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The features of one-dimensional vacuum tunneling and calculation of the tunneling current in barrier quantum

structures with one and two wells are considered. The structures are formed by several electrodes: the cathode,

the anode and two grids. The potential profiles are constructed by the method of multiple images. Equations for

eigenvalues and metastable levels of a structure with an arbitrary potential profile are found. For full resonant

tunneling, the metastable levels must fall into the region of the electron kinetic energy distribution at the cathode,

which occurs in single-well structures in the absence of an anode voltage or at a low anode voltage compared

to the voltage on the grids. A significant voltage at the anode leads to an asymmetric structure and incomplete

resonant tunneling. In this case, a two-well structure with a double grid allows obtaining full resonant tunneling for

a number of energies and increasing the tunneling current by orders of magnitude.
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Introduction

One-well barrier potentials (Fig. 1) arise in a number of

one-dimensional problems of quantum tunneling, diffraction

of plane electromagnetic waves on layered structures, in

models of quantum resonant tunneling diodes (RTDs),
resonant tunneling transistors (RTTs), and quantum cascade

lasers [1–6], as well as in problems relating vacuum

nanotriodes [7–9]. Vacuum tunneling nanotriodes are very

interesting objects of study for vacuum microelectron-

ics [7,8], since they do not require heating for operation,

and the emission structure can be very compact and at the

same time create rather large currents necessary for the

devices operation. With a short flight length up to hundreds

of nm, less than the mean free path of low-energy electrons

in air (on the order of 1µm) and voltages of the order

of 10−20V, they can operate as active THz-devices and

without vacuum, since ionization does not occur.

In solid-state heterostructures the implementation of

multiwell and multibarrier profiles is based on the meth-

ods of doping and the creation of quantum superlattices

by various methods of depositing nanosized layers with

different properties, for example, of the GaAs/AlAs type.

The analysis of quantum superlattices requires, generally

speaking, a quantum multiple-particles approach, as well as

a rigorous approach to tunneling problems [10–14]. Here,

for example, one can use the methods of Green−Keldysh

nonequilibrium functions together with the methods of

density functional theory. Often, in the analysis of RTDs

and similar structures, based on physical considerations, a

rectangular one-well two-barrier or two-well three-barrier

quantum potential profile is set, for which, in the presence

of varying electric potential, the non-stationary Schredinger

equation (SE) is solved and the current is determined [2–6].
To simplify, the model potential of the barriers is even given

by delta functions [2]. When modeling solid-state PTTs the

model rectangular potentials are often used, the vertices of

which, when an anode voltage is applied, acquire bevels [1].
In more rigorous approaches, a joint self-consistent solution

of a non-stationary single-particle SE with the Poisson

equation (PE) [1,6] is described. In the case of vacuum

gaps the density functional theory methods are suitable for

distances up to fractions of nm [12–14]. In vacuum flat

nanostructures with electrode sizes ranging from units to

tens of nm, a rather simple theory of classical superlattices

can be used. It is important that the total length of the

structure be less than the free path length of electrons.

Then the quantum potential can be constructed on the

basis of the multiple image theory method. This approach

was initially used in the analysis of vacuum field emission

sources, starting with the Fowler−Nordheim theory.

Vacuum field emission sources without grids require very

large fields (much more than 1010V/m) to obtain a high

current density. In such fields heating of the cathode, back

bombardment, explosive emission, strong ponderomotive

effect on the surface take place [15–17]. In this case,

the barrier does not completely disappear, its transparency

coefficient D+ is still significantly less than unity, and the

current integrated density J is significantly less than the

limit values of about 1015 A/m2 (for vacuum tunneling

from metals). This limit value has the form [15–17]
J = emeE2

F/(4π
2
~
2) and is unattainable, since it is obtained

from the condition D+(Ek) = 1, i.e. total transparency at all

kinetic energies 0 ≤ Ek ≤ EF (here EF is the Fermi energy).
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Considering the anode to be sufficiently remote, one can

obtain the barrier potential at the cathode, related to the

electric field voltage Ex on its surface, in the form [15,16]:

V (x) = −e2/[16πε0(x + δ)] − eEx . (1)

Here E = −Ex . Further, as the barrier in a broad sense

we assume any distribution of the quantum potential V (x)
entering SE, which may include quantum wells separated

by barriers (humps). In a narrow sense, the barrier

is such hump. This function will also be called the

potential profile or potential diagram. On the cathode the

potential depth should be equal to the work function Wc ,

i.e. V (0) = −e2/[16πε0δ] = −Wc . From here we have a link

between the introduced parameter δ and the work function

of the cathode. The value δ = 0.1 nm corresponds to the

work function Wc = 3.6 eV. The maximum of V function is

negative and depends on the field strength. The height of

such maxima from the Fermi level of the electrode will be

denoted as W . This is the work function that must be done

from a given electrode in the presence of other electrodes.

So, considering the anode, the above formula (1) can be

modified

V (x) ≈ −e2/[16πε0(x + δ)] − eUa x/d

− e2/[16πε0(d − x + δ)].

It is approximate (the exact formula will be given below),
and its accuracy is maximum either at the cathode or

at the anode, and is greater, the greater d (distance
cathode−anode) is. For small x and large d the last term

can be neglected, and we obtain (1), where Ex = −Ua/d .
Near the anode, the first term can be neglected. In

the center, the formula loses accuracy, since it takes into

account only two images, while (1) — one. Since the

formula (1) for the potential was obtained by the method

of images, the force of which does not act at interatomic

distances due to the discrete atomic nature of the cathode,

the parameter δ characterizes the size, after which the

indicated image force appears, which attracts electron to

the cathode. If the field is absent, the potential increases

and is equal to zero at infinity. This is the free state

of an electron removed from the cathode. The presence

of a pulling electron field creates a barrier of a finite

length. One can find the negative maximum point of the

barrier, which decreases with the field increasing. This

narrows the barrier. The barrier will disappear when it

becomes infinitely narrow, and the maximum point is on

the cathode (in this case, the turning points coincide with

the cathode surface x = 0). It is obvious, that this will

be at the field Ec = e/(16πε0δ2) = W/(δe) = 16πε0W 2/e3.
At δ = 0.1 nm this is Ec = 3.6 · 1010 V/m. At such a

critical field the barrier turns into a bevel into a well

(considering the finite location of the anode, the depth of

the well is finite). For such structure one can calculate

the transparency at the Fermi level. Due to quantum wave

effects it is significantly less than unity. However, the

density of electrons riding on the barrier with the Fermi

energy is equal to zero [15]. Non-zero density takes place

for lower energies, but for them the transparency becomes

exponentially small. Indeed, the disappearance of the

barrier at VF and a critical field allows us to approximately

consider it triangular for energies below the Fermi energy

with turning points x1 = 0, x2(E) = (eEc)
−1(EF−E). Here,

the kinetic energy is measured from the bottom of the

conduction zone. The transparency of such barrier in the

quasiclassical approximation is calculated exactly and is

given by the formula [18]:

D+(E) = D0(E) exp

(

−4
√
µ(EF − E)3/2

3~eEc

)

.

Here and below µ = 2me means double electron mass.

Further Increasing of the field just makes the slope steeper.

Although the current density increases in this case, this is a

dead end for its essential increasing. It leads to instabilities

and to explosive emission destroying the cathode. Therefore,

the approach is required to increase the current density at

field strengths below the critical one, when the barrier is

small but still exists.

The purpose of this paper is the theoretical study of the

possibility of obtaining field emission densities significantly

higher than 1010 A/m2 in three- and four-electrode structures

with resonant tunneling (RT). RT allows one to obtain the

values D+(Ek) = 1 at certain kinetic energies Ek of elec-

trons riding on the barrier [1,6,19] and thereby approaching

the maximum achievable current density at average values of

the normal component of the electric field Ex < 1010 V/m.

The analysis of tunneling through one-well barrier profiles

of the quantum potential V (x) (Fig. 1) is important for

the creation of such high-current field emission sources

with the pull grid and the anode. However, two-well and

multi-well barrier structures are of interest for obtaining

more high-current field emission sources. Such vacuum

structures require the use of four or more electrodes with

dimensions on the order of nanometers. When several

grid electrodes come into contact with the cathode, a

heterostructure arises, which should be considered as a

quantum superlattice, since a single emitter is formed.

Semiconductor quantum heterostructures to determine the

quantum potential distribution require quantum considera-

tion [10–14], for example, based on the density functional

theory method (DFTM) [11]. We consider the vacuum

heterostructures with nanosized vacuum gaps and highly

conductive electrodes, for which the quantum potential can

be obtained by the classical electrostatic approach based

on images method. This, taking into account the sufficient

length of the structures, is justified, among other things, by

the fact that sufficiently large potentials of the order of tens

of volts are applied to the electrodes, which significantly

exceeds the contribution from possible quantum effects.

This approach, which is incomparably simpler than the

DFTM, makes it possible to find a very accurate potential

distribution. The method of images, in particular, makes
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Figure 1. Model view of one-well barrier potential in vacuum

nanotriode. Explanations on the conditions under which the

potential has the form a, b or c, and also on the designations — in

the text.

it possible to find simple barrier profiles at one of the

electrodes [15,16]. Next, for two electrodes, we use the

method of multiple images. The potential of multielectrode

structures is constructed sequentially, taking into account its

continuity. All dimensions below are given in nm, kinetic

and potential energies in eV, and electrode potentials in V.

1. Simple models for rectangular barriers

In the one-dimensional case in field emission

electronics, the stationary SE
(

−~
2µ∂2x + V (x) −

−Ek

)

ψ(x) = 0 is usually solved, in which µ = 2me ,

me is electron mass, p̂x = ~∂x = k~ =
√

µ
(

Ek−V (x)
)

is

its momentum, and the wave function is represented

by overlaying of plane waves ψ(x) = a exp(±ikx).

The heterogeneous potential leads to the presence

of waves of both directions at each point, while

in the region of barriers Ek < V (x) the momentum

becomes imaginary. In a potential field, one can

introduce a force F(x) = −∂xV (x) = −eEx(x) = e∂xU(x),
where U(x) = −V (x)/e is electrostatic potential,

e = 1.6022 · 10−19 C is electron charge. In vacuum

tunneling the potential barrier and electrostatic potential

are determined by the method of multiple images relative

to the electrode surfaces [20–22]. In semiconductor tunnel

structures the barrier and well profiles are created by

doping and are usually modeled as rectangular regions.

Applying anode voltage distorts these regions and causes

slopes appearance at the tops of the barriers and at the

bottom of the well [1–6]. Accounting for the potential of

the electron beam as the solution of the Poisson equation

also leads to V (x) change. Such a solution is expedient

at a high beam density. In vacuum structures the grid

potential is constant, the grid screens the field, so the

well bottom is flat. An example of accurate calculation of

barrier profiles by the method of images is given in Fig. 2.

For them, a rigorous solution of SE is obtained below.

Further, the method of matrices transfer is used for this.

With one-dimensional tunneling, the method of series can

also be used. As can be seen, the barrier profiles are

close to trapezoidal with a trapezium in the form of a

triangle on a rectangular base. The voltage increasing on

the electrodes brings the barrier profiles closer and closer

to triangular ones. For the analytical study it is convenient

V
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Figure 2. Profiles of complex barriers (eV) in two-well

(curves 1, 2, 4) and one-well (curve 3) structures with two grids

at the same potential. Structure parameters (eV): Vg = 10, Va = 5

(curves 1, 2); Vg = 15, Va = 10 (curves 3, 4); Wk = 3, Wg = 4

(curves 1, 3, 4); Wk = 3.6, Wg = 3 (curve 2); t1 = t2 = t3 = 2 nm,

tg = 1 nm (curves 1, 2, 4); t1 = t2 = 3 nm, tg = 2 nm (curve 3);
Wa = 4.5.
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to replace complex barriers with rectangular ones, for

example, by adjusting their height so that the area is

preserved. During tunneling of one particle it is convenient

to normalize the wave function to the delta function [19,23].
In the problems of emission electronics there is usually

an incident particles flow described by the wave function

ψ+(x) = a(x) exp(ik0x), so the current density J+(x)
can be introduced in terms of the density of probability

flow [1–6,18]. Outside the barrier structure V (x) = 0,

k0 =
√
µEk/~, a = a0 = const, and the normalization to

the incident flow with unit density of particles is convenient

ρ+(x) = |ψ+(x)|2 = a2
0 = 1, x < 0 [1–6,15–17,21–23].

Since there is a reflected wave from the structure, the total

density to the left of the barrier is

ρ(x) = | exp(ik0x) + R exp(−ik0x)|2 = 1 + |R|2

+ 2|R| cos(2k0x − ϕR).

Here phase ϕR and modulus |R| of the reflection coefficient

are introduced. During RT the reflection coefficient is zero.

The presence of high electrons density in the region of the

structure (outside the metal electrodes) requires the solution
of the Poisson equation ∂2x8(x) = eρ(x)/ε0 there. For such

solution, zero boundary conditions on the cathode and

anode should be used, and the result of the solution should

be applied to the electric potential: Ũ(x) = U(x) + 8(x),
which changes the profile of the barrier structure.

Let us consider tunneling through the symmetrical barrier

Fig. 1, a. Due to the symmetry the tunneling from the

cathode and anode are the same, so the total current is

zero. The current from the cathode arises at positive voltage

Ua = −Va/e on the anode, when the barrier structure

becomes asymmetric (Fig. 1, b, c). The wave function of the

electrons flow riding on the barrier will be designated as

ψ+
0 (x) = a0 exp(ik0x), and the flow passing to the anode as

ψ+
a (x) = a0T exp

(

ika(x−d)
)

, where ka =
√

µ(Ek + Va)/~.
Tunneling through the barrier is a quantum effect, and

the electrons that have passed through the barriers do not

lose energy, but before getting on the anode they move

classically and are accelerated. They transfer the excess

energy eUa to the phonons of the anode crystal over a short

free path length, acquiring the Fermi energy distribution on

the anode. For electrons falling on the anode surface from

its depth the transparency of the barrier at a significant

voltage Ua is exponentially less than D−(Ek) ≪ D+(Ek),
and the reverse current can be neglected even at anode

voltages of the order of several V. Here, the kinetic energy of

electrons both on the cathode and on the anode is measured

from the bottom of their conduction zone V0 = −W−EF

and V0a = −W−EF−eUa , respectively. Let us introduce the

impedances z 0 = 1/k0, z n = 1/kn, z g = 1/kg , z a = 1/ka

(note that in the paper [19] the reverses of impedances

are taken) and designate θn = tan(kntn), θg = tan(kgtg).
Here tn are barrier widths, which can generally be different,

and tg is well width corresponding to the grid area. For the

symmetrical case t1,2 = t, from the condition of the absence

of the reflection coefficient R = 0 or the equality of the

input normalized impedance to unity θgθ = 2Z/(1 + Z2)
follows, or with the notation Z = z/z 0 = k0/k = −iη —
transcendental equation

tan
(

tg~
−1

√

µEn

)

tanh
(

t~−1
√

µ(V−En)
)

=
2
√

V/En−1

2−V/En
.

(2)

The presence of roots En > 0 of equation (2) means RT

through the symmetrical barrier when the kinetic energy

coincides with the level: Ek = En. Such levels are possible

if V/2 < En < V . For a wide barrier with the upper level

En ≈ V , we replace the hyperbolic tangent by unity, and the

tangent by its argument with a small right-hand side, i.e., we

have

En ≈ 2V

√

~4

t4gV 2µ2
+

~2

t2gVµ
− 2~

2

t2gµ
.

The levels for the structure (Fig. 1, a) are metastable

because the wave function
”
leaks“ through the barriers. It

is easy to see that such complex quasilevels are determined

from the complex equations

k0tg = ±2 arctan

(

Z + iZ2θ

θ − iZ

)±1

+ 2nπ

= ±2 arctan

(−ik0/κ + (k0/κ)
2 tanh(tκ)

i tanh(tκ) − k0/κ

)±1

+ 2nπ

(3)

and are metastable. This means a finite lifetime of the level:

the electron is emitted from it and goes to infinity, and the

level width is determined by −Im(En). The signs in (3) cor-
respond to different symmetry conditions for the wave func-

tion [24]. For wide barriers tanh(tκ) ≈ 1, and neglecting the

small terms in (3), we get k0tg = ∓2 arctan(k0/κ)
±1 + 2nπ,

which matches the results from [24]. For an infinitely deep

well (infinitely high and wide barriers), with the upper sign

we have En = (2nπ/tg )2µ−1
~
2, and with the lower sign

En =
(

(2n + 1)π/tg

)2
µ−1

~
2, n = 1, 2, . . ., i.e., these signs

correspond to even and odd wave functions relative to the

center of the well. The characteristic equation for the asym-

metric well (Fig. 1, c) is obtained similarly by transforming

the impedance on the anode z a = 1/ka = ~/
√

µ(E + Va)
to the cathode and equating the transformed impedance to

the cathode impedance z 0 = 1/k0. We do not present the

corresponding formulas because of their cumbersome form.

In this case, in addition to metastable levels, at Vg > Va the

own stable energy levels can appear (in Fig. 1, c, shown by

solid lines).
Note that SE is, in fact, the Helmholtz equation, and

quantum tunneling is equivalent to electromagnetic scat-

tering of the plane wave on a dielectric structure with

permittivity ε(x) =
√

1−V (x)/Ek [23]. The case V = 0

corresponds to the motion of a wave with frequency

ω = Ek/~ in vacuum. The case Ek < V (x) (scattering
on well or above barrier) corresponds to motion through

a collisionless plasma with ε(x) < 0 at ω < ωp, and the

Technical Physics, 2022, Vol. 67, No. 9
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case Ek > V (x) — motion through the dielectric layer

c ε(x) > 0. Also note that there is a complete analogy

between the problems of scattering and the determination

of quantum levels for barrier structures with plane waves

diffraction and with the existence of plasmons in plane-

layered optical structures. In particular, Fig. 1, a corresponds

to a structure in the form of a dielectric plate with

permittivity ε > 1 and plates of two plasma layers with

permittivity ε < 0. In the case of imposing the condition

R = 0, we obtain the characteristic equation for the complex

resonant frequencies ωn of such an open resonator. The

thickness of the plasma layers increasing leads to the

metastable levels transformation into stable intrinsic levels.

In this case, the RT regions at wide plasma layers narrow

down to spectral lines. Fig. 1, c corresponds to a vacuum-

type structure, a plasma layer with negative permittivity,

a dielectric layer with permittivity ε1 > 1, a plasma layer

with permittivity ε < 1, a dielectric substrate (half-space)

with permittivity ε2 < ε1. In the case of photons tunneling

through plasma layers, the ratio between their frequency

and the plasma frequencies of the layers ωpm is important.

For the structure in Fig. 1, c it is convenient to count the

energy from the bottom of the well. Then the problem

for the dielectric resonator corresponds to resonances in

the dielectric plate surrounded by plasma layers between

two plasma half-spaces. The case ωn < ωpm corresponds to

eigenfrequencies, i.e. they are below all plasma frequencies.

For higher frequencies ωn > ωpm the resonator becomes

open, and the levels — quasi-intrinsic (metastable). During
diffraction on the structure the resonant passage of photons

with energy coinciding with ~Re(ωn) is observed. During

diffraction of plane electromagnetic waves the cases of

incidence at an angle at which the polarization of the waves

is important (p or s) are possible. Then the waves can be

classified as E (T M) or H (T E). The only difference is in the

normalized wave impedances: z e
n =

√

εn − k2
⊥
/k2

0/εn and

z h
n = 1/

√

εn − k2
⊥
/k2

0, which coincide at normal incidence

(k⊥ = 0). The condition R = 0 for the case of incidence at

an angle is the condition for the existence of surface waves

(plasmons) in a layered structure [25]. In model problems

of plasmonics the dissipation was not taken into account. Its

accounting will lead to the fact that all resonant frequencies

become complex during tunneling and scattering of photons.

Although during quantum tunneling, electrons run from

the depth of the cathode on the boundary at various angles,

the density is usually determined for electrons, which have

the value of the normal speed component v = vx within

the given limits dn(vx) = (4π2
~)−3m3

evx(v
2
F−v2x)dvx [15].

During RT the condition R = 0 also leads to the appearance

of electron waves along the surfaces, if we assume that

the structure is transversely unrestricted. However, these

waves move at all angles. During conventional tunneling the

transverse speed components are small, since tunneling oc-

curs mainly for large normal speed components. Therefore,

Table 1. Parameters of some metals and value δ

Work Potential Atomic radius, Radius

Metal function, of ionization, covalent of ion, δ, nm

eV eV radius, nm nm

Ba 2.52 5.21 0.222, 0.198 0.134 (+2e) 0.143

Be 3.92 9.32 0.112, 0.090 0.034 (+2e) 0.091

Cs 1.81 3.89 0.267, 0.235 0.167 (+1e) 0.199

Ka 2.25 4.34 0.235, 0.203 0.133 (+1e) 0.160

Na 2.28 5.14 0.190, 0.154 0.097 (+1e) 0.158

Li 2.49 5.39 0.145, 0.134 0.076 (+1e) 0.145

Cu 4.53 7.72 0.128, 0.117 0.077 (+1) 0.079

Mo 4.2 7.10 139, 130 0.070 (+4) 0.085

W 4.54 7.98 137, 170 0.070 (+4) 0.079

during RT one should expect the increasing of electrons

scattering by transverse speeds in the output beam.

2. Modeling of the quantum potential
and tunneling in complex multiwell
barrier structures

The model problems considered above make it possible

to qualitatively estimate tunneling. Actual energy diagrams

V (x) of barrier structures are obtained using the method

of multiple images [20–22]. The potential profiles with one

and two wells for the structure cathode−grid−anode and

cathode−grid−grid−anode are shown in Fig. 2. To calculate

them we used the approach described in [22] and taking

into account the work function of the electrodes (cathode,
anode, and grids). Further indices c, g, a correspond to

the cathode, grid and anode. The work function of the

cathode is defined as Wc = e2/(16πε0δ). Similarly, the

work functions of the grids and the anode are determined

through the parameters δg and δa . These small dimensions

(of the order of Å) correspond to the distances at which

the image forces cease to act due to the atomic structure

of matter. They correlate well with the radii of the crystal

lattice ions in the case when one atom donates one electron

to the conduction zone. In the general case, they vary from

the indicated radius to the covalent radius. Table 1 shows

the corresponding data. The values of the work functions

of the cathode shown in Fig. 2 are somewhat lower than

for commonly used metals. They can correspond to the

deposition of a thin (on the order of nm) oxide or dielectric

film on a copper or tungsten surface, for example, in the

form of nanodiamond clusters [22]. Magnetron sputtering

of diamond-graphite films several nm thick makes it possible

to significantly reduce the work function and to obtain low-

threshold emission. However, this is unimportant for RT,

since the result weakly depends on the cathode material as

Technical Physics, 2022, Vol. 67, No. 9
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a very high potential on the grid is used. The work function

taken for the anode may correspond to Cu or W. Grids

should be made of multilayer graphene (graphite) [26].
The work of moving electron to point x is defined as

W (x , δ, δa , d)−W (0, δ, δa , d). Assuming that it is indepen-

dent of the distances δ and δa , which are of the order of the

radius of the crystal lattice ion near the cathode and anode

boundaries, we obtain the function W (x , δ, δa , d). It looks
like this [22]:

W = − e2

16πε0

{

1

x + δ

(

1 +
2xd

(d − x + δa)(d + x)

)

− 2

d
+

2x2

d3

∞
∑

n=2

1
(

n2 − (x/d)2
)

n

}

, (4)

takes into account an infinite series of images relative to

the cathode and anode and gives the potential energy of

electron at point x . On the cathode

W (0, δ, δa , d) = −e2(16πε0)
−1{δ−1 − 2d−1}.

For a large distance d we have

W (0, δ, δa , d) = −e2(16πε0δ)
−1 = −W0.

On the anode at large distance

W (d, δ, δa , d) = −e2(16πε0δa)
−1 = −Wa .

In the case of coincidence of the work functions of the

cathode and the anode W = Wa one should put δa = δ .

Note that in the paper [20] (formula (31)) there is a function

of type (4) (for δ = δa = 0) called
”
image potential“,

but it differs from (4) by a factor of 2. That’s really

the potential for perfect images. But when obtaining the

potential function, one should calculate the work on moving

the electron. Displacement of electron by dx leads to a

displacement of all its images relative to it by ±2dx , i.e.
the force is defined as half of the derivative of the indicated

potential with a minus sign. This proves that (4) is the

potential of the electron. It can be seen from Table 1 that

for a number of metals the value δ is very close to the ion

radius, in some cases it is close to the covalent radius, and in

the general case it lies between them, i.e., it does not exceed

half of the crystal lattice constant. In fact, in (4) we count

the cathode surface from the surface formed by the electron

shells of the first layer of ions or close to it (and not from

the centers of atoms). The monograph [15] presents the

following model. There is a double electric (dipole) layer

formed by a cloud of electrons escaping from the metal

but not passing through the barrier. It is assumed that the

field of this layer is constant, the layer has a thickness not

exceeding the lattice constant, the image force begins to act

from its outer boundary, and the constant force inside the

layer smoothly transforms into the image force. This gives

a result by two times exceed the result of (4) (at least for
one image). To connect the formula with the work function,

it is necessary to double δ also. The model in [15] has a

number of drawbacks. The first one is the constancy of

the field in the double layer. In fact, the field is strongly

heterogeneous, as is the density of the cloud. Second — the

force of images does not act inside the cloud. Third — the

size of the cloud is constant. Note that the electrons density

in front of the barrier (in its initial part) can be found if the

barrier is known. There are a number of papers [27–33], in
which the course of the potential curve near the cathode and

its effect on emission were calculated, taking into account

quantum approaches, exchange interaction, and the double

layer. Using the Hartree−Fock method [28], it is shown

that the initial section of the barrier is different for different

energies. Exchange interactions and the formation of a

double electric layer can lead to nonmonotonic behavior

of the potential course [29,31–33]. These effects, however,

are small in structures with deep potential wells. In the

paper [30], based on the Seitz potential, the discontinuity of

the potential curve was eliminated, and it was reduced to

the form (1). The introduction of δ parameter seems to be

the simplest and most effective method for accounting the

potential near the electrodes. Far from the electrodes it is

important to take into account the space charge.

Let’s consider a number of examples of defin-

ing δ . The experimentally determined work function

of copper lies within 4.53−5.10, which corresponds

to 0.0706 ≤ δ ≤ 0.0795. For copper, the atomic ra-

dius is ra = 0.128, the covalent radius is 0.117, the

ion radius (+1e) is r i = 0.077, and the ionization en-

ergy (+e) 7.72 by about one and a half times exceeds

the work function. For copper δ is approximately

equal to the ion radius and slightly less than the co-

valent radius. For silver the experimentally determined

work function is 4.52−4.74, which corresponds to area

0.0759 ≤ δ ≤ 0.0796. For silver, atomic radius is 0.144,

covalent radius is 0.134, ion radius +2e is equal to 0.089,

ion radius +e is equal to 0.126, ionization energy is 7.57.

Here the parameter δ is less than the radius of ion +e and

is close to the radius of the ion +2e. The work function

of potassium is 2.28, which corresponds to δ = 0.157. For

potassium the atomic radius is 0.235, the covalent radius

is 0.203, the ion radius is 0.133, the ionization energy is

4.34. Here δ is slightly larger than the radius of ion. A

similar result takes place for other alkali metals. For a large

number of metals δ is in the region between the ion radius

and the covalent radius, i.e. less than the half-period of

the crystal lattice. At such distance the electron is strongly

bound to one lattice atom, interacts with its electron shell,

and further approach does not lead to an attractive force,

while the energy of electron removal from the crystal is

close to the work function. Since with such electron removal

by x the positively charged electron cloud is shifted by −x ,
the force of the images acts at a distance of 2x [15–17],
which explains the value W0. It is two times less than

the ionization energy of atom of radius δ with charge +e.
Assuming that the parameter δ is approximately equal to

the radius of the ion +e, we obtain W0 ≈ Viara/(2r i ),
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Figure 3. Coefficient of tunneling from the cathode depending

on the kinetic energy of electrons (eV) in one-well structures

(curves 1–4) and two-well structures (curve 5) of the same

length 8 nm. Structure parameters (in eV): Wk = 3, Wg = 4,

Wa = 4.5; Va = 5 (curves 1, 4, 5); Va = 10 (curves 2, 3); Vg = 25

(curves 1, 2, 5); Vg = 25 (curve 3); Vg = 45 (curve 4).

where Vi is the ionization potential of the atom. Such

formula correlates well with the ionization potentials of

metals, and a simple introduction of δ parameter takes into

account the discreteness of the medium.

In the given examples (Fig. 2, 3) the coinciding work

functions of the cathode W0 and the anode Wa and differing

for grids Wg are used. The influence of the work function

of the grids is small, since it can be corrected by the voltage

applied to them. In the regions of the grids, the cathode,

and the anode the potential is constant, and barriers appear

between them. Note that the barrier height depends not

only on the work functions and potentials, but also on its

length, namely, it decreases as the electrodes approach each

other. In the case when the grid potential is greater than

the anode potential, a well corresponds to it, while RT is

possible (Fig. 3, 4).
Tunneling was calculated by the matrix method using

transfer matrices

T̂j =

[

cos(k j1x j) −ik−1
j sin(k j1x j)

−ik j sin(k j1x j) cos(k j1x j)

]

,

where k j =
√

µ(Ek−V j−V0)/~ for above barrier regions

and k j = i
√

µ(V j + V0−Ek)/~ for subbarrier areas. The

potential profile is described by a piecewise constant (step)
function with potential values V j :

V (x) =

N
∑

j=1

V ju j(x).
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+

D

–1110

–1010

–810

–910

–710

–610

–510

–410

–310

–210

–110

010

25

Ug

1

2

Figure 4. Tunneling coefficient at E = EF for structure

t1 = t2 = t3 = 2, tg = 1, δ = 0.1, δg = 0.15 (nm) depending on

the grid potential Ug (V): curve 1 — Ua = 8V; curve 2 —
Ua = 5V.

The functions u j(x) are equal to one on the correspond-

ing step and zero outside them. Since V j < 0, for the level

V j = −V0, corresponding to the bottom of the conduction

zone, all kinetic energies are above the barrier, and for levels

above the Fermi level V j > −VF all motions are below the

barrier.

The program for solving SE consisted in construction of

the complete matrix T̂ − T̂1, T̂2, . . . , T̂N by multiplying the

domain matrices and calculating the transmission coefficient

from the system of equations 1 + R = (T11 + ikaT12)T ,
1− R = (−iT21/k0 + T22ka/k0)T . Adding them up, we get

the result

T = 2/[T11 + T22(ka/k0) + i(T12ka − T21/k0)],

R = 1 + (iT21k0 − T22ka/k0)T.

The system of equations was obtained from the representa-

tion of the wave function on the cathode in the form

ψ(x) = A
(

exp(ik0x) + R exp(−ik0x)
)

,

and on the anode — in the form ψ(x) = AT exp
(

ika(xd)
)

.

Here we use the designations k0 =
√
µE/~ on the cathode

and ka =
√

µ(E + eUa)/~ on the anode, i.e. these values

are proportional to electron pulses on the cathode and anode

(before pulse relaxation). Usually, tunneling is considered

to be a process without loss of energy and pulse, i.e. at

the turning point the pulse is k0~. However, after tunneling

the pulse of the electron on the anode increases due to

acceleration as result of the above barrier motion. Indeed,

in this region, an accelerating force acts on the electron with
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actual pulse, i.e. the motion is quasiclassical. Therefore, at

the cathode boundary the wave function should be taken

in the above form. After getting the anode, over the free

path length, the excess pulse relaxes to k0~. In this case

the electron gives energy eUa to the phonons of the anode

lattice. Since also

Z = (1 + R)/(1− R)

= (T11 + ikaT12)/(−iT21/k0 + T22ka/k0),

you can find the reflection coefficient from the barrier

in another way: R = (Z − 1)/(Z + 1). In this case

|R|2 + ka/k0|T |2, and Z, R depend not only on the shape

of the barrier, but also on the anode voltage. Note that

if we ignore the electron acceleration and take the wave

function on the anode in the form ψ = AT exp
(

ik0(xd)
)

,

then we get the result |R|2 + |T |2 = 1. The reflection

coefficient and the transmission coefficient included in it

are different and correspond to the area of motion up to

the last turning point. Since pulse relaxation and anode

heating occur at x > d, these effects do not affect the wave

function AT exp
(

ika(xd)
)

, which determines the passed

particles flow. The calculated coefficient of tunneling or

transparency of the barrier D+(E) = |T |2 depends on the

kinetic energy of the electron in the cathode region E (we
will omit the index k). The quasiiclassical WKB approach

considers only subbarrier motions in the regions between

turning points and is not suitable for complex structures

with quantum wells. Besides, in order to calculate the

integrals, the barrier is usually assumed to be wide, and the

reflected evanescent wave is neglected [18]. This explains

why the Fowler−Nordheim formula cannot be applied even

in cathode−anode structure with one hump and one well at

high anode voltage, when the hump practically disappears,

and only one well remains.

In the calculations, respectively, 101 and 152 steps were

used for one-well and two-well barriers, i.e. each barrier

was approximated by 50 steps, while one was sufficient for

each well. The calculated coefficient of barrier transparency

(tunneling) D+(Ek) = |T |2 depends on the kinetic energy of

the electron in the cathode region Ek . The transparency of

the emission structure has a resonant nature: some maxima

are less than unity, but for some configurations (Fig. 3,
curve 5) at several energies they can reach unity. The

peaks have different widths, and the variation between the

maxima and minima can reach several orders of magnitude.

Transparencies are the higher, the smaller the total width of

the humps is. The frequency of the maxima is the greater,

the wider the structure is, and, other things being equal, is

proportional to the total width of the quantum wells. Fig. 4

shows the dependence of the transparency at the Fermi level

on the grid voltage for a two-well potential. It has the same

resonant nature for lower energies.

The calculation of the total tunneling current requires

accounting of the electrons distribution by speeds (en-
ergies), i.e., integrating D+(E)n(E)dE from zero to the

Fermi energy. In this case, the optimal profile should

have a sufficiently large number of metastable negative

levels Vn somewhat below the Fermi level of the cathode

Vc = VF = −W and above the bottom of the cathode

conduction zone V0, wherein with not too small width of

spectral lines. The kinetic energy corresponding to the

level is Ekn = V0−Vn. The bottom of the anode conduction

zone corresponds to a deeper level V0a = −W−EF−eUa ,

the Fermi level on anode — Va = −W−eUa t, and the well

on the grid — level Vg = −Wg−eUg . Here we take the case

of identical work functions of the cathode and anode, and

for the grid it is equal to Wg . We do not consider the band

structure of the grid. In the conduction zone of a thin grid

there are many discrete levels below Vg . Above this level

at Ug > Ua stable levels can exist, above which metastable

levels lie. The more such closely spaced levels with

overlapping spectral lines are, and the closer they are to the

Fermi level, the greater integral current from the structure

can be obtained. Consequently, the problem of increasing

the emission current is reduced to constructing such barrier

structure and determining its metastable levels. It can be

formulated like this. Let T̂ (En) be the transfer matrix.

Taking into account the relation k2
an = k2

0n + µeUa/~
2, we

have

k0n =

√

µ(En −Vc)

~
=

iT21 − kanT22

T11 + ikanT12

. (5)

Considering 1 = T11 + ikanT12, k0 = iT21 − kanT22,

det(T̂ ) = 1, we have T22 = 1− (k0n/kan)(1− T11). The

level is metastable if Va < Re(En), and stable if En < Va .

The characteristic equation (5) determines all the

complex levels En. If the level is actual and neg-

ative, then it is determined from the actual equation

T22 = 1(k0n/kan)(1− T11). The shown equations are tran-

scendental, since the matrix depends on the level energy.

They also make it possible to determine metastable levels

that correspond to the conduction zone of the cathode. They

are of interest for RT. The following method for determining

complex roots is convenient. We find the real roots of the

equation (5) when operating with its real part. Further, these

real roots are used as initial approximations in the iterative

procedure according to formula (5). Such a procedure

requires calculation at each step of the transfer matrix with

complex energy.

3. Comparison of one-well and two-well
barriers

Fig. 3 shows the calculations of transparency D+(E) for

one-well and two-well potentials, and Fig. 4 — D+(Ug)
for Ek = EF for two-well potential, while the depth of the

wells changes. Transparency weakly depends on the anode

voltage. The two-well potential is created by a dual grid,

the electrodes of which are separated by a vacuum gap or

a gap filled with a dielectric, but are at the same electric

potential. It is convenient to set Ug > Ua . The presence

of the second well leads to a doubling of the levels [19]
and to the total current increasing (Fig. 5). The presence of
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Figure 5. Volt-grid characteristics for the structure in Fig. 2,

curve 2 for different Ua (V): 11 (curve 1); 9 (curve 2); 5 (curve 3).

quasi-periodic heterostructure can lead to the appearance of

zones containing many closely spaced levels. However, the

use of such structures is limited by the circumstance that

their total length must be substantially less than the free

path length in the grid material, i.e., the electron emitted

from the cathode must not lose pulse due to scattering on

phonons. Since at room temperature the free path length in

metals is on the order of tens of nm, the length limitation

is several nm. With such length of the grid structure it is

already difficult to use more than two electrodes. The use of

ultralow temperatures greatly complicates the design of the

field emitter. In one-well asymmetric structure the quasi-

levels coinciding with kinetic energies do not arise, and

there is no complete resonant tunneling. The appearance of

resonant peaks is due to the interaction with low-lying levels

(incomplete extinguishing of the reflected wave by partial

reflections from heterogeneities). The strongly irregular

nature of the grid current-voltage curve can be explained

by the fact that the level change of the bottom shifts the

resonant levels, and maxima with minima appear at other

close potential values. The anode current-voltage curves also

demonstrate oscillations, but their peak-to-peak is few times

maximum, and the period is about 2−3V.

Table 2 shows the results of calculation of the complex

levels En = E ′
n−iE ′′

n for the two-well structure. It can be

seen that the E ′
n values correlate well with the energies Ek

at which the barrier transparency maxima occur (Fig. 3).
Note that metastable levels play the main role in transient

processes [1–6,19,34], which is important for pulsed sources

and devices in pulsed mode. The considered two-well

structures make it possible to achieve complete RT, while in

one-well structures and structures with Ug < Ua incomplete

Table 2. Metastable energy levels for the structure in Fig. 3,

curve 5

Level number E′

n, eV E′′, eV

1 4.1921 0.2012

2 2.8932 0.1213

3 1.7055 0.0347

RT is achieved [22]. Fig. 5 shows the results of calculating

the total current J = J+−J− for one-well and two-well

structures using the formula [15,16]:

J± =
eme

2π2~2

EF
∫

0

D+(E)(EF − E)dE. (6)

At the anode voltages used, the reverse current is

negligible and J ≈ J+. The integral (6) was calculated

numerically by the method of averages using 300 points.

Actually low energies practically do not contribute to it.

The results show a strong irregularity of the current-voltage

curve with peak-to-peak up to several orders of magnitude

and periods of up to fractions of volt. For Fig. 3, 4 the Fermi

energy on the cathode EF = 5 eV was taken, for Fig. 5 —
EF = 10 eV.

Based on the formula (6) it is possible to estimate the

current during RT. Let there are energies En of RT and

regions 1n around them, where D+ = 1 can be considered

(for 1n one can take the half-width of resonances). Due to

the exponential smallness of D+, in the rest of the region

we assume D+ = 0. Then (6) is integrated, and we get

J± =
eme

2π2~3

N
∑

n=1

(EF − En)1n. (7)

Formula (7) answers the question about the maximum

current: it is the greater, the more RT levels there are, and

the wider they are, and they should be located significantly

below the Fermi level.

4. Correction of potential profile based
on the solution of the Poisson
equation

A high current density leads to significant density of

uncompensated negative charge in the cathode−anode

space, which can change the distribution of poten-

tial V . Let us introduce the matrices t̂N = T̂N ,

t̂N−1 = T̂N−1, T̂N, . . ., t̂1 = T̂1, T̂2, . . . , T̂N = T̂ . They re-

late the amplitudes of forward and backward waves

ψ j(x) = a+
j exp(ik jx) + a−

j exp(−ik jx):

a+
j + a−

j = (t11j + ikat12j )T,
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a+
j − a−

j = (−it21j /k j + t22j ka/k j)T,

whence we have

a+
j = [t11j + t22j ka/k j + ikat12j − it21j /k j ]T/2,

a−

j = [t11j − t22j ka/k j + ika t12j + it21j /k j ]T/2,

j = 1, 2, . . . , N. Determining these amplitudes, we calcu-

late the densities ρ j = ρ(x j) = |ψ j(x j)|2. Let us go from

discrete density values to continuous ones. In the relation to

structure, we have the decomposition

ρ(x) =

∞
∑

n=0

[

αn cos(2nπx/d) + βn sin(2nπx/d)
]

(8)

with coefficients

α0 =
2

d

N
∑

j=1

ρ j1 j, β0 = 0,

and for n = 1, 2, . . . we have

αn =
2

d

N
∑

j=1

ρ j

x j +1n/2
∫

x j−1n/2

cos

(

2nπx
d

)

dx =
2

nπ

N
∑

j=1

ρ j

× sin

(

2nπ1 j

d

)

cos

(

2nπx j

d

)

,

βn =
2

d

N
∑

j=1

ρ j

x j +1n/2
∫

x j−1n/2

sin

(

2nπx
d

)

dx =
2

nπ

N
∑

j=1

ρ j

× sin

(

2nπx j

d

)

sin

(

2nπ1 j

d

)

.

The value (8) determines the density of particles in the

flow, and the value −eρ(x) is the charge density included

in the PE ∂2x8(x) = eρ(x)/ε0 . To solve PE, one can use

discrete difference methods, but we will apply the series

method, presenting the potential in the form

8(x) =

∞
∑

n=0

[

f n cos(2nπx/d) + gn sin(2nπx/d)
]

. (9)

Accordingly, we have

f n =
eαn

ε0(2nπ/d)2
, gn =

eβn

ε0(2nπ/d)2
, n = 1, 2, . . . .

Potential (9) is periodic. To determine the last unknown

coefficient f 0, one should impose the boundary condition

8(0) = 8(d) = 0, whence we have

f 0 = −
∞
∑

n=1

f n = − ed2

2π2ε0

∞
∑

n=1

1

n3

N
∑

j=1

ρi

× sin

(

2nπ1 j

d

)

cos

(

2nπx j

d

)

. (10)

The incoming series converge quite well, so that in (10) it
is sufficient to use several tens of terms. In (9) it is sufficient
to use about hundreds of terms.

Let us consider a single-barrier structure with barrier

height V0 from the zero level of kinetic energy and a well

depth V1 > 0. To the left of the barrier the wave function

has the form

ψ(x) = A[exp(ik0x) + R exp(−ik0x)],

and to the right of it —

ψ(x) = AT exp(ik1x).

Here k0 =
√
µEk/~, k1 =

√

µ(Ek + V1)/~, A defines the

particle flow. In the barrier area

ψ(x) = A[a+ exp(ikx) + a− exp(ikx)].

In this wave function k =
√

µ(Ek −V0)/~ = iκ, i.e.

ψ(x) = A[a+ exp(−κx) + +a− exp(κx)].

We assume that Ek < EF < V0. Sewing

the wave functions and their derivatives,

we obtain the equations 1 + R = a+ + a−,

1− R = iκ(a+−a−)/k0, a+ exp(−κd) + a− exp(κd) = T ,
−a+ exp(−κd) + a− exp(κd) = ik1T/κ . These equations

have simple solutions:

a+ = T (1− ik1/κ) exp(κd)/2,

a− = T (1 + ik1/κ) exp(−κd)/2,

T (κ) =
2

cosh(κd)(1 + k1/k0) − i(k1/κ − κ/k0) sinh(κd)
.

(11)

Denote T = |T |2 exp(iϕ), ϕ0 = arctan(k1/κ). Then the

particles density

ρ(x) = |ψ|2 = A2ρ̃(x)

is

ρ̃(x) = |a+|2 exp(−2κx)+|a−|2 exp(2κx)+2|a+|2 cos(2ϕ0)

or

ρ̃(x , E) = |T (E)|2
[

1 + (k1/κ)
2
]

×
[

cosh
(

2κ(x − d)
)

+ exp(2κd) cos(2ϕ0)
]

/2. (12)

Here κ =
√

µ(V0−E)/~, so (12) can be considered as a

function of energy. Formula (12) was obtained for a one-

speed flow with energy E and unit density of particles in

the flow. Indeed, the wave function A exp(ik0x) is used.

For A = 1, such a normalization for plane wave gives a

probability unit density and incident flow probability density

j+ = k0~/me = v equal to its speed. Accordingly, the

flow at a length of v contains one particle per second, i.e.

the particle passes through the x plane every second with
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speed v . It is convenient to interpret such normalization

as unit density of particles in one-speed flow [23]. If A2

has the dimension
”
number of particles per unit length“,

then J = −eAv has the dimension of current, and if A2 has

the dimension
”
number of particles per unit volume grqq,

then J = −eAv has the dimension of current density.

When tunneling from metal the distribution of electrons

by energies should be taken into account. The wave function

must be taken in the form of wave package

9(x) = 9+(x) +9−(x) =

kF
∫

0

A(k)

×
[

exp(ikx) + R(k) exp(−ikx)
]

dk.

It’s multi-speed. We consider the amplitude to be

actual. The incident electron flow for the speed range

dv = (~/me)dk has a particle bulk density (m−3) [15]:

dn =
m3

e

4π2~3
(v2F − v2)dv =

(k2
F − k2)

4π2
dk.

Obviously it must be

|9+(x)|2=

kF
∫

0

A2(k)dk =

kF
∫

0

(k2
F−k2)

4π2
dk =

k3
F

6π2
=

(µEF)
3/2

6π2~3
.

(13)
We have obtained that (13) is equal to N/2,

where N is the concentration of free electrons, i.e. the

formula considers that half of the electrons moving towards

the cathode boundary. In the absence of voltages they are

completely reflected, i.e. exactly N electrons move in both

directions. Now the total particles density can be written as

P(x) =
m3

e

2π2~3

vF
∫

0

(v2F − v2)ρ̃(x , v)dv

=
m3/2

e

23/2π2~3

vF
∫

0

(E2
F − E2)ρ̃(x , E)E−1/2dE. (14)

Expression (12) should be considered in the first in-

tegral (14) as a function of speed with the replacement

E = mev
2/2. Taking into account (11) and (12), the

integral (14) obtained for a rectangular barrier must already

be calculated numerically.

From the form of the function (12) we can conclude

that the density of the initial part of the barrier is low and

increases towards its end. The density increasing means the

electrostatic potential decreasing and the quantum potential

increasing. This causes the flat top of the barrier to be

beveled upward. The actual potential in the diode structure

at a high anode voltage is close to triangular, so the influence

of the space charge will lead to the transformation of an

almost triangular barrier into a more rectangular one. Its

peak as a whole will also rise. Assuming that V0 and V1

are determined by the anode potential, these effects can

be compensated by its potential increasing. In the case of

a multiwell potential formed by several electrodes, these

effects are easily compensated by changing the potentials of

the grid electrodes.

The paper [27] considers the space charge effect in solv-

ing PE with the following boundary conditions: 8(0) = 0,

8(d) = Ua , 8
′(0) = Ua/d . Assuming that in the diode

structure, electrons leave the cathode mainly with the

Fermi speed, and over the length x acquire the speed

v =
√

v2F + 2e8(x)/me , we obtain at constant current the

density

ρ(x) =
J/e

√

v2F + 2e8(x)/me

.

In resonant tunneling, the escape speed is lower and the

density is higher. The relation of Ua and J obtained in the

paper [27] has the form (in SI system)

Ua

d
=

Ua

d

[

1− J
4

3

(

me

2e

)1/2 d2

ε0U
3/2
a

]

.

For J = 1010 A/m2, d = 10 nm, Ua = 20V the second

term in square bracket is 0.085, and the bracket itself is

equal to 0.915, i.e. this case corresponds to the field

decreasing on the cathode by less than 10%. This limits

the current, but, as can be seen from the formula, the

field decreasing can be compensated by the anode voltage

increasing.

When solving the Poisson equation we used the Fourier

series decomposition formula and the Fourier series method

to determine its coefficients. It implies a periodic contin-

uation of the potential, which is quite natural under the

boundary condition 8(0) = 8(d), but it must be imposed.

You can use the odd continuation formula

8(x) =

∞
∑

n=1

un sin(nπx/d). (15)

It already satisfies zero boundary conditions. The represen-

tation (8) can be used to determine the coefficients. But it

is better to take it in the form

ρ(x) =

∞
∑

n=0

γn cos(nπx/d).

Then the coefficients are given by the expressions

un = − ed2

π3ε0n2

∞
∑

m=0

γmvnm,

γn =
2

d(1 + δn0)

N
∑

j=1

ρ j

x j +1 j/2
∫

x j−1 j/2

cos

(

nπx
d

)

dx

=
4

nπ(1 + δn0)

N
∑

j=1

ρ j sin

(

nπ1 j

2d

)

cos

(

nπx j

d

)

.
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Here vnm = 0 if n and m are of the same parity, and

vnm = 4n/(m2−n2) if n and m of different parity.

Consider the question: is it possible to use the static

formulas obtained above to correct the potential Let now

tunneling current flow through the structure with density J .
Tunneling is the process without energy loss. If the electron

riding on the barrier has speed v0, then it has the same

speed at the exit of the barrier. Further, when moving above

the barrier, it, generally speaking, accelerates and acquires

the speed v(x) =
√

v20 + 2eU(x)/me . At the considered

voltages it is equal to or slightly greater than the Fermi

speed. The current is determined as J = −eρv . Since

div J = 0, there is no change in the space charge with time,

i.e., it does not accumulate. But it presents: −eρ = J/v .
Taking the average speed in the form v̄(x) =

√
2eUa/me ,

approximating the potential in (15) with one first term and

averaging, we obtain the rise of the barrier at the center:

8(d/2) =
d2J

2πε0
√
2eUa/me

.

Taking quite technically achievable currents with den-

sity J = 1010 A/m2, Ua = 9.1V, d = 10 nm, we get

8(d/2) = 0.010V. Thus, the density J = 1012 A/m2 is quite

achievable. In a stationary single-speed beam forces do not

act on electrons. More precisely, they do not affect the

longitudinal motions, and the beam moves as a whole. The

space charge is important when multi-speed longitudinal

motions occur in different parts. If the beam is transversely

limited, then separating transverse forces act. In a relativistic

beam due to the pinch effect they almost do not work.

When are space charge forces very important’ Obviously,

this will be in the non-stationary beam J(x , t). The given

stationary solutions should be modified. Let nonstationary

beam appear at the moment t = 0 (at this moment voltage

is applied to the electrodes). We write the representation of

the current density in the form

J(x , t) =
N

∑

n=0

bn(t) cos(nπx/d). (16)

At each moment it is determined from the solution of

the SE with the potential given at that moment. The field

between the cathode and the anode is determined by the

vector-potential with one component that satisfies the wave

equation

∂2x Ax − c−2∂2t Ax = −J(x , t). (17)

For the vector-potential we take the decomposition

Ax(x , t) =
N

∑

n=0

an(t) cos(nπx/d). (18)

Then for the decomposition coefficients we obtain the

differential equations

a ′′

n (t) + (nπc/d)2an(t) = c2bn(t). (19)

Of these, for given right-hand sides one can determine an(t),
find the vector-potential, and find the scalar potential from

the equation

∂x Ax(x , t) + ε0∂t8(x , t) = 0. (20)

Integrating, for the scalar potential we have

8(x , t) = ε−1
0

N
∑

n=0

nπ
d

sin

(

nπx
d

)

t
∫

0

an(t
′)dt′. (21)

It is equal to zero at the initial moment, and on boundaries

satisfies the zero boundary conditions 8(0, t) = 8(d, t) = 0.

The scalar potential can also be sought from the wave

equation

∂2x8(x , t)−c−2∂2t 8(x , t)=−eρ(x , t)
ε0

=
1

ε0

t
∫

0

∂x J(x , t′)dt′.

(22)
Differential equations (19) are solved by the Fourier

method. With frequency notation ωn = nπc/d this gives

an(t) =
c2

ωn

t
∫

0

bn(t
′) sin

(

ωn(t − t′)
)

dt′. (23)

Really,

a ′

n(t) = c2

t
∫

0

bn(t
′) cos

(

ωn(t − t′)
)

dt′,

a ′′

n (t) = −c2ωn

t
∫

0

bn(t
′) sin

(

ωn(t − t′)
)

dt′ + c2bn(t),

which satisfies equation (19). Thus, we get the potential

8(x , t) =
c
ε0

N
∑

n=0

sin

(

nπx
d

)

t
∫

0

t′
∫

0

bn(t
′′)dt′′dt′

=

N
∑

n=0

un(t) sin

(

nπx
d

)

. (24)

This potential should be added with the alternat-

ing potential on the electrodes. In particular, we

can assume that Ua(t) = U0a + ua(t), Ug(t) = U0g + ug(t),
ua(0) = ug(0) = 0. For the modified potential, we solve the

non-stationary SE, from which we find a new value of the

current density. We continue the process until convergence,

after which we change the time, i.e. the potentials on the

electrodes, and repeat everything for a new moment in

time. The process of solving non-stationary SE is considered

in the paper [6]. Since it is relativistically non-covariant,

a change in the wave function in some region leads to

this perturbation propagation at the next infinitely small
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moment of time over the entire infinite region, which corre-

sponds to unlimited propagation of perturbations spreading

speed. However, at a large distance these perturbations

are infinitely small, since the propagatory Green’s Function

(GF) is similar to the Gaussian function. The equations

in [6] are of the Lippmann−Schwinger type and require the

construction of a complete GF. It is easy to construct such

GF in the region 0 < x < d by specifying particle flows

from the left and from the right. Then the main task is

to determine the waves diverging from the structure. The

above equations (16)−(24), in fact, are the equations of the

Fabry−Perrot resonator excitation. They are relativistically

covariant. It makes no sense to use them in conjunction

with the Dirac equation, since at the considered voltages

the flow is not relativistic, and the speeds are small. The

spin accounting would lead to the need for multiparticle

consideration, and the need to introduce only the vector-

potential complicates the description of the barriers.

5. Effects associated with high current
density

Experiments on simple cathode−anode structures

showed the possibility of obtaining densities up

to 1015 A/m2 [17], i.e. almost up to limit. When limit

currents are reached, there are a number of negative effects.

The tunnel current flows through the structure and closes

from the anode through the power supply to the cathode.

We assume that there is no grid current. In the extraordinary

majority of works relating field emission from metals the

electrons in the metals are considered as free electrons with

dispersion E = p2/(2me). This is associated with very wide

conduction zone of about EF + W0, which is usually larger

than 10 eV, while the electron accelerated from the Fermi

level can acquire energy up to several eV without significant

distortion of the dispersion. The internal field accelerating

the electron is EJ = J/σ . Substituting the conductivity

of copper, we obtain at J = 1013 A/m2 the value

EJ = 1.75 · 106 V/m, which, at the free path length 40 nm

will lead to acquired energy of 0.07 eV. Therefore, the

effects associated with the nonparabolic nature of the

dispersion, i.e. with a complicated dispersion law and the

structure of the Fermi surface, can be ignored. Thus, the

main effect of a strong current is to change the configuration

of potentials, which can be corrected by the potentials

increasing on the electrodes. The effects of potentials

change were considered, for example, in papers [35,36].
The most negative effect during resonant tunneling is the

cathode heating due to the Nottingham effect and due to

the Joule heat. The first one is very strong, since the

transparency regions can be significantly below the Fermi

level. Besides, it is almost surface, since heat is released

approximately at the cathode−vacuum boundary along the

free path length. The free path length is related to the

pulse relaxation, and the heat release due to the electron

transition from the Fermi level to the hole formed due

to tunneling occurs at the free path lengths by energies,

which can reach 100 nm. A possible solution of this

problem are low and ultralow temperatures, as well as ultra-

pure cathode materials. In this case, the free path length

increases by orders of magnitude, i.e., the effect becomes

to volumetric, but it exists even at ultralow temperatures.

Besides, the free path length increasing makes it possible to

make more extended multielectrode structures. A nanosized

structure can be considered flat if its transverse dimensions

are 2−3 orders of magnitude larger. It is advisable to place

such a structure on a massive metal base with even larger

transverse dimensions — thermostat. Stable sources are

important for emission electronics. The thermostable mode

for a given current can be calculated quite well by selecting

the length and difference of surface temperatures of the

cathode and thermostat.

Conclusion

Thus, the paper shows the possibility to achieve at

average electric fields of about several V/nm in one-well and

two-well resonant-tunneling structures of current densities

by 1−2 orders of magnitude higher than those achievable

in much stronger fields. Specific triode nanostructures of

field emission electronics are proposed, in which the said

profiles of the quantum potential and emission currents are

realized. The work of structures is based on the appearance

of metastable levels in the energy range below the Fermi

energy on the cathode, and their creation requires the use

of nanotechnologies to make electrodes of cathode, grids

and anode at distances of about 10 nm. Two-well structures

with a dual grid are more promising. The use of grids

in microstructural emitters is a solved problem even for

nonplanar structures [37]. In flat nanostructured emitters

on the grids a constant potential must be provided, and

the grid itself must be very strong. Promising materials

for grids can include multilayer graphene and woodpile-

like structures made of carbon nanotubes with a metallic

type of conductivity. Such structures can be fixed by laser

welding. They are very durable and have high thermal

conductivity. At grid size of several nm, electron scattering

can be neglected.
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