L)〉2L
, (9)

where E is the energy and m is the order parameter of the

system with linear dimensions L. Expressions (8) and (9)
enable to determine with good accuracy the phase transition

temperature Tl during phase transitions of the first and

second order, respectively. The technique for determining

critical points by this method is given in the articles [14,15].

It should be noted that the use of the Binder cumulants

also allows good determination of the phase transition order

in the system. In case of PT of the second order the

temperature dependency curves of Binder cumulants UL(T )
have a clearly defined point of intersection. The charac-

teristic temperature dependences of the Binder cumulants

UL(T ) for the 2D ferromagnetic Potts model with q = 3

on a hexagonal lattice for systems with different linear

dimensions L are shown in Fig. 5. As can be seen from

Fig. 5, a clearly defined intersection point is observed in

the critical region, which indicates a phase transition of the

second order. Figure 6 shows the temperature dependences

of VL(T ). As can be seen in the inset in this figure, in the

critical region VL(T ) tends to 2/3 with increasing linear size

of the system L, which is also characteristic of a PT of the

second order. A similar behavior was observed for fourth-

order Binder cumulants in the case of the Potts model with

q = 3 on a square lattice. This model was partially studied

by us in the article [16].
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Figure 5. Temperature dependence of the Binder cumulants

UL(T ) for the two-dimensional Potts model with q = 3 on hexag-

onal lattice. The inset shows the intersection point of the Binder

cumulants UL(T ) corresponding to the critical temperature TC .
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Critical temperature of the 2D ferromagnetic Potts model with the number of spin states q = 3 on different lattices, determined by the

fourth-order Binder cumulant method

Method

Monte Carlo Model Classical hypothesis

(our data) Wu conjecture[4]

square hexagonal square hexagonal

Regular Potts
0.994(1) 0.669(1) 1

ln(1+
√

3)
= 0.9949

1
ln(1+ 3.4114...)

= 0.6737 . . .
model c q = 3
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Figure 6. Temperature dependence of the Binder cumulants

VL(T ) for the two-dimensional Potts model with q = 3 on

hexagonal lattice. The inset shows that VL(T ) tends to 2/3 with

increasing linear size of the system L in the critical region.

The values of critical temperatures Tc determined by the

Binder cumulant method in units of J/kB for the two-

dimensional Potts model with q = 3 on square, hexagonal

lattices and their comparison with analytical values from the

literature are given in the table. As can be seen in the table,

the calculated value of Tc by the MC method on a square

lattice coincides with the value obtained by Wu [4,5] with

greater accuracy than for a hexagonal lattice based on the

assumptions of lattice duality.

4. Conclusion

Thus, in this article, we studied the two-dimensional Potts

model with the number of spin states q = 3. Based on

the fourth-order Binder cumulant method, the values of

critical points for the Potts model with q = 3 on square and

hexagonal lattices are determined. It is shown that the value

of the critical point obtained by the Monte Carlo method

on a square lattice coincides with a high accuracy with the

value of the critical point obtained from the consideration

of the duality argument [4,5] than for the hexagonal lattice.
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