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1. Introduction

The propagation of elastic waves in various media is ac-

companied by a variety of nonlinear acoustic effects (NAE):
nonlinear attenuation and phase velocity changes, secondary

wave generation at frequencies of combinational harmonics,

waveform distortion, etc. In micro-inhomogeneous solids

with strong nonlinearity, NAEs appear more intensively

(than in homogeneous weakly nonlinear media), and their

patterns are determined by the nonlinearity of the equation

of state of the medium, i.e. dependence σ = σ (ε), where σ

and ε — stress and strain. In turn, the equations of state

of micro-inhomogeneous solids are determined by nonlinear

defects in their structure (dislocations, grains, cracks, etc.)
and are characterized by various types of non-analytic

nonlinearity: elastic, hysteresis, and inelastic. Many poly-

crystalline metals, alloys and rocks are classified as strongly

nonlinear micro-inhomogeneous solids. In connection with

the widespread occurrence of such materials, theoretical

studies of NAEs in micro-inhomogeneous media with

different types of nonlinearity are relevant and necessary

when analyzing the results of relevant experiments carried

out to establish the physical mechanisms of anomalously

high nonlinearity of such media and to obtain their dynamic

equations of state.

When intense elastic oscillations and waves are excited

in polycrystalline solids, dislocation amplitude-dependent

internal friction (ADIF) occurs, which leads to nonlin-

ear damping decrement (DD) and elastic modulus defect

(EMD) [1–11]. The ADIF phenomenon is explained within

the framework of hysteresis equations of state. The results

of experimental studies show that as the amplitude of

the elastic oscillations in some metals (copper [5,12,13],

aluminum [14,15], indium [16,17], zinc [18], lead [19])
increases, saturation of hysteresis DD and EMD occurs.

(Generally speaking, hysteresis behavior is characteristic not

only of the mechanical properties of polycrystals, but also of

the magnetic and dielectric properties of ferromagnets and

ferroelectrics, with saturation effects [20,21] also occurring

for them. The nature and physical mechanisms of the

different hysteresis are different, but their phenomenological

description contains much in common).

Two basic types of hysteresis are used to describe the

effects of ADIF in polycrystals: elastic (or breakaway hys-

teresis) and inelastic (frictional or plastic hysteresis) [22,23].
For elastic hysteresis — σ (ε = 0) = 0, and for inelastic —
σ (ε = 0) 6= 0. Examples of elastic and inelastic hysteresis

are the Granato−Lücke hysteresis [3] and the Davidenkov

hysteresis [1] respectively. Generally speaking, the two

hysteresis accounts for the effects of ADIF — the decrement

in damping and the defect in modulus of elasticity, but these

hysteresis have some differences. They appear in the study

of patterns of ADIF effects and the generation of higher

harmonics arising from the propagation in hysteresis media

of intense initially harmonic waves (IHW). Thus, one of

the main issues in the analytical description of ADIF is the

adequate choice of the hysteresis equation of state for the

solid under study. Although the use of hysteresis equations

to describe the effects of ADIF in polycrystals is not in

doubt, the adequacy of this choice presents a rather difficult

and topical problem. However, based on the analysis of

the amplitude dependences of the NAE experimentally

determined for a particular hysteresis material, the type of

hysteresis for this material can be determined. This requires

knowledge of the patterns of NAE in solids with different

types of hysteresis, including saturation effects ADIF.
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In this paper, theoretical and numerical studies are carried

out on the NAE arising from IHW propagation in hysteresis

solids with ADIF saturation. Two types of quadratic hystere-

sis are considered here: elastic and inelastic. A comparative

analysis of the patterns of nonlinear effects has been carried

out and the characteristics of nonlinear quasi harmonic

waves in such media have been determined: amplitude-

dependent losses and changes in propagation velocity as

well as amplitudes of second and third harmonics have been

determined. Based on the analysis and correspondence of

analytical and experimentally determined NAE amplitude

dependences the method of hysteresis type determination

for polycrystalline solids has been proposed.

2. Hysteresis equation of state for solid
bodies with saturation ADIF

The nonlinear equation of state for a solid is given in the

following form:

σ (ε) = E[ε − f (ε)], (1)

where E — elastic modulus, f (ε) — nonlinear (here
hysteresis) function, | f (ε)| ≪ |ε| < |εth| ≪ 1, | f ε(ε)| ≪ 1,

|σ | < |σth|, σth = Eεth — the maximum stress (limit of elas-

ticity) beyond which irreversible plastic deformation occurs

in a solid; for many materials |εth| > 10−4−10−3 ≪ 1.

Experimental studies of ADIF for longitudinal elastic

waves containing compression (ε < 0) and tension (ε > 0)
phases show that at not very large strain amplitudes,

when there is no saturation of ADIF effects, for many

polycrystalline metals (e.g., copper [12], zinc [18], lead [19])
and rocks (granite, magnesite, limestone) [24] — f (ε) ∝ ε2.

Such studies also show that for these polycrystals the

amplitude-dependent EMD and DD are determined by

different nonlinearity parameters and, therefore, for lon-

gitudinal stresses σ and strains ε the hysteresis in the

σ = σ (ε) relation consists of square, but generally speaking,

asymmetric branches.

For an elastic quadratic hysteresis similar to the Granato–
Lücke [3] hysteresis, and accounting for EMD and DD

saturation, the function f (ε) is

f (ε) =
1

2(1 + γ0|ε|)

×



























γ1ε
2, ε ≥ 0, ε̇ > 0,

−γ2ε2 + (γ1 + γ2)εmε, ε ≥ 0, ε̇ < 0,

−γ3ε2, ε ≤ 0, ε̇ < 0,

γ4ε
2 + (γ3 + γ4)εmε, ε ≤ 0, ε̇ > 0,

(2)

where εm — strain amplitude, γ0,1−4 — dimensionless

nonlinearity parameters,γ0 ≥ 0, γ1 + γ2 ≥ 0, γ3 + γ4 ≥ 0,

|γ1−4εm| ≪ 1. (Generally speaking, γ1 6= γ2 6= γ3 6= γ4.)
In Granato−Lucke’s theory, polycrystalline hysteresis is

associated with periodic detachment of dislocations from

impurity atoms (and subsequent attachment to them) under

the action of an external alternating stress.

For an inelastic quadratic hysteresis similar to the Davi-

denkov hysteresis [1], and accounting for EMD saturation

and DD, the function f (ε) is

f (ε) =
βεmε

1 + α1|ε|
+

1

2(1 + α2|ε|)

×
{

β1ε
2 − β1+β2

2
ε2m, ε̇ > 0;

−β2ε2 + β1+β2
2

ε2m, ε̇ < 0,
(3)

where α1,2, β, β1,2 — nonlinearity parameters,α1,2 ≥ 0,

β1 + β2 ≥ 0, |β|εm ≪ 1, |β1,2|εm ≪ 1. (Generally speaking,

α1 6= α2, β 6= β1 6= β2.) At α1,2 = 0 and β = β1 = β2 equa-

tions (1), (3) describe a symmetric quadratic Davidenkov

hysteresis (to be precise in notation, it coincides with the

Rayleigh ferromagnetic hysteresis [21,25]). In equation (3),
the first (non-hysteresis) term defines the EMD and the

second (hysteresis) — DD. The Davidenkov model relates

the hysteresis behavior of a solid to its microplastic

deformation [1] caused by the reversible displacement of

dislocation under the action of an external alternating

stress. (In work [26] a similar hysteresis was considered,

in which the saturation of ADIF effects is determined by

the multiplier (1 + α0εm)−1 ≤ 1, α0 ≥ 0).
In polycrystals with elastic hysteresis (2), the same mul-

tiplier (1 + γ0|ε|)−1 ≤ 1 is responsible for EMD and DD

saturation, while with inelastic (3) — two different

ones: (1 + α1|ε|)−1 ≤ 1 and (1 + α2|ε|)−1 ≤ 1. Hystere-

sis (2), (3) and at γ0 = 0, α1,2 = 0 (no saturation) and at

γ0εm > 1, α1,2εm > 1 (saturation) are significantly different,

so the patterns of NAE in solids with such hysteresis,

will be different. The hysteresis (2), (3) consist of four

branches (ε ≥ 0, ε̇ > 0, ε ≥ 0, ε̇ < 0, ε ≤ 0, ε̇ < 0, ε ≤ 0,

ε̇ > 0) converging to each other at ε = 0 and ε = ±εm. The

qualitative view of these hysteresis at γ0 = 0, α1,2 = 0 and

γ0 > 0, α1,2 > 0 is shown in Fig. 1, which shows that as the

parameters γ0 and α1,2 increase, the hysteresis loop shapes

change, with their area and slope decreasing, corresponding

to saturation effects of ADIF.

In [14,27], in terms of developing the dislocation theory

of Granato−Lücke [3,5,6], it is assumed that the movement

of dislocations detached from impurity atoms is limited not

only by their linear tension, but also by the stress field of

neighboring impurity atoms: dislocations detached from one

impurity atom are fixed on other — neighboring ones. This

mechanism limits the elongation of dislocation segments

and the growth of the hysteresis loop area σ = σ (ε). At

small amplitudes of εm, this leads to a linear dependence of

nonlinear losses on εm, and at large — to their saturation,

at the same time, the unloading branches (ε ≥ 0, ε̇ < 0

and ε ≤ 0, ε̇ > 0) in hysteresis σ = σ (ε) become nonlinear.

No analytical dependences σ = σ (ε) have been obtained in

the works [14,27].
Note that, in contrast to ferromagnetic and ferroelec-

tric hysteresis, easily observed on the oscilloscope [20]
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Figure 1. Qualitative view of elastic — (a) and inelastic — (b) hysteresis at different parameters γ0 and α1,2: γ0 = 0, α1,2 = 0−1 and

γ0 > 0, α1,2 > 0 — 2, 3, 4. Increasing the loop number corresponds to increasing the parameters γ0 and α1,2.

screen, the similar observation
”
of mechanical“ hysteresis

is technically more difficult, although such hysteresis has

certainly been observed [4,6]. This is because ferromagnetic

and ferroelectric hysteresis are much more pronounced

than
”
mechanical hysteresis“: in the stress area, much

smaller than the limit of elasticity of solids (|ε| ≪ |εth|), the
hysteresis nonlinearity is small: | f (ε)| ≪ |ε| ≪ 1. In this

connection, mechanical hysteresis can be inferred from the

patterns of NAEs in solids arising from the propagation of

intense elastic waves in them. In this case, the hysteresis

properties of the medium accumulate in the nonlinear

distortion of the wave as it propagates and become quite

visible to the measurement.

3. Network wave equation

When describing elastic waves in media with strong

acoustic nonlinearity (| f (ε)| ≫ |Ŵ|ε2, Ŵ — the quadratic

nonlinearity parameter of homogeneous media, |Ŵ| < 10),
the geometric nonlinearity of equations of motion com-

pared to physical nonlinearity of equation of state can be

neglected. In this approximation, the equations of elasticity

theory in Lagrangian and Eulerian forms coincide [24]. Sub-
stituting (1) into the equation of motion (in the Lagrangian

form) ρUtt = σx (ε), and considering the linear dissipation

of the medium [28], we obtain a one-dimensional wave

equation for the longitudinal (along the x axis) displacement

U = U(x , t)

Utt −C2
0Uxx = −C2

0

[

f (ε) −U2
x /2
]

x
+ ηUxxt, (4)

where C0 = (E/ρ)1/2 — linear velocity of the longitudi-

nal wave, η — linear dissipation factor, ρ — density,

ε(x , t) = Ux (x , t) + U2
x (x , t)/2, η|Uxxt | ≪ C2

0|Uxx |.
By differentiating equation (4) by x , and considering that

| f (ε)| ≪ |ε| ≪ 1, | f (ε)| ≫ ε2, ε ≈ Ux , we obtain equation

for longitudinal strain ε = ε(x , t)

εtt −C2
0εxx = −C2

0[ f (ε)]xx + ηεxxt . (5)

Turning in equation (5) to the accompanying coordinate

system τ = t−x/C0, x ′ = x ≥ 0, we obtain a nonlinear evo-

lution equation for waves running in the positive direction

of axis x :

∂ε

∂x
= − 1

2C0

∂ f (ε)

∂τ
+

η

2C3
0

∂2ε

∂τ 2
. (6)

A similar wave equation holds for the velocity

V (x , τ ) = Uτ (x , τ ) of the particles in the medium,

since for travelling waves the following relation holds:

ε(x , τ ) = −V (x , τ )/C0.

To investigate the nonlinear acoustic effects occur-

ring during propagation in a polycrystal IHW, we solve

equation (6) with the perturbation method. The

boundary condition is given as a harmonic oscillation:

ε(x = 0, t) = ε0 sinωt, where ε0 and ω — the amplitude of

strain and frequency of oscillation produced by the emitter.

Assuming in the equations (6), that

ε(x , θ) =

∞
∑

n=1

ε̄n(x , θ) =

∞
∑

n=1

εn(ε0, x) sin[nθ + ψn(ε0, x)],

∣

∣

∣

∣

∞
∑

n=2

ε̄n(x , θ)

∣

∣

∣

∣

≪ |ε̄1(x , θ)|,

ε1(ε0, x) ≈ εm(ε0, x), εn≥2(x = 0) = 0,

we get the equation for the amplitudes εn(ε0, x) and phases

8(ε0, x), ψn(ε0, x):
(

dεn

dx
+
ηK2

n

2C0

εn

)(

cosψn

sinψn

)

∓ εn

(

n
d8
dx

+
dψn

dx

)

×
(

sinψn

cosψn

)

= ±Kn

2

(

an(ε1)
bn(ε1)

)

, (7)
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where

(

an(ε1)
bn(ε1)

)

=
1

π

2π
∫

0

f [ε̄1(x , θ)]

(

cos nθ
sin nθ

)

dθ,

Kn = nK1 = nω/C0, θ = ωτ + 8(x), ψ1(x) = 0.

The derivatives 8x(ε0, x) and ψnx(ε0, x) determine the local

changes in the phase velocities C1(ε0, x) and Cn(ε0, x) of

the primary wave and its harmonics:

ξ(ε0, x) =
C1(ε0, x) −C0

C0

=
1

K1

d8(ε0, x)

dx
,

ξn(ε0, x) =
Cn(ε0, x) −C1(ε0, x)

C0

=
1

nK1

dψn(ε0, x)

dx
.

It follows from the last expression that if ξn(ε0, x) 6= 0,

then Cn(ε0, x) 6= C1(ε0, x), i.e. the medium has a nonlinear

phase velocity dispersion. Let us determine the effective

(average) nonlinear decrement of decay δ(ε0) and the

relative change in phase velocity ξ(ε0) of the primary wave

at distance x from the emitter

δ(ε0) = −2π

(

ln[ε1(x)/ε0]

K1x
+

ηω

2C2
0

)

,

ξ(ε0) =
1

K1x

x
∫

0

ξ(ε0, x ′)dx ′ =
8(ε0, x)

K1x
. (8)

3.1. NAE in media with elastic hysteresis

For elastic hysteresis (2), equations (7) for the amplitudes

and phases of the first three harmonics have the form

dε1
dz

+ gε1 = − 1

2γ20

(

1 +
γ0ε1

2
− (1 + γ0ε1) ln(1 + γ0ε1)

γ0ε1

)

,

d8
dz

=
1

2γ20 ε1

(

1− b
γ0ε1

)

×
(

π

2
− γ0ε1 −

ln
[

γ0ε1 +
√

(γ0ε1)2 − 1
]

√

(γ0ε1)2 − 1

)

− πb
8γ0

,

(

dε2
dz

+ 4gε2

)

cosψ2 − ε2

(

2
d8
dz

+
dψ2

dz

)

sinψ2

= − cε1
3γ0

{

1− 6

γ0ε1

(

d
c
− 1

γ0ε1

)

(

1− π

2γ0ε1

+
[2− (γ0ε1)

2] ln
[

γ0ε1 +
√

(γ0ε1)2 − 1
]

2γ0ε1
√

(γ0ε1)2 − 1

)}

,

(

dε2
dz

+ 4gε2

)

sinψ2 + ε2

(

2
d8
dz

+
dψ2

dz

)

cosψ2

=
dε1
3γ0

(

1− 3

γ0ε
− 6

(γ0ε1)2
+

6(1 + γ0ε1) ln(1 + γ0ε1)

(γ0ε1)3

)

,

(9)

(

dε3
dz

+ 9gε3

)

cosψ3 − ε3

(

3
d8
dz

+
dψ3

dz

)

sinψ3

= − ε1

4γ0

(

1 +
10

γ0ε1
− 12

(γ0ε1)2
− 24

(γ0ε1)3

+
6(1 + γ0ε1)[4− (γ0ε1)

2] ln(1 + γ0ε1)

(γ0ε1)4

)

,

(

dε3
dz

+ 9gε3

)

sinψ3 + ε3

(

3
d8
dz

+
dψ3

dz

)

cosψ3

= − ε1

2γ0

(

1− b
γ0ε1

)(

1− 3π

2γ0ε1
− 12

(γ0ε1)2
+

6π

(γ0ε1)3

− 3[4 − 3(γ0ε1)
2] ln

[

γ0ε1 +
√

(γ0ε1)2 − 1
]

(γ0ε1)3
√

(γ0ε1)2 − 1

)

,

where z = aK1x ,

a =
γ1 + γ2 + γ3 + γ4

2π
, b =

γ1 − γ2 + γ3 − γ4

γ1 + γ2 + γ3 + γ4
,

c =
γ1 − γ2 − γ3 + γ4

γ1 + γ2 + γ3 + γ4
, d =

γ1 + γ2 − γ3 − γ4

γ1 + γ2 + γ3 + γ4
,

g =
πηω

(γ1 + γ2 + γ3 + γ4)C2
0

, gz =
ηω2x

2C3
0

.

In the general case, analytical solutions of equations (9)
cannot be obtained, so we consider two simple limiting

cases, and then give the results of numerical solutions of

these equations.

In low-amplitude mode (γ0ε0 ≪ 1), at gz ≪ 1 and

ε0z ≪ 1, we get

ε1(ε0) =
ε0 exp(−gz )

1 + ε0z/12
, 8(ε0) = −b1ε0z ,

δ(ε0) =
πaε0
6

, ξ(ε0) = −ab1ε0,

r(ε0) =
δ(ε0)

|ξ(ε0)|
=

π

6b1

= const, (10)

ε2(ε0) =
√

a2
2 + b2

2 ε
2
0z , ε3(ε0) =

√

a2
3 + b2

3 ε
2
0z ,

tgψn = −an/bn,

where

b1 = π/8 + b/3, a2 = πc/8 + d/3, b2 = −d/6,

a3 = 1/20, b3 = −b/5.

In saturation mode (γ0ε0 ≫ 1) at gz ≪ 1, we get

ε1(ε0) = ε0 exp

[

−
(

g +
1

4γ0

)

z

]

,

8(ε0) = − z
2γ0

(

1 +
πb
4

)

,

δ(ε0) =
πa
2γ0

, ξ(ε0) = − a
2γ0

(

1 +
πb
4

)

,
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r(ε0) =
δ(ε0)

|ξ(ε0)|
=

π

1 + πb/4
= const,

ε2(ε0) =

√
c2 + d2ε0z

3γ0
,

ψ2(ε0) =
π

2
+ arctg

(

c
d

)

+
z
γ0

(

1 +
πb
4

)

,

ε3(ε0) =

√
5ε0z
4γ0

,

ψ3(ε0) =
π

2
− arctg

(

1

2

)

+
3z
2γ0

(

1 +
πb
4

)

. (11)

3.2. NAE in media with inelastic hysteresis

Similarly, for inelastic hysteresis (3), equations (7) for the
amplitudes and phases of the first three harmonics have the

form

dε1
dz

+ gε1 = − 1

α2
2

(

1− α2ε1

2
− [1−(α2ε1)

2] ln(1+α2ε1)

α2ε1

)

,

d8
dz

=
4b

α2
1ε1

[

π

2
−α1ε1−

2
√

1−(α1ε1)2
arctg

(

√

1−α1ε1
1+α1ε1

)]

,

(

dε2
dz

+ 4gε2

)

cosψ2 − ε2

(

2
d8
dz

+
dψ2

dz

)

sinψ2

= − cε1
3γ0

{

1− 6

2γ0ε1

(

d
c
− 1

γ0ε1

)

×
(

1− π

2γ0ε1
+

[2−(γ0ε1)
2] ln

[

γ0ε1+
√

(γ0ε1)2 − 1
]

2γ0ε1
√

(γ0ε1)2 − 1

)}

,

(

dε2
dz

+ 4gε2

)

sinψ2 + ε2

(

2
d8
dz

+
dψ2

dz

)

cosψ2 = 0,

(

dε3
dz

+ 9gε3

)

cosψ3 − ε3

(

3
d8
dz

+
dψ3

dz

)

sinψ3

=
9ε1

2α2

(

1− 22

9α2ε1
− 4

3(α2ε1)2
+

16

3(α2ε1)3

− 2[1− (α2ε1)
2][4− (α2ε1)

2] ln(1 + α2ε1)

3(α2ε1)4

)

,

(

dε3
dz

+ 9gε3

)

sinψ3 + ε3

(

3
d8
dz

+
dψ3

dz

)

cosψ3

= −4bε1
α1

[

1− 3π

2α1ε1
− 12

(α1ε1)2
+

6π

(α1ε1)3

− 6[4− 3(α1ε1)
2]

(α1ε1)3
√

1− (α1ε1)2
arctg

(

√

1− α1ε1

1 + α1ε1

)]

, (12)

where

z = aK1x , a =
β1 + β2

2π
, g =

πηω

(β1 + β2)C2
0

,

b =
β

β1 + β2
, c =

β1 − β2

β1 + β2
, gz =

ηω2x

2C3
0

.

In the low-amplitude mode (α1,2ε0 ≪ 1) at gz ≪ 1

and ε0z ≪ 1, we get

ε1(ε0) =
ε0 exp(−gz )

1 + (2ε0z/3)
, 8(ε0) = −πbε0z ,

δ(ε0) =
4πaε0

3
, ξ(ε0) = −πabε0,

r(ε0) =
δ(ε0)

|ξ(ε0)|
=

4

3b
= const,

ε2(ε0) = −πcε20z
4

, ψ2(ε0) = πbε0z ,

ε3(ε0) = −2ε20z
5

, ψ3(ε0) =
3πbε0z

2
. (13)

In saturation mode (α1,2ε0 ≫ 1) at gz ≪ 1

and [ln(α2ε0)/α2]z ≪ 1 we get

ε1(ε0)=ε0 exp

[

−
(

g+
ln(α2ε0)

α2

)

z

]

=ε
n(z )
0 α

−z /α2
2 exp(−gz ),

8(ε0) = −4bz
α1

,

δ(ε0) = 2πa
ln(α2ε0)

α2
, ξ(ε0) = −4ab

α1
,

r(ε0) =
δ(ε0)

|ξ(ε0)|
=
πα1 ln(α2ε0)

2α2b
6= const,

ε2(ε0) = −2cε0z
3α2

, ψ2(ε0) =
4bz
α1

,

ε3(ε0) = −4ε0z

[(

b
α1

)2

+

(

3 ln(α2ε0)

4α2

)2]1/2

,

ψ3(ε0) =
6b
α1

(

z +
2α2

9 ln(α2ε0)

)

, (14)

where n(z ) = 1−z/α2 < 1.

It follows from expressions (10), (13) that in the low-

amplitude regime (at z = const), the amplitude dependence

of the NAE for media with elastic and inelastic hysteresis

is the same: δ(ε0) ∝ ε0, ξ(ε0) ∝ ε0, ε2,3(ε0) ∝ ε20 . In

this mode, the independent characteristics of the nonlinear

wave are δ(ε0), ξ(ε0) and ε2(ε0), and ε3(ε0) can be calcu-

lated from the measured values of δ(ε0) and ξ(ε0). Thus,

from the comparison and correspondence (or mismatch) be-
tween the calculated (for the elastic and inelastic hysteresis)
and the experimentally measured amplitude ε3(ε0) it can be

determined which hysteresis determines the ADIF effects in

the polycrystal studied. In the saturation mode, however,

the amplitude dependences ξ(ε0) and ε2(ε0) for differ-

ent hysteresis are the same [ξ(ε0) = const, ε2(ε0) ∝ ε0],
but δ(ε0) and ε3(ε0) — are different, while for elastic
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Figure 2. Dependences of amplitudes ε1 — 1, ε2 — 2, ε3 — 3 on z when ε0 = 10−5, g = 2 · 10−6, b = 1/5, c = 1/10, d = 0 and

different values of γ0 and α1 = α2 : γ0, α1,2 = 0 — a, γ0, α1,2 = 105 — b, γ0, α1,2 = 106 — c. Solid lines — for elastic hysteresis, dashed

lines — for inelastic hysteresis.

hysteresis — δ(ε0) = const, ε3(ε0) ∝ ε0, and for inelastic —
δ(ε0) ∝ ln(α2ε0) 6= const,

ε3(ε0) ∝ ε0

[(

b
α1

)2

+

(

3 ln(α2ε0)

4α2

)2]1/2

.

Here is the answer to the question which hysteresis (elastic
or inelastic) is determined by ADIF effects in the studied

polycrystal can be obtained, firstly, from the correspondence

between the amplitude dependences of the NAE established

in the experiment and the analytical ones (11), (14), and,
secondly, from a comparison of the saturation parameters

γ0 and α1,2 determined from the dependences δ(ε0), ξ(ε0)
and ε2,3(ε0) on ε0.

4. Results of the numerical counting

Expressions (10)−(14) determine the patterns of NAE in

solids with elastic (2) and inelastic (3) hysteresis in the lim-

iting regimes: without saturation and with ADIF saturation.

A more complete picture of the behavior of the NAE (at
specific hysteresis parameters) is given by the results of nu-

merical solutions of equations (9), (12). Fig. 2 shows the de-

pendences of ε1,2,3(ε0) on z when ε0 = 10−5, g = 2 · 10−6,

b = 1/5, c = 1/10, d = 0, γ1 + γ2 + γ3 + γ4 = β1 + β2 and

different parameter values γ0 and α1 = α2. Figure 2 shows

that as z increases, the amplitude of ε1 of the first harmonic

decreases monotonically (due to linear and hysteresis

losses), while the amplitude of ε1 decreases more slowly in a
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c = 1/5, d = 0; b — dependences ξ(ε0, z ) — lines 1 and ξ2,3(ε0, z ) — lines 2, 3 on ε0 for inelastic hysteresis at α1,2 = 0, z = 106,

b = 1/2, c = 1/5, d = 0.

medium with elastic hysteresis than with inelastic hysteresis.

When the parameters γ0 and α2 are increased (due to

reduced hysteresis losses), the amplitude of ε1 decreases

more slowly. With increase z the amplitudes of ε2,3 first

increase, reach a maximum and then decrease, with γ0
and α1,2 increasing, the amplitude of ε2 decreases and ε3
changes non-monotonically. It should also be noted that the

amplitudes of ε2,3 in a medium with inelastic hysteresis are

noticeably higher than in a medium with elastic hysteresis.

More interesting and informative nonlinear wave cha-

racteristic dependences are those of ε1,2,3(ε0) on ε0 (at
z = const), since in a solid it is difficult to change receiver

location (coordinate z , i.e. x), but one can easily change

amplitude of ε0. In Fig. 3, a, b — for elastic (a) and

inelastic (b) hysteresis, the ε1,2,3(ε0) dependence on ε0
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Figure 5. a — dependency plots δ(ε0)/a — I, ξ(ε0)/a — II

and r(ε0) = δ(ε0/|ξ(ε0)|) — III on ε0 for elastic hysteresis at

z = 106, g = 10−6, b = 1/2 and different values of parameter γ0 :

γ0 = 0 — 1, γ0 = 105 — 2, γ0 = 106 — 3; b — dependency plots

δ(ε0)/a — I, ξ(ε0)/a — II and r(ε0) = δ(ε0/|ξ(ε0)|) — III of ε0
for inelastic hysteresis at z = 106, g = 10−6, b = 1/2 and dif-

ferent parameter values α1 = α2: α1,2 = 0 — 1, α1,2 = 106 — 2,

α1,2 = 107 — 3.

(at z = 106) is shown. Fig. 3, a, b shows that with

γ0 = 0, α1,2 = 0 as ε0 increases, first — ε1 ∝ ε0, ε2,3 ∝ ε20 ,

and then — ε1,2,3 tend to saturate. Small amplitude

oscillations of ε2,3(ε0) (Fig. 3, a, γ0 = 0) are related with

the appearance of nonlinear dispersion of the wave phase

velocity in a medium with elastic hysteresis. At γ0 6= 0,

as ε0 grows, at γ0ε0 ≪ 1 — ε1 ∝ ε0 ε2,3 ∝ ε20 , and at

α1,2ε0 ≫ 1 — ε1,2,3 ∝ ε0. At α1,2 6= 0, at α1,2ε0 ≪ 1 —

ε1 ∝ ε0, ε2,3 ∝ ε20 , and at α1,2ε0 ≫ 1 — ε1 ∝ ε
n(z )
0 , where

n(z ) = 1−z/α2 = 0.9, and the dependences of ε2,3 on ε0
are close to linear.

In Fig. 4, a, b — for the elastic (a) and inelastic (b)
hysteresis, plots of the dependence ξ(ε0, z ) and ξ2,3(ε0, z )
from ε0 at γ0 = 0, α1,2 = 0, z = 106, b = 1/2, c = 1/5,

d = 0. These figures show that (at ε0 = const) the values

of ξ(ε0, z ) and ξ2,3(ε0, z ) for the elastic hysteresis are

significantly higher than those for the inelastic hysteresis,

while for ξ2(ε0, z ) in the range 10−5 < ε0 < 10−4 oscilla-

tions are observed. Thus, the nonlinear dispersion (phase
velocity) for the medium with elastic hysteresis is much

larger than the nonlinear dispersion for the medium with

inelastic hysteresis, which appears in the oscillation of the

amplitudes ε2,3 in Fig. 3, a (for elastic hysteresis at γ0 = 0)
and its absence in Fig. 3, b (for inelastic hysteresis).
In Fig. 5, a, b — for elastic (a) and inelastic (b)

hysteresis, plots of δ(ε0)/a are shown, ξ(ε0)/a and

r(ε0) = δ(ε0)/||ξ(ε0)| on ε0 at z = 106, g = 10−6, b = 1/2

and different parameter values γ0 and α1,2.

Figure 5 shows that in the low-amplitude regime

(γ0ε0 ≪ 1, α1,2ε0 ≪ 1), the dependences δ = δ(ε0)
and ξ = ξ(ε0) for the elastic and inelastic hysteresis

are the same: δ(ε0) ∝ ε0, ξ(ε0) ∝ ε0, r(ε0) = const.

In saturation mode (γ0ε0 ≫ 1, α1,2ε0 ≫ 1) these

dependences are different for different hysteresis. For elastic

hysteresis: δ(ε0) → const, ξ(ε0) → const, r(ε0) → const

and for inelastic δ(ε0) ∝ ln(α1)ε0, ξ(ε0) → const,

r(ε0) ∝ ln(α2ε0) 6= const. This difference in the behavior

of δ(ε0), ξ(ε0) and r(ε0) is also a distinctive feature

of the elastic and inelastic hysteresis behavior in the

saturation ADIF regime.

5. Conclusion

In this paper, theoretical and numerical studies of NAEs

arising from the propagation of initially harmonic waves

in visco-elastic hysteresis solids with ADIF saturation have

been carried out. Two main types of quadratic hysteresis are

considered: elastic (or breakaway hysteresis) and inelastic

(or microplastic hysteresis). The method of perturbation

determines patterns of NAE in such media in low-amplitude

and saturation modes: nonlinear losses and changes of pri-

mary wave propagation velocity, as well as amplitudes and

phases of its second and third harmonics. A comparative

analysis of the patterns of nonlinear effects has been carried

out and a method for determining the hysteresis type has

been proposed, based on the analysis and correspondence

of the obtained analytical and experimentally determined

amplitude dependences and NAE levels in such media. The

experimental determination of the amplitude dependences

of NAE for hysteresis solids and their comparison with the-

oretical ones — for media with different hysteresis (elastic
and inelastic) will contribute to a correct choice of hysteresis

equations of state for such media and to identification of

physical mechanisms of their hysteresis nonlinearity.
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