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Radiation from a Moving Bunch of Particles with a Variable Charge
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We study the electromagnetic radiation of a charged particle bunch with small size moving at a constant velocity
and having a variable charge. The environment medium is considered to be isotropic and homogeneous, and it may
have frequency dispersion, but not spatial dispersion. The general solution of the problem is obtained. The main
attention is paid to the case when the bunch charge, starting from a certain moment, decreases exponentially with
time. The saddle point method is used to obtain the approximate expressions for the field components that are
valid in the wave zone. The energy characteristics of the excited spherical wave are studied and compared with the
case of a decelerating charge. In the case of excitation of Vavilov—Cherenkov radiation, we obtain the asymptotics
which are valid in the entire wave zone, including the region in which the field cannot be divided into the spherical

and cylindrical waves.
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Introduction

A huge number of works are devoted to the problems
of electromagnetic radiation of charged particles and
their beams (bunches) in material media, among which
are monographs [1-5], reviews [6,7] and textbooks [8].
Usually in such problems it is assumed that the number of
particles in the beam does not change during its motion.
An exception is the problem of radiation in dielectric
waveguide structures, when the beam moves in a vacuum
channel in a medium: in such a situation, the dynamics of
the beam is often taken into account, associated with the
effect of the radiation of the beam particles on them [9).

However, if the beam moves directly through the
medium, then its particles interact with the particles of the
medium, which leads to certain changes in the beam. In
more or less dense media, this interaction is the main mech-
anism that determines the beam evolution. Various variants
of this evolution have been described in many monographs
and articles (see [10-14] and references therein). Depending
on the mass of the particles, their energy, and the density
of the medium, both a rapid deviation of particles from
a rectilinear trajectory, leading to beam scattering, and an
almost uniform motion of a relatively stable beam over most
of the trajectory, followed by the deceleration of most of its
particles over a relatively short segment of it, are possible.
The last variant is typical for beams of protons and ions,
decelerating mainly in the region of the known ,Bragg
peak® [10-12]. Because of this feature, beams of heavy
particles have found wide application in medicine (proton
and ion therapy [10-13]).

As the beam moves through the medium, the number of
particles in it changes. As a rule, it decreases: the particles

of the beam are decelerated, actually turning from moving
to stationary. It is of considerable interest to study the
radiation of such a beam as a whole. It will be generated
at wavelengths exceeding the size of the beam itself (for
real beams, we are usually talking about wavelengths of
about a millimeter or more). Of course, this radiation
can be considered as bremsstrahlung of individual beam
particles. However, from the point of view of macroscopic
electrodynamics, it seems more natural from the very
beginning to consider the beam as a whole, setting one
or another law of its evolution.

The present work is devoted to studying the radiation of
such a bunch of charged particles with a variable charge.
The main attention will be paid to the case when the
bunch charge was constant up to a certain moment of time,
and then its exponential decrease occurs. In this case, to
simplify the analysis, the environment will be considered
homogeneous and unlimited. Such a model looks natural
for a beam of heavy particles, since after entering the
medium it moves almost without changes for quite a long
time (the region of the Bragg peak is quite far from the
boundary of the medium). For a beam of electrons that
quickly lose energy after entering the medium, such a
model can be implemented if the beam first moves in a
vacuum channel in the medium, and at its end flies into the
medium. If the channel diameter is small compared to the
wavelengths under consideration, then the channel will not
have a significant effect on the radiation [7] (with respect to
such waves, the medium can be considered homogeneous
everywhere).

The described model problem makes it possible to
analyze the effects associated with a change in the beam
charge, as well as the Vavilov—Cherenkov effect. In this
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case, we digress from the transition radiation that arises at
the interface between media. Therefore, we can analyze the
radiation associated with a change in the beam charge in its
»pure“ form: this radiation is unique if the beam velocity is
less than the velocity of the waves in the medium (i.e., there
is no Vavilov—Cherenkov radiation). However, initially we
will not rule out the possibility of generating the Cherenkov
radiation, and then we will consider two modes of charge
motion — without this radiation and with it.

1. General solution of the problem

We will analyze radiation with wavelengths significantly
exceeding the particle bunch size. In this case, it can
be considered as a point charge, the value of which q
depends on time. The charge velocity v will be considered
constant. To satisfy the continuity equation divj + g—’: =0,
it is necessary to introduce one more ,,additional“ immobile
source with a charge density p;, which is a ,trace“ of the
immobile charge. Combining the z axis with the bunch
motion line, the total charge py, and current js, densities can
be written as follows:

Ps =P +P1,
p=q(t)s(x,y,z —t),
__dq(t’)
=" 4r t/:Z/VS(X, y)o(t —z)
- Q)5 et - 2), 1)
dz
iz = =vpe,.

By substituting these expressions into the continuity equa-
tion, one can easily verify that it turns into an identity.

Physically, the formation of the ,trace“ means that the
particles of the beam stop due to the interaction with the
particles of the medium, i.e. from moving ones turn into
stationary ones (as a result j; = 0). In this case, from the
point of view of macroscopic electrodynamics, a detailed
description of this process is of no importance. For example,
this can be the recombination of beam electrons with ions
of the surrounding plasma, the stopping of particles due to
collisions with neutral molecules, etc. What is important is
the very fact of the formation of a filamentous charge in
space, ,additional“ in relation to those charges that existed
in the medium earlier (if any).

We consider the environment to be linear, homogeneous,
stationary, isotropic and not having significant spatial
dispersion (however, it may have frequency (temporal)
dispersion). Let us recall some properties of such media.
Such a medium is characterized by frequency-dependent w
dielectric (¢) and magnetic (u) permeabilities, and its re-
fractive index is equal to n = /ey, and we will assume that
Imn > 0. Let us assume that in the range of propagating
waves the real parts of both permeabilities are positive:
e >0, u’ > 0 (thereby we exclude from consideration the
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so-called ,left“ media, for which these values are negative).
We will also consider the environments to be “passive®,
i.e. incapable of generating electromagnetic energy. In such
media, the signs of the imaginary parts of the permeabilities
e”, u” coincide with the sign of the frequency, and accord-
ingly sgn(Imn?) = sgn(e’u” + &"u') = sgnw. In the case
of relatively small absorption (and this is the situation we
are interested in), we have Ren? = &'y’ — &’u" ~ &'y’ > 0.
Taking into account the imposed condition Imn > 0, we
see that the quantity n is either in the first or second
quadrants of the complex plane, depending on the sign of
the frequency, ie. sgn(Ren) = sgnw. Finally, we will be
mainly interested in the case of negligible absorption when
e, u’ — 40 sgnw, N — Ren, sgnn = sgnw.

When solving the problem, time Fourier transforms will
be applied in the form

_ L Ji i wt _ 7 iwt
Fo=5- | FE"dt F() = [ Rt (2)

Since for real functions on the real frequency axis the
relation F_,, = F} is true (the asterisk means complex con-
jugation), we will further consider only positive frequencies
o > 0. The corresponding spatial Fourier transforms have

the form
1

_ - —ikr43
Fox = PE /R3 Fo(r)e " dr,
Fo(r) = /R} Fo.x€ dk. (3)

Let us use the vector A and scalar ® potentials, in
terms of which the field components are expressed by the
formulas E = —% % — V&, B =rotA (Gaussian units are
used). When applying the Lorentz gauge, the time Fourier
transforms of the potentials obey the Helmholtz equation:

A(u -1 .(u
(A+k2){%} = _4n{:_1 Zw}, (4)

where k = wn/c.

We will solve equation (4) by the Fourier method. For
the space-time Fourier transforms of the charge and current
densities, we have

1 vk, .1 Dloe (5)
Prok = (2ﬂ)3w+i0q9’ Jok = 2n) Jcez,

where go = 5= [q(t)e’dt, @ = w — vk,. Note that the
term ,4i0“ in the denominator provides the necessary
detour around the pole, which gives expression (1) for px.
Writing the potentials A,, ®, as inverse Fourier integrals,
substituting them into equations (4) and equating the
integrands, we obtain fourfold Fourier transforms of the
potentials. After passing to a cylindrical coordinate system
both in the physical space (r,®,z) and in the space of
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wave vectors (K, @k, K;), for the time Fourier -images of
potentials we get

{Aw} ! 7Odk /Oodk 7d { ub }
- —2 4 r ng kzv
) Ly e

« quQ exp(i k,z +ikr COS(QDk - (P)) (6)
k? + k2 — k2 ‘

The integral over ¢ is [15]:
2w

/exp(ikrr cos(px — @))dek = 22do (K1),
0

where Jo(&) — is the Bessel function. To integrate over ki,
we first need to reduce the integral over a semi-infinite loop
to an integral over an infinite loop:

oo

r = =

keHY (ko)
k? +kZ — k2 2
0

o dke. (7)
r

€700
where Hél)(é ) — is the Hankel function, and

Kk =4/k2 —k2

VA

— \/w2c—2(8/[u/ _ 8”/1”) _ k% + iw2c—2(81‘u// + 8”‘u’).

(8)
For what follows, it is convenient to define the radical (8)
by the rule Imk > 0. Taking into account that in the range
of propagating waves & >0, u’' >0, ¢u —¢&'u” >0,
and sgne” = sgnu” = sgnw, we see that the value under
the radical in (8) is located in the first (for w > 0) or
fourth (for w < 0) quadrants of the complex plane. So
the requirement Imx > O results in sgn Rex = sgnw. This
rule also determines the sign « in the limiting case of a
nonabsorbing medium.

Since r > 0, the integration contour in (7) can be
completed to a closed semicircle of infinite radius located
in the region Imx > 0. After that, the integral (7) is easily
calculated by calculating the residue at the only pole k; = «.
As a result, we obtain the following expressions for the
Fourier transforms of the potentials:

{gw}‘iz/ { Mﬂ }%Hé%r)eikﬂdkz- 9)

5o (w+i0)e

Calculating the Fourier transforms of the field compo-
nents, we find

+oo
_ v kzx (1) ik,z
E = 2 /qg(eriO)EH1 (kr)e"*dk,,

+o0
1 / vek? — w?n’p
qg—z_ 2 TP

% oo Mo (ke

Eza) =

— 00

) +0o0o
Hyo :% / darH ) (er )& 2 dk,. (10)

Note that the branch point k, =k of the function
k(kz) = \/k? —kZ lies above the contour integration, and
k; = —k — below. We emphasize that the obtained
expressions are the components of the full field, ie. the
field of a source consisting of a moving variable charge and
its filamentous ,,trace®.

2. Asymptotic calculation of field
components

We assume that at negative times the bunch charge was
constant (g = (o), and starting from the moment t =0
it decreases. The process of charge ,,melting“ can occur
according to different laws. We assume that for any small
time interval the bunch loses the same fraction of charge,
ie. dq/dt =q/7, where 7 = const. Solving this equation
gives

o,
t =
a) {QOet/T,

where ©(&) — is the Heaviside step function. Experimental
data show that the exponential law of charge decrease is
close to that which takes place, in particular, for proton and
ion beams [10,11]. The Fourier transform of function (11)
is equal to

t<O0

L= o = DlO(-D +OWe], (1)

[ 1 T
G = to (5(9) T 2@ 1i0) +%1_i9r>' (12)
Let us calculate the integral using the example of the

component E;. Substituting (12) into (10), for the Fourier
transform of E;, we obtain

iqo S (1) iwz/v iqu
Erp= —2-H 0, 1
O pe ! (sr)e + 2(w +10)e (13)

+oo
1 T i (1) (op \@ike
' = / kak (1 “iar S2+i0) Hy " (er Je ™ dkz,

(14)
where Q = w —vk;, s=+/w2v-2(n?B2 —1) (Ims > 0).
To analyze the integral (14), it is expedient to introduce a
new integration variable y: k; = kcosy, ¥ = ksiny, as well
as spherical coordinates R, 0 (r = Rsin0, z = Rcos0). In

this case, the branch points in the integrand are eliminated,
and the integral takes the form

| = k—3 ! ’ cos x sin’
T2 ) \(@+i0)  T-iqr ) A
C

X Hgl)(kRsinesinx) exp(ikR cos 0 cos x )dy, (15)

where the contour C is shown in Fig. 1.
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Figure 1. The original integration contour C and the fastest

descent I' contour on the plane x for w > 0.

An approximate calculation of this integral in the wave
zone (|k|R>> 1) can be carried out using the saddle point
method. The method of this calculation is standard [16],
so we will focus only on the main points. First, it is
advisable to transform the original integration contour to
the fastest descent contour I' (Fig. 1), after which, using
the asymptotics of the Hankel function, we can write the
integral in the form

| :/f(x)eichos(x—B)dX’ (16)
r

k3 cos x sin? x

where f(x) = e*i3”/4( i

T

v/ 273KR sin 6 sin y Q+i0 l_iQT)'
The integrand has a saddle point y = 6. When transforming
the initial contour C to the contour I', the poles of the
function f(x) may intersect. The contribution of the pole,
defined by the equation iQ27 = 1, decreases exponentially
with distance, i.e. is not a part of the radiation field (we
do not take into account such contributions below). The
pole defined by the equation €2 = 0 is located at the point
X = xo = arccos(1/(nB)). For nB < 1 its contribution is
exponentially small, but for n8 > 1 it is significant. After
an approximate calculation of the integral (16) by the
saddle [16] method, taking into account the contribution
of the pole ), we obtain

f (9) ei kR+3im/4

|~ 27
KR|d2®(x)/dx?|;—o|

wS 2 R
+ F\/;G)(XO - 0)0(nB — 1)e|a)z/ Hisrtin/4 (17)

This result is true when the function exp(ikRcos(y — 6))
on the steepest descent contour changes rapidly compared
to the function f (x). This condition is satisfied if the saddle
point is far enough from the poles of the integrand, ie.
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|[KR(6 — x0)| > 1. By substituting (17) into (13) using the
Hankel function asymptotics in (13), one can easily verify
that the second term in (17) compensates the first term
in (13) in the region 6 < xp.

The Fourier transforms of the E; and H,, components are
calculated similarly. As a result, we obtain a field in the
form of a sum of spherical (I) and cylindrical (II) waves:

E=E +E', H=H +H" (18)
E, — /€ cos 0
El, t = qok[;TSlnG Vu/esinf
HL, -1
1 n iT ﬁ
w(l —nBcosh)  1—iw(l—nBcosh)r| R’
(19)
Erl) (Be)~!
Ell = %8 —cs(we) !
HY, 1

" exp(iwz/v +isr —im/4)
2msr

0(0 —x)0(ns —1). (20)

The spherical wave (19) is due to the process of reducing
the charge of the bunch and the simultaneous formation of a
Hrace. The cylindrical wave — is the Vavilov—Cherenkov
radiation. As expected, it exists only when the charge
velocity exceeds the phase velocity of the waves in the
medium, ie. provided v > c/n, or nB > 1. According to
Lnon-uniform® asymptotics, this wave exists only in the
region 0 > xo (Fig. 2). However, it should be kept in
mind that for |KR(6 — xo)| ~ 1 the obtained asymptotics
are inapplicable — in this region, the separation of the
wave field into cylindrical and spherical waves is impossible.
More precise (,,uniform®) asymptotics allow us to describe
the behavior of the field in this transition region as well (see
Sec. 4).

/ K

Ny

.

Figure 2.
radiation.

Region of existence of the Vavilov—Cherenkov
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Let us briefly talk about the role of the two parts
that make up the source: it is the point charge itself
with densities p j, and its ,trace® with densities pj,
Jji = 0. First of all, we note that the division of the field
into two contributions from these parts does not make
much physical sense. The reason for this is that the
law of conservation of charge holds only for the total
source, but not separately for the point charge and ,trace®.
Therefore, if we consider such sources separately, then the
system of Maxwell’s equations becomes unsolvable (the
number of independent equations exceeds the number of
unknowns).

Nevertheless, one can formally single out in strict expres-
sions (10) and in asymptotics (18)—(20) the contributions
of the charge itself and its ,trace”. Analysis shows that
in the electric field of a spherical wave (19) the charge
and ,trace” make comparable contributions (despite the
fact that ,trace” is not a point object). This is explained
by the fact that the rate of change of the charge and
its ,trace”“ is determined by the same parameter 7. In
particular, at w7 > 1 both components of the electric field
are proportional to (w7)~! (like the entire field of the
spherical wave (19)). At the same time, ,trace does not
give any addition to the magnetic field, which is natural due
to the absence of charge movement in it. We emphasize that
the ,,correct” asymptotics (19) (transverse spherical wave)
is obtained only when both parts of the source are taken
into account. As for the cylindrical wave (20), it can be
shown that ,trace® does not affect it (physically, this is
also due to the absence of movement of charges of the
Hrace”).

3. Spherical wave

In spherical coordinates R, 6, ¢ the spherical wave (19)
has only two nonzero components:

_ Cou exp(ikR)

Lo Hg
EH“‘\/ZHW 21c R

Bsin6
(1 —nBcosh)[1 —iwr(l —nBcosh)]’ (22)

F(8, 0, w), (21)

F(B,0,w) =

As expected, we have obtained a transverse wave, which
is ,,quasi-plane, since the radius of curvature R of the
constant phase surface is much greater than the wave-
length.  The factor F(B, 60, w) determines the depen-
dence of the spherical wave amplitude on the bunch
velocity, the observation point angle, and the considered
frequency.

The angular distribution of the energy of a spherical wave
can be written as

dw c T

— =R~ [ E!H'dt

daQ 471/ 0"

> C I it | =o't
_Rg/dt/nge "“dw/H(pw,e lotq e’

= cR? / E,Hpodo. (23)

0

As we can see, the spectral-angular density of radiation
energy is determined by the expression

d’w — cRE! H" —cR? SE' 2 _ a5 \/_3F2
dew_ 0w "o — \/;l 9a)| _4JTZC 8/J| |’
(24)

FP B2sin’ 0

= (25

(1 —nBcosh)?[1 + w?r2(1 — nBcos0)?] (25)

If e=pu=n=1 and 7 =0, ie. particle moves in

vacuum and instantly loses all charge, then the spectral-
angular density of radiation energy is equal to

d?w @@ psin’0 (26)
dQdw  4a2c (1 — Bcosh)?’

This expression coincides with the spectral-angular energy
density of the radiation of an instantly decelerating charge
in vacuum (it can be obtained from the general expression
for an arbitrarily moving charge given, for example, in [17]).
Thus, the case of an instantaneously vanishing charge is
equivalent to the case of an instantaneously decelerating
charge, which is quite natural.

The total angular density of radiation energy is obtained
by integrating expression (24) over frequency. If the
frequency dispersion of the medium is neglected (ie., ¢
and u are assumed to be frequency-independent), then it is
easy to obtain the following result:

aw [ dw P
— = do = —2—/eu3F
dQ dQdw C 7~ 8acr VO
0
25in* 0
Fp=Pon0 (27)
|1 —nBcoso|

Examples of dependences of |F| and Fy on angles for
different values n and 8 are shown in Fig. 3 (on a logarithmic
scale). The left graphs correspond to the case of vacuum,
and the right graphs correspond to the case of a medium
for which n=2. As the charge velocity increases from
zero to ¢/n, the maxima of both quantities increase and
shift towards smaller angles, tending to 6 =0 at v — c/n.
In the case of v > ¢/n for 6 — yp, the quantities |F| and

Technical Physics, 2022, Vol. 67, No. 9
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Figure 3. Dependence of Ig|F| at w7 =1 (top) and lgFy (bottom) on the angle 6 (deg). On the left — the case of vacuum, on the
right — the case of a medium with permeabilities € = 4, u = 1. Values 8 are indicated near the curves.

Fo increase with the angle 6 until 8 < xp, and decrease at
0 > xo. For 6 — o, both quantities formally tend to infinity,
but this is due to the inapplicability of the asymptotics
(18)—(20) in the vicinity of the angle 6 = xo.

It is interesting to compare the radiation in the case
under consideration with the radiation of a charge whose
magnitude does not change, but it is decelerated according
to an exponential law with the same characteristic time 7.
The speed of this charge is

B, t <O,
Po(t) = (28)
pe Y7, t>0.

Let us make such a comparison for the case when the
electrodynamic characteristics of the medium are practically
indistinguishable from the vacuum ones (¢ = u = 1). In the
case of a charge decelerating in vacuum, the angular density
of radiation power is determined by the formula [17]

dPp _ dW, ¢ <%>2( sin’ 6 (29)

dQ  dQdt  4xc \ dt 1 —Bpcosh)®”
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Integrating this expression over time, taking into account
(28), we obtain the total angular density of radiation energy:

W

dQ  8mcr
- B2 sin* 6 1 , ,.5-pcosd
=207 (14 g2 P
0= T—Boosd) \! 7107 ° T goose )~ 0

Examples of the dependences of IgFy and IgF, on the
angle O at different speeds are shown in Fig. 4. At a
nonrelativistic velocity (8 < 1), the contribution to (30)
practically makes only the first term, and in this case
the exponentially decelerating and exponentially decreasing
charges radiate approximately the same way. At § ~ 1, due
to the second term in (30) and a different degree of brackets
in the denominator, the radiation of the decelerating charge
significantly exceeds the radiation of the decreasing charge
at acute angles 6. At S~ 1, the maximum for the
decelerating charge is much larger than the maximum for
the decreasing charge.
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' ' ' The velocity dependences of IgW and lg\W, are shown
+7~.09 --1gF, in Fig. 5. As we can see, at a nonrelativistic velocity

0 45 90 135 180
0

Figure 4. Dependence of IgFy (solid curves) and IgF, (dashed
curves) on the angle 0 at different velocities (shown on the graph)
in vacuum.

T T T T
4 - 1e !
— lgw, /'

4 1 1 1 1

0 0.2 0.4 B 0.6 0.8 1.0

Figure 5. Dependence of IgW (solid curve) and IgW, (dashed
curve) on the velocity B in vacuum.

The total radiation energy is obtained by integrating the
angular energy density:

27 4
daw .
W-/d@/ﬁsmede.
0 0

For an exponentially decreasing charge in vacuum, it is
equal to
z - 2 1 —
A )
1-p2 B 1+p
For a charge exponentially decelerating in vacuum, it is
easy to obtain

- q2 N _ 4[32 ﬂ21+3ﬁ2
W= g V=5 (1 ) e

" der

(31)

(B < 1), the decelerating and decreasing charges radiate
approximately the same way: Wp, ~W =~ %. In the
ultrarelativistic case, when y = (1 —82)~/2 > 1, with an
increase of p the total radiation energy grows proportionally
to p? for a decreasing charge and y° for a decelerating one.
Thus, in the case of a large Lorentz factor, the decelerating
charge radiates much more efficiently than the decreasing
one.

Concluding this section, we note that in the case of a
bunch of particles of size a, the radiation will be comparable
to the radiation of a point charge if ka < 1, while for
ka > 1 it will be much weaker. At the same time, according
to (25), the range of radiation frequencies can be estimated
by the inequality w7 < 1. Thus, for real bunches, the
radiation frequency range is bounded from above both
due to the finiteness of the charge change time and due
to the finiteness of its size: @ < min(1/7, 1/7,), where
Ta = ha/C — the time during which the radiation travels the
distance a. If 7 > 7,, then the charge can be approximately
considered as a point charge in the entire significant range
of radiation frequencies. Otherwise, the frequency range is
limited due to the finite size of the bunch.

4. Field asymptotics valid for all viewing
angles

To describe the behavior of the field in the entire wave
zone kKR > 1, including the range of angles 0 ~ xo, one
must use the uniform asymptotics of the integrals. This
asymptotic behavior is valid for any location of the pole
X = xo with respect to the saddle point x = 0, including
0 = xo. The coincidence of the pole with the saddle point
corresponds to the conditional boundary of the region of the
Cherenkov radiation, on which the non-uniform asymptotics
(18)—(20) suffer a discontinuity. ~Uniform asymptotics
correctly describe the field everywhere in the wave zone,
including the given boundary itself and its neighborhood.

Without stopping on the transformations that are carried
out according to the well-known procedure [16], we write
down the final results valid for kR > 1:

[ QoS exp(iwz/v +isr —im/4)

Bro =gt + 3¢ 2ssr 00w,

qw(é;ﬁznzﬂ% exp(iwz/v 2+ﬂi;r “17 60— ).

Hypo = %Ir + ?exlo(iwz/v ;ﬂissrr - i”/4>®(9 — Xo)-
(33)
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Figure 6. Dependence of the Fourier transform of the field Hy (in units of gow/c?) on z (in units of ¢/w) for e =4, u =1, n=2.
Left column: B = 0.6; right column: 8 = 0.99. Top row: 7 =0, r = 10c/w; middle row: wr = 10, r = 10c/w; bottom row: wr = 10,

r =100c/w.

Here I is given by
It ~ 2ia/m7sgn(Imb)Q (—sgn(Imb)i bv kR)
x exp(ikRcos(xo — 0))

N \/% (V241 () + 2 ) explikR),

+0oo

[ e*dx, and the

(34)

where b = €7/4y/2sin (9_2—)(0)’ Qly) =

y
role of f(x) is played by one of the following functions:
f

frEX; OBk sin’ x

2% 0= "7\ 22kRsin0

fn(x)

1 T
% {i(u(l —nBcosy) + l—iwr(l - nﬁcosx)]

e7/4ncos x
x { e "/4nsiny
ei]t/4
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Accordingly, as a it is necessary to substitute in (34) the
amount of residue a = a, ;,p = Resf, 2 n(x):
X=X0

ar €7/*n cos xo
0 Bk e ‘
a, b — —doPKVSInXO RUZSY SIX_ ) e-in/4nsin o (36)
vy 2akRsin 0 )
an eln/4

It is easy to show that under the condition |b|vkR > 1,
ie. |y —0|VKR>1, the results give ,non-uniform“
asymptotics (18)—(20).

In the case when the pole coincides with the saddle point
(0 = x0), expressions (33) take the form

ivTgo k? sin(20) e'kR

E. B =— i
e 47 bI0) R
n QoS exp(iwz/v +isr —im/4)
2V 2mve NEd ’
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ivTqgo k¥ sin? 0 e'kR
Ero= o B T2

27 W R

Qow(1 — ?B2) exp(iwz/v +isr —ix/4)

2/ 2mc2ef? NEd ’
_ i,Bqu ) ei kR
Hpo = 7 k sin 6 R

n Qos exp(iwz/v +isr —im/4)
2V/27c VST '

As we see, for 0 =y, the amplitudes of the cylindrical
wave components are equal to half the amplitudes of the
Cherenkov radiation wave components (20). Thus, the use
of uniform asymptotics provides a correct description of
the transition zone between the region illuminated by the
Vavilov—Cherenkov radiation and the region where it is
absent. This transition zone has an angular width of the
order of AO ~ 1/(kR).

Examples of the behavior of the Fourier transform of the
full field H,, are shown in Fig. 6. The left plot corresponds
to the case B = 0.6, and the right one — to the case
B =0.99. The conditional boundary of the region of the
Cherenkov radiation is shown at 7 = 0. For 7 # 0 this
boundary shifts towards positive values of z. Recall that
the origin of coordinates is located at the point where the
bunch of particles begins to lose charge. Therefore, taking
into account the decrease in the charge by e-times over
a finite time 7, the boundary of the Cherenkov radiation
region can be more accurately determined by the expression

0 = arctan (m)

As expected, the field is a continuous function of the
coordinates everywhere. Comparing the middle and lower
figures (for § = 0.6 and 8 = 0.99), we see that if z < 0,
then the field amplitude at r = 100c/w is about 3 times less
than at r = 10c/w (in this region the main role is played
by the Cherenkov radiation, whose amplitude decreases as
1/4/1). As z grows, starting from some value of z, the
field decreases. In this case, the observation point falls into
the transition zone between the region of the Cherenkov
radiation and the region where it is insignificant. For
sufficiently large values of z, practically only a spherical
wave remains, decreasing as R™! = (r? 4 z2)~1/2,

(37)

Conclusion

In this work, the electromagnetic field of a bunch
of charged particles of small size moving at a constant
speed and having a variable charge is studied. In doing
so, it was taken into account that a filamentous ,trail“,
consisting of immobile charges, is formed behind the
bunch. It was assumed that the environment is isotropic
and homogeneous, and it may have frequency dispersion,
but not spatial dispersion. The general solution of the
problem is obtained. The main attention is paid to the
case when the value of the charge, starting from a certain
moment, decreases exponentially with time. The saddle

point method is used to obtain asymptotic expressions for
the field components that are valid in the wave zone.

For a spherical wave excited by a bunch, it is shown,
in particular, that in vacuum the spectral-angular and
angular radiation energy densities have a maximum at
an acute angle, which decreases with increasing velocity.
A comparison with the case of a decelerating charge is
made. At a nonrelativistic velocity, the radiation energies of
the decreasing and decelerating charges are approximately
equal, and at an ultrarelativistic velocity, the radiation energy
of the decelerating charge significantly exceeds the radiation
energy of the decreasing charge.

In the case of charge motion in a medium, in addition to
a spherical wave, a cylindrical wave (Cherenkov radiation)
can be excited in a certain frequency range, which exists
in a limited region of space. The division of the field into
spherical and cylindrical waves is impossible in the vicinity
of the conditional boundary of the Cherenkov radiation,
where a correct description of the field is given by uniform
asymptotics. Graphs of typical dependences of the Fourier
transform of the field on the longitudinal coordinate are
given for various parameters of the problem.
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