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Within the framework of the theory of band magnetism and the Heine model for the volume dependence of the

electronic spectrum, an approach is being developed to study magneto-volume effects in chiral helical ferromagnets.

Using Fe1−xCoxSi as an example, it was found that in the range of long-range order (at temperature T < Tc) the

magnetovolume effect is determined by the amplitude of helicoidal spin spirals and leads to the experimentally

observed negative volume thermal expansion coefficient. In the region of phase transitions of the first order (from
Tc to Ts) prolonged in temperature, a new mechanism of the magnetovolume effect is established due to the spatial

fluctuations of spin spirals arising due to the difference in the Hubbard potentials of iron and cobalt. It is shown

that the considered volume effects lead not only to the experimentally observed negative volume thermal expansion

coefficient (VCTE) in the chiral spin short-range order phase, but also to a noticeable increase in the transition

temperature to the paramagnetic state (T > Ts ).

Keywords: helicoidal ferromagnetism, chirality, spin fluctuations, electronic and crystal structure, thermal

expansion.
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1. Introduction

Chiral helical ferromagnets with structural type B20 are

characterized by disturbance of cubic symmetry (distorted
structure of NaCl type), which results in disappearance of

the inversion center. As a a result of this, the system of

strongly correlated electrons includes asymmetric relativistic

interaction of Dzyaloshinskii–Moriya (DM), and ferromag-

netic helicoid spin spirals are formed [1]. When the sign

of mode-mode parameter changes, according to Ginzburg–
Landau theory, a magnetic phase transition of the first

kind extended by temperature, when chiral spin short-range

order occurs as observed in the experiment with fluctuations

of spin spirals [2,3]. In particular, such transition in the

narrow range of temperatures (Ts − Tc) ≪ Tc occurs in

MnSi, where it is accompanied by sharp change of volume

and occurrence of lambda — like anomaly of VCTE [4].
A transition extended by temperature related to change of

mode-mode parameter sign change in Fe1−xCoxSi [5], as a
result of fluctuations of intra-atomic potentials of electron-

electron repulsion in nodes occupied by iron and cobalt

atoms [5], is implemented in a wider range of temperatures

(Ts − Tc) ∼ Tc , and in the experiment instead of lambda–
anomaly of negative VCTEs, a wide temperature minimum

occurs [6].
At the same time, according to [3] in compositions with

0.2 < x < 0.65 at temperatures Tc < T < Ts , skyrmion

microstructures are implemented, related to occurrence of

chiral short-range order in the area of temperatures of

extended phase transition of the first kind. However, the

developed thermodynamic approach will not explain the

considerable magnetic contribution to VCTE observed in

the experiment in area Tc < T < Ts , since it was produced

within an assumption on volume continuity. Therefore

it is not clear which magnetovolume effects accompany

negative magnetic contributions to VCTE, and which impact

is provided by volume effects at occurrence of long- and

short-range orders in chiral ferromagnets.

In this paper in the model of chiral strongly correlated

electronic system with spatial fluctuations of Hubbard

potentials in nodes occupied by iron and cobalt, magne-

tovolume effects and temperature dependences of VCTE

are considered in vortex spin structures and microstructures

Fe1−xCoxSi, occurring at constant pressure.

2. Model

Let us consider a strongly correlated electronic system

of chiral ferromagnets Fe1−xCoxSi with Hamiltonian taking

into account the zone motion energy, intra-atomic Coulomb

spin and charge correlations, differing in nodes occupied

by Fe atoms on Co. At the same time we will keep in

mind that use of spin-dependent energy spectrum from

first-principles LSDA+U+ SO, causes concentration de-

pendences and values of local magnetizations Fe1−xCoxSi,

not matching with the experimental data [7]. Satisfactory

agreement with the experiment is obtained at self-consistent

calculation of local magnetization within fluctuation theory

of zone magnetism, where the results of the first-principles
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LDA+U+ SO are used only to model electronic struc-

ture [5].
An important feature of the considered modification of

Hubbard model, together with the difference of potential in

intra-atomic electron-electron repulsion in nodes occupied

by iron and cobalt, is dependence of the spectrum of

strongly correlated d-electrons on the volume, which in

accordance with formula of V. Heine [8], is described by

ratio εk(V=θ
−1ε

(0)
k , where θ = (V/V0)

5/3 .

Therefore, Hamiltonian of the considered system of

strongly correlated electrons must be presented as

H = H0 + δHint, (1)

here H0 =
∑

k,σ εk(V )a+
k,σak,σ — Hamiltonian of zone

motion with spectrum εk, calculated in approximation

LDA+U+ SO, a+
k,σ (ak,σ ) — operator of electron birth

(destruction) with quasipulse k, σ — spin index.

δHint = (UFe −UCo)〈n〉0
∑

ν

δpνδnν/2

−
∑

ν

(UFe(1− pν) −UCopν)
(

(S(z )
ν )2 − (δnν)

2/4
)

(2)

— Hamiltonian of intra-atomic correlations in the node,

where electronic density fluctuation terms of sum are iden-

tified, and difference in parameters of Hubbard interaction

is taken into account in nodes occupied by atoms of cobalt

or iron (UCo and UFe — accordingly), δpν = pν − p, p —
concentration of cobalt atoms, pν — projection operator,

which may take values 0 on the node occupied by iron,

and 1, if the unit is occupied by cobalt (p2
ν = pν),

nν =
∑

σ

nν,σ , nν,σ = a+
ν,σ aν,σ ,

S(z )
ν = 2−1

∑

σ

σ nν,σ , δnν = nν −
∑

σ

〈nσ 〉0.

Besides, in the considered chiral ferromagnets with B20

structure Hamiltonian (1) must be supplemented by term

of sum of DM–interaction, which in virtue of relativistic

minuteness is considered in the mean field approximation

H → H −
∑

q

h
(D)
q S−q. (3)

Here h
(D)
q = [Mq × d−q] — mean field of Dzyaloshinskii;

dq = idq, accordingly; Mq(= 〈Sq〉) — vector of heteroge-

neous magnetization in wave vector q.

Statistical sum of system with Hamiltonian (3):

Z = S pTτ

{

−

T−1
∫

0

dτ H(τ )

}

,

H(τ ) = exp(H0τ )H exp(−H0τ ),

is to be investigated on the basis of the procedure using

Stratonovich–Hubbard transformations [9], which reduce

multiple particle interactions (2) to a picture of motion of

correlated d-electrons in exchange (ξ) and charge (η) fields

fluctuating in the space and time. In the considered task
”
the

picture“ of fluctuating exchange fields is supplemented by

static field of Dzyaloshinskii and concentration fluctuations

of exchange fields. At the same time, to determine the

statistical sum of the electron system, it is feasible to apply

Matsubara technique for complex variables (see [10])

Z =

∫

(dξdη)(d�)

× exp

{

−
∑

q

|ξq − δq,qhq/c|2 −
∑

q

|ηq|
2

}

Z(ζq, ηq), (4)

where

Z(x , ζ , ρ) = S pTτ exp(−T−1H0(x) − T−1
H̃eff),

(dξdη) = dξ0dη0
∏

q 6=0, j=1,2

dξ ( j)
q dη( j)

q

(index j numbers real and imaginary parts of stochastic ξ -

and η-fields), T — temperature Tτ — operator of alignment

by
”
imaginary“ Matsubara time τ

H̃eff = 2
∑

q

Sqζ−q + i2−1
∑

q

nqη
( j)
q ,

Sq — Fourier transform of spin density operator on

the node, recorded in representation of interaction,

q = (q, ω2m) — four-vector, including ω2m (Matsubara Bose

frequency, m — integer number),

ζq = (ζq)
∗ = c

(

ξqeq + (2U)−1(UCo −UFe)
∑

q′

δpq+q′ξq′

)

.

Calculation (4) is reduced to procedure of quantum-

statistic averaging of spin and charge density operators with

summation of the row by degrees of exchange and charge

fields. Besides, taking into account abnormally large periods

of spin superstructures Fe1−xCoxSi and abnormally strong

dependence of Stoner factors on quasipulses and frequency,

one may limit oneself to long-wave approximation.

Methods to assess functional intervals for statistical

sum (4) may be based on using saddle point approximation.

In the considered model

ξ
(γ)
0 ≡ Re ξ

(γ)
0 (Im ξ

(γ)
0 = 0), Re ξ

(γ)
q and Im ξ

(γ)
q with q 6= 0,

|ξ (γ)
q | with q = (q, ω2n) at ω2n 6= 0, η0 (5)

and are related to magnetization by ratios

M(γ)
q = (c/U)ξ

(γ)
q − h(γ)

q

and

|ξ (γ)
q |2 = 2−1

(

〈Tτ |S
(γ)
q |2〉 + 1

)

, γ = (x , y, z ).
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3. Free energy at constant pressure

Going to thermodynamic potentials, let us consider

the known ratio between statistical sum and free energy

(F = T lnZ − µN), we will consider the terms of saddle-

point for functional integrals (4) by variables (5). At the

same time the free energy of the system of correlated elec-

trons with the volume-dependent energy spectrum εk(V )
will be supplemented by the term of sum related to elastic

deformation P = −K1V (K — isothermal compressibility).

As a result, for the free energy at constant pressure we

get the equation

F = Fmag + Fel + Ff l − K1V 2/2, (6)

where single-electron contribution becomes renormalized as

a result of electron terms splitting by fluctuating exchange

fields

Fel/U =
∑

α(=±1)

∫

θg(0)(ε + αθ〈m〉T )

× ln
(

1 + exp T−1(µ − ε)
)

dε, (6a)

magnetic contribution includes terms of sum in mode-to-

mode interaction

Fmag/U =
∑

q

(

1−Uχ⊥(V/V0)
)

|Mq|
2 +

∑

q

X(q, 0)|Mq|
2

−U−1
∑

q

hqMq + κ
∑

q1 6=q2,q 6=q4

(Mq1Mq2)(Mq3Mq4)

× δq1+q2+q3+q4 ;0(V/V0) + Fm f l, (6b)

and magnetic fluctuation contribution is described by the

equation

Ff l =
∑

q

∞
∫

0

cth(ω/2T )Im ln
(

D−1+2κ|Mq,γ |
2+X(q, ω)

)

dω.

Besides, g(0)(ε) — calculated in the method

LDA+U+ SO — density of electron d-states,
D(V ) = (1−Uθχ(⊥) + 3−1θκ〈m〉2T )−1 — factor of

exchange amplification of magnetic susceptibility, in

the mean field approximation matching Stoner factor,

κ = U〈m〉−2
T (χ(⊥) − χ(‖)) — mode-mode coupling

coefficient, which in the mean field approximation is

reduced to coefficient at the fourth degree of order

parameter in Ginzburg-Landau expansion, dependence of

which on magnetization is determined by magnetovolume

effect

χ(⊥)(V ) = lim
q→0

∑

(

f
(

εk,α(V ) − µ
)

− f
(

εk+q;−α(V ) − µ
)

/
(

εkα(V ) − εk+q−α(V )
)

)

,

χ(‖)(V ) = lim
q→0

∑

α

(

f
(

εk,α(V ) − µ
)

− f
(

εk+q;α(V ) − µ
)

/
(

εkα(V ) − εk+q−α(V )
)

)

— transverse and longitudinal susceptibilities as func-

tions of Matsubara frequency, εkα(V ) = εk − α2U〈m〉T ,

α = ±1, µ — chemical potential, amplitude of thermal

fluctuations

〈m2〉T = (3T 2/4U2)2C
{

(D−1+ 2κ(V )M2
S)

2+ 22A2/2
}−1

,

(7)

A and C — values of coefficients at the second degree

of wave vector and first degree of frequency in Lindhard

function expansion (see, for example, [9]) accordingly.

4. State equations

Possible spin configurations and related volume effects

may be produced by minimizing (9) simultaneously by local

magnetization and volume. At the same time we get that

magnetic state equation

M(γ)
q0

(

D−1(V ) + κ(V/V0)
(

1 + x(1− x)(2U)−1

× (UCo −UFe)
)

∑

q=±q0

|M(γ)
q |2 + X(q0, 0)

)

= 2hq0,γ/U

(8)

is to be supplemented by ratio for equilibrium volume

(V = V0 + 1V ), related to magnetovolume effect

1V (T)/V0 = K−1U−1
(

M2
q0

+ (2U)−2(UCo −UFe)
2

×
∑

q′

〈δp2
q0+q′〉|Mq′ |2 + 〈m2〉T

)

. (9)

Solutions of equations (8), (9) take into account interde-

pendences of volume and magnetization. In the area of

temperature values T < Tc and volumes V < Vc , for which

the condition D−1 < −5d2/(4AU2) is met, left and right

chiral spin spirals are possible

M(±)
ν = ±MS exp(q0ν), (10a)

besides

1V (T)/V0 = K−1U−1(M2
S(T,V ) + 〈m2〉T ), (10b)

MS(T,V )2 =
(

2κ(T,V )
)−1(

(D−1(T,V ) + Xq)
2

− (d|q0|/U)2
)

. (11)

At 0 > D−1 > −5d2/(4AU2), in case of negative

values of mode-mode parameter RC ∼ χ
(

U + x(1 − x)

× (2)−1(UCo −UFe)
)

the spin spiral fluctuations occur, the
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Figure 1. Densities of electron states of Fe1−xCoxSi alloys, calculated in method LDA+U+ SO. Chemical potential position matches

the start of energy count. Density of sp-electron states is tripled. Parameters of Hubbard interaction were calculated in approximation of

virtual crystal: U = (1− x)UFe + xUCo, UCo = 2.4 eV, UFe = 1.2 eV, x — cobalt concentration.

initial phases of which are determined by Berry phase

differences:

M(±)
ν = ±MS exp(q0ν + ϕ), (12a)

1V/V0≈(3KU/5)−1
(

〈m〉2T −U−1(UCo −UFe)x(1 − x)M2
S

)

.

(12b)

At the same time the wave vector of spin spirals and

fluctuations of spirals is determined by a single equation

|q0(V )| = d/(U2θg0(θεF)),

and is weakly dependent on the volume and temperature.

5. Results of numerical analysis

For numerical analysis of magnetic phase transitions

based on the conditions of free energy minimization we

shall use the results of first-principles LDA+U+ SO —
calculations DOS Fe1−xCoxSi. In Fig. 1 these results are

given for x = 0.3, 0.4, 0.5 and 0.6, calculated at atmo-

spheric pressure. Dependences of chemical potential of

compositions with various x on temperature and volume are

determined from the conditions of electric neutrality (which

for d-electrons meets the saddle-point condition by charge

variable η0) with account of calculations of DOS s -, p- and
d-electrons

N =

∫

dεg(s ,p)(ε) f F(ε − µ)

+ θ
∑

α

∫

dεg(0)(ε + αθ〈m〉T ) f F(ε − µ). (13)

Temperature variation of magnetization at phase tran-

sitions extended by temperature in alloys Fe1−xCoxSi

with 0.2 < x < 0.6 together with the results of magnetic

contribution calculations to VCTE is given on inserts to

Fig. 2, 3 and 4. Besides, it is shown that magnetovolume

effects and thermal expansion result in increase of Ts

and temperature interval of short-range order with non-

zero local magnetization. Influence of volume effects

here manifests itself through dependence on the volume

of exchange interaction factor D(T,V ), which near the

point of disappearance of local magnetization (Ts ) must be

abnormally strong, whereas the influence of volume at Tc

and Rc may be neglected.

Magnetovolume effects arising in the field of both short-

and long-range orders result in magnetic contribution to

VCTE of alloys Fe1−xCoxSi, and determine temperature

2 Physics of the Solid State, 2022, Vol. 64, No. 8
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variation of nonframework VCTE on the background of

smooth (approximately to law T 3) temperature variation

of framework component. Magnet-electron contribution

to VCTE: β = ∂ω/∂T = βel + βmag . Besides, magnetic

contribution is determined by local magnetization Ms and

mean square magnetic torque

〈M2〉 = 〈m2〉T +
UCo −UFe

U
x(1− x)M2

S .

In the area of long-range order (T < Tc)

βm = 10(3K)−1U(∂M2
S/∂T )(2〈m〉2T + M2

S), (14a)
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Figure 2. Temperature dependence of VCTE in alloy Fe0.7Co0.3Si:

1 — nonframework contribution to VCTE produced in [11] after
processing of experimental data, 2 — calculation in this paper. On

the insert: temperature dependence of magnetization.
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Figure 3. Temperature dependence of VCTE in alloy Fe0.5Co0.5Si:

1 — nonframework contribution to VCTE produced in [11] after
processing of experimental data, 2 — calculation in this paper. On

the insert: n — temperature dependence of magnetization.
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Figure 4. Results of modeling temperature dependence of VCTE

in alloys Fe1−xCoxSi x = 0.4 (axis on the left), 0.6 (axis on the

right). On the insert: temperature dependence of magnetization.

and in the interval of temperatures of phase transition is

determined by the equation

βm = 10(3K)−1Ux(1− x)

×
(

(∂M2
S/∂T )〈M2〉 + AR−1

C (∂M2
S/∂T )

)

, (14b)

electron contribution to VCTE, related to Fermi excitation

βel = −
5

3K
T−2

∑

α=±1

∫

g0(ε)(ε − µ − αUm)2

× f ′(ε − µ − αUm)dε ≈
5

3K
T g0(µ),

turns out to be negligibly low. Results of calculations of

temperature dependence of VCTE compared to experimen-

tal data are presented in Fig. 2, 3 and 4. It also includes

calculated values of temperatures Tc and Ts . The conducted

numeric analysis shows that the negative contribution to

VCTE observed in the experiment is increased by the

module up to temperature Tc (see (14a)). Then as a

result of sharp (but continuous!) change of temperature

dependence of local magnetization (inserts to Fig. 2, 3, 4)
and sign of mode-mode parameter, the mechanism of

VCTE temperature dependence is implemented related to

fluctuation long-range order (14b) (Fig. 2, 3, 4). As a result

of disappearance of local magnetization in point Ts , in

paramagnetic zone VCTE sign turns out to be positive.

6. Conclusion

Therefore, change of the parameter sign of mode-mode

interaction and fluctuation of Hubbard potentials in chiral

ferromagnetic quasibinary alloys with B20 structure result

in phase transitions extended by temperature, when self-

consistent change of local magnetization and volume takes

Physics of the Solid State, 2022, Vol. 64, No. 8
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place (magnetovolume effect). Besides, if in the area of

long-range order the magnetovolume effect is determined

by amplitude of helicoid spin spirals, in the area of short-

range order this effect is related to amplitude of spin spiral

fluctuations (which are implemented in space areas of spin

correlation radius Rc). Value of magnetovolume effect is

one of factors determining upper border (Ts ) of temperature

interval of chiral short-range order.

The reason for negative VCTEs are magnetovolume ef-

fects. Therefore, negative VCTEs occur not only in the field

of helicoid ferromagnetic alignment, but in the conditions of

unstable ferromagnetism (negative mode-mode parameter),
when vortex spin microstructures occur. Same as in invar

ferromagnets (such as nickel-iron alloys [12]), volume in-

stability of microstructures arises here, and magnetovolume

effects turn out to be provided by fluctuations of Hubbard

potentials of the intra-atomic electron-electron repulsion.

At the same time the impact of volume effects at magnetic

characteristics, in contrast to invar alloys, in topologically

protected microstructures is weak, except for temperatures

close to Ts , when contribution to free energy related to DM-

interaction and local magnetization disappear.

Study of volume effects and spin skyrmions with ex-

tended magnetic phase transitions in alloys based on mono-

germanides of transition metals (for example, FeGe [13])
is of special interest, which, as it is known, may possess

significantly higher (compared to solid solutions of iron,

cobalt and manganese mono-silicides) values of Curie–
Neel temperatures. However, for such systems the study

of long-range order nature requires separate consideration,

since the need occurs to study the picture of spin spirals

twisting [14], being the cause for higher values Tc in helicoid

ferromagnets.
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