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On the derivation of the Belomestnykh–Tesleva’s formula
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The Belomestnykh–Tesleva’s formula is interesting in that it establishes an unambiguous relationship between

the Poisson’s ratio and the Grüneisen’s parameter. The derivation of this formula from the generally accepted

Grüneisen’s equation is discussed. The Belomestnykh–Tesleva’s formula, obtained earlier from other assumptions,

is derived using the theory of elasticity and the Leontiev’s equation. For a number of silicate glasses and glassy

metaphosphates of alkaline earth metals, the proposed approach finds a fairly satisfactory agreement with the

experimental data.
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The fact that parameters of elasticity theory (elastic
moduli, Poisson’s ratio) as harmonic linear values must not

be related to anharmonism — with deviation of inter-atomic

interaction force from linear dependence when an atom is

displaced from equilibrium position, is considered common.

At the same time papers appear in scientific literature that

indicate presence of quite certain connection between elastic

properties and anharmonism measure γ [1]:

γ =
βV B
CV

, (1)

where β is the coefficient of volume thermal expansion, V is

the molar volume, B is the isothermal bulk compression

modulus, and CV is the molar heat capacity at constant

volume.

In papers by Belomestnykh and Tesleva [2] it is estab-

lished that Grüneisen parameter γ is a single-valued function

of Poisson’s ratio µ— elastic theory parameter

γ =
3

2

(

1 + µ

2− 3µ

)

, (2)

and it is worth mentioning that their approach is fairly

rigorous and relies on well-known postulates of the elasticity

theory, thermodynamics, and physical acoustics. They

demonstrated that Grüneisen parameter was determined

exclusively by velocities of longitudinal (νL) and transverse

(νs ) acoustic waves

γ =
3

2

[

(νL/νs )
2
− 4

(νL/νs )2 + 2

]

. (3)

Belomestnykh and Tesleva [2], using in equation (3) the

known ratios of physical acoustics [3]:

νL =

√

E(1− µ)

ρ(1 + µ)(1− 2µ)
, νs =

√

E
2ρ(1 + µ)

in 2004 obtained equation (2), which unambiguously related

Grüneisen parameter with Poisson’s ratio. Notably, such

comparatively simple equation (2) is in satisfactory agree-

ment with Grüneisen equation (1) [2].

In this message it is proposed to produce equation of

Belomestnykh–Tesleva (2) from Grüneisen equation (1).

Multiplying the numerator and the denominator of

Grüneisen equation (1) by shear modulus G and taking into

account the known interrelation between elastic moduli G
and B [1,4]:

B
G

=
2

3

(

1 + µ

1− 2µ

)

, (4)

we obtain the following modification of Grüneisen equa-

tion (1)

γ = A

(

1 + µ

1− 2µ

)

, (5)

where designation is introduced

A =
2

3

(

βV G
CV

)

. (6)

Using Leontiev ratio [5]:

CV

βV
=

2

3
ρν2

k (7)
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Table 1. Calculation of factor A by equations (8) and (11) for silicate glasses R2O−SiO2 (R = Na,K) [8] and vitreous metaphosphates

of alkali-earth metals [9]

Item � Compounds µ νL, m/s νs , m/s νk , m/s A (8) A (11)

Na2O−SiO2

Content of Na2O,

mol.% by synthesis:

1 13 0.205 5233 3378 4091 0.68 0.64

2 16 0.218 5115 3275 3984 0.68 0.63

3 17 0.225 5054 3222 3929 0.67 0.62

4 20 0.235 12133 7705 9415 0.67 0.61

5 26 0.245 4835 3070 3752 0.67 0.60

6 30 0.255 4844 3052 3746 0.66 0.60

7 33.3 0.255 4906 3103 3800 0.67 0.60

K2O−SiO2

Content of K2O,

mol.% by synthesis:

1 13 0.230 4820 3073 3747 0.67 0.62

2 15 0.225 4759 3035 3700 0.67 0.62

3 20 0.250 4550 2889 3531 0.67 0.60

4 25 0.270 4463 2801 3445 0.66 0.58

Vitreous metaphosphates of alkali-earth metals

1 0.51 MgO · 0.49 P2O5 0.233 5267 3110 3962 0.62 0.62

2 0.50 MgO · 0.50 P2O5 0.233 5264 3108 3959 0.62 0.62

3 0.49 MgO · 0.51 P2O5 0.233 5289 3121 3977 0.62 0.62

4 0.51 CaO · 0.49 P2O5 0.264 5051 2858 3735 0.59 0.59

5 0.50 CaO · 0.50 P2O5 0.267 5086 2869 3756 0.58 0.58

6 0.49 CaO · 0.51 P2O5 0.265 5051 2857 3734 0.59 0.59

7 0.51 SrO · 0.49 P2O5 0.274 4603 2568 3385 0.58 0.58

8 0.50 SrO · 0.50 P2O5 0.273 4610 2577 3393 0.58 0.58

9 0.49 SrO · 0.51 P2O5 0.271 4612 2584 3397 0.58 0.58

10 0.50 BaO · 0.50 P2O5 0.288 4178 2278 3046 0.56 0.56

11 0.49 BaO · 0.51 P2O5 0.286 4186 2291 3056 0.56 0.56

and shear modulus G = ρν2
s , let us present factor A (6) in

the form of sound velocities ratio

A =
ν2

s

ν2
k

, (8)

where ν2
k — square of mean square sound velocity [5]:

ν2
k =

ν2
L + 2ν2

s

3
, (9)

νL and νS — velocities of longitudinal and transverse elastic

waves, respectively, ρ — density.

From equation (8) using equation (9) and known equa-

tion of elasticity theory [1,6]:

(

νL

νs

)2

=
2− 2µ

1− 2µ
(10)

we find relation of factor A with Poisson’s ratio µ

A =
3

2

(

1− 2µ

2− 3µ

)

. (11)

Calculation of parameter A using equations (8) and (11)
shows agreed values (Table 1). For silicate glasses, values

given in the Table and calculated using various equations

are quite close. For vitreous metaphosphates of alkali-earth

metals, values of coefficient A by equations (8) and (11)
coincide to two decimals of the units, tangent of curve

A(8)−A(11) inclination angle is equal to one.

Notably, modified Grüneisen equation (5) may be trans-

formed into Belomestnykh–Tesleva equation (2) with the

use of relation (11)

γ =

[

3

2

(

1− 2µ

2− 3µ

)](

1 + µ

1− 2µ

)

=
3

2

(

1 + µ

2− 3µ

)

.

Thus, Belomestnykh–Tesleva formula (2), which was

derived by its authors from different basic assumptions [2],
may be obtained from Grüneisen equation (1) by appealing

to Leontiev’s ratio (7) and the elasticity theory.

Let us note that coefficient A in equation (8) characterizes
the proportion of mean interatomic interaction energy

U = ρν2
k V accounted for by elastic energy 1U = ρν2

s V
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Table 2. Comparison of results of Grüneisen parameter γ

calculation using equations (1) and (2) (uses data [2,10])

Elements
γ

�

and compounds
µ

Grüneisen Belomestnykh–
(1) Tesleva (2)

1 LiF 0.214 1.34 1.34

2 NaCl 0.243 1.46 1.47

3 Fe 0.292 1.68 1.72

4 Al 0.340 2.11 2.05

5 Ag 0.379 2.40 2.40

5 NaNO3 0.257 1.31 1.53

7 Pd 0.374 2.40 2.35

8 Au 0.420 2.80 2.88

needed for shear deformation

A =
ν2

s

ν2
k

=
ρν2

s V

ρν2
k V

=
GV

U
=

1U

U
. (12)

Equation (5) for vitreous solids has been obtained earlier

with the following interpretation of factor A [7]:

A =
2

9
ln

(

1

f g

)

, (13)

where f g — the fraction of fluctuation free volume

frozen at glass transition point Tg . Value f g in vit-

reous systems of one and the same class is practically

a universal constant f g ≈ const [7]. Logarithm of this

value is even weaker dependent on the composition of

amorphous substances within the same class. Assessment

of A using this equation (13) gives actually constant values,

at least in glasses of one structural type, and by order of

magnitude matches the results of calculation by ratios (8)
and (11). For sodium-silicate Na2O−SiO2 and potassium-

silicate K2O−SiO2 glasses, the value of volume fraction of

fluctuation free volume f g ≈ const ≈ 0.028, and value A,
calculated according to equation (13), is approximately

equal to 0.79.

Values of Grüneisen parameter for metals calculated

using equation of Grüneisen (1) and Belomestnykh–
Tesleva (2) are also in satisfactory agreement (Table 2).

Some deviations of values for solids are probably due to

spread of values γ , produced by various researchers. The

reason for such deviations also possibly lies in anisotropy

of systems considered in Table 2, as more agreed data is

observed for some quasiisotropic alkali-haloid crystals with

central forces of interatomic interaction.

Thus, the suggested output of Belomestnykh–Tesleva
equation (2) that establishes relation of Grüneisen parame-

ter with Poisson’s ratio, from Grüneisen equation finds quite

satisfactory agreement with experimental data.
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