Влияние предварительного легирования и режимов имплантации на диффузию кремния в GaAs при радиационном отжиге

© М.В. Ардышев [¶], В.М. Ардышев, Ю.Ю. Крючков*

Сибирский физико-технический институт им. В.Д. Кузнецова при Томском государственном университете, 634050 Томск, Россия
* Томский политехнический университет, 634050 Томск, Россия

(Получена 16 мая 2003 г. Принята к печати 3 июня 2003 г.)

Методами вольт-фарадных характеристик и резерфордовского обратного рассеяния исследованы диффузионные параметры кремния 28 Si при диффузии из предварительно созданных n-слоев в полуизолирующий GaAs при "электронном" и термическом отжигах. Слои были легированы серой или кремнием. Отмечается, что степень активации 28 Si и коэффициент диффузии зависят от лигатуры, используемой при формировании n-слоя, и от режима имплантации (непрерывный или частотно-импульсный с длительностью импульса $1.3 \cdot 10^{-2}$ с и скважностью 100).

1. Введение

[1] отмечается, что при радиационном В работе отжиге GaAs, имплантированного ²⁸Si, наблюдается диффузионное перераспределение примеси в глубь полупроводника. Показано, что этот процесс обусловлен снижением потенциальных барьеров миграции и активации кремния и зависит от условий на поверхности полупроводника [2], от степени дефектности исходного материала [3]. На диффузию примесей часто оказывают влияние внутренние электрические поля, режимы имплантации (в частности, известна зависимость коэффициента диффузии от дозы имплантации примесей). В этой связи в работе исследовали диффузию кремния в GaAs при "электронном отжиге" (ЭО) из предварительно созданных п-слоев в материал с собственным типом проводимости.

2. Методика экспериментов

Исследования выполнены на пластинах монокристаллического полуизолирующего GaAs с удельным сопротивлением более $10^7 \, \text{Om} \cdot \text{cm}$, с плотностью дислокаций не более $5 \cdot 10^4 \, \text{cm}^{-2}$ и на эпитаксиальных структурах $n-n_i$ -типа с концентрацией электронов в n-слое $\sim 1.1 \cdot 10^{17} \, \mathrm{cm}^{-3}$ и толщиной $\sim 0.22 \, \mathrm{mkm}$. Эпитаксиальные слои были легированы серой и получены газотранспортным методом на подложках полуизолирующего GaAs. Пластины были ориентированы в плоскости (100). После обработки пластин в травителе $H_2SO_4:H_2O_2:H_2O=1:1:100$ проводили имплантацию ионов ²⁸Si при комнатной температуре в частотноимпульсном (длительность импульса $1.3 \cdot 10^{-2}$ с, скважность 100) и непрерывном режимах последовательно с энергией $50 \, \text{кэВ}$, дозой $5.62 \cdot 10^{12} \, \text{см}^{-2}$ и с энергией 75 кэВ, дозой $1.88 \cdot 10^{12} \, \text{cm}^{-2}$, а также с энергией

100 кэВ, дозой $1 \cdot 10^{14}$ см $^{-2}$ (монокристаллический материал) и с энергией 50 кэВ, дозой $5 \cdot 10^{13}$ см $^{-2}$, а затем с энергией 100 кэВ, дозой $5.62 \cdot 10^{12}$ см $^{-2}$ (эпитаксиальный материал). Плотность тока ионов не превышала 0.1 мкА · см $^{-2}$. При имплантации принимали меры для исключения осевого и плоскостного каналирования, как в [4]. После имплантации по способу [5] на поверхность пластин наносили пленку SiO₂:Sm из пленкообразующего раствора толщиной 0.1-0.2 мкм. Электронный отжиг проводили в установке "Модуль" (ИСЭ ТФ РАН, г. Томск) с энергией электронов в пучке 10 кэВ, с плотностью мощности 8.2 Вт · см $^{-2}$ в течение 10-16 с в вакууме 10^{-5} Па. Термический отжиг выполняли при температуре 800° С в течение 30 мин.

После формирования вблизи поверхности GaAs слоев *n*-типа проводимости пластины делили на две части. Вторые части пластин подвергали дополнительному ЭО.

После отжига и удаления диэлектрика измеряли концентрационные профили электронов методом вольтфарадных характеристик, как в [1]. С помощью метода резерфордовского обратного рассеяния каналированных ионов (РОРКИ) гелия с энергией частиц 1.86 МэВ определяли дефектность материала после имплантации и после отжига. Экспериментальные профили легирования обрабатывали с помощью выражения [6]

$$n(x,t) = \frac{\eta F}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(x-R_p)^2}{2\sigma^2}\right],\tag{1}$$

где $\sigma^2 = \Delta R_p^2 + 2Dt$ — дисперсия концентрационного профиля; F,R_p и ΔR_p — доза имплантации, пробег и страгглинг пробегов ионов соответственно; D и η — коэффициент диффузии и степень электроактивации примеси соответственно; x — координата; t — время.

При использовании выражения (1) предполагалось, что отсутствует диффузия примеси через границу полупроводника и что экспериментальный профиль можно описать аналитически. В случае профилей, не имеющих аналитического представления, коэффициент диффузии

 $[\]P$ E-mail: ard.rff@elefot.tsu.ru, detector@mail.tomsknet.ru

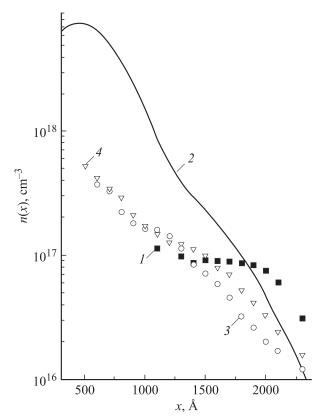
определяли методом Больцмана-Мотано (см., например, [7]):

$$D_i = -N_i(x_i - R_p) \left[2t \frac{dN}{dx} \Big|_{x = x_i} \right]^{-1}, \tag{2}$$

где N_i и $dN/dx|_{x=x_i}$ — концентрация и градиент концентрации примеси на глубине x_i соответственно.

3. Экспериментальные результаты и их обсуждение

3.1. Влияние предварительного легирования


На рис. 1 представлены экспериментальные профили концентрации электронов в исходной структуре, после имплантации кремния и электронного отжига, а также расчетный профиль внедренного кремния. Видно, что с увеличением длительности ЭО возрастает глубина, на которую мигрирует кремний (кривые 3 и 4). Причем на концентрационных профилях можно выделить два участка: до глубины $x \approx 1100\,\mathrm{\AA}$ и после этой глубины. При $x < 1100 \,\text{Å}$ не происходит перераспределения примеси и электронов относительно профиля внедренного кремния для обеих длительностей отжига (кривая 2). Максимум концентрации электронов n_{\max} в слоях и степень электроактивации примеси η лежат в диапазонах $(4-5) \cdot 10^{17}$ см⁻³ и 4.3–4.6% соответственно (кривые 3 и 4). При $x > 1100 \,\text{Å}$ диффузионные и активационные параметры профилей легирования для длительностей отжига 10 и 16 с различаются (табл. 1).

Отличаются они и от результатов отжига имплантированного полуизолирующего GaAs, в частности значение η более чем в 2 раза, а коэффициент диффузии — на порядок меньше. Следует также отметить, что при ЭО в течение $10\,\mathrm{c}$ значение $D/t\cong 4.3\cdot 10^{-14}\,\mathrm{cm}^2\,\mathrm{c}^{-2}$, что больше, чем при отжиге в течение $16\,\mathrm{c}$ ($D/t\cong 3.5\times 10^{-14}\,\mathrm{cm}^2\,\mathrm{c}^{-2}$), т.е. имеет место уменьшение коэффициента в единицу времени в среднем на 20%. Обращает на себя внимание также тот факт, что после ЭО в измеренных концентрационных профилях (кривые $3\,\mathrm{u}$ 4) отсутствует "ступенька" — исходное (до отжига) распределение электронов по глубине (кривая I). Так как легирующей примесью в n-слое эпитаксиальной

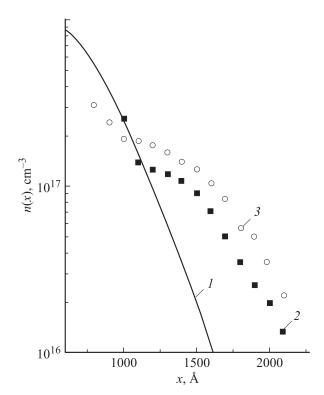
Таблица 1. Характеристики концентрационных профилей электронов в $n-n_i$ -GaAs: S после имплантации ²⁸Si и ЭО с различной длительностью ($x>1100\,\text{Å}$)

Время отжига, с	$n_{\rm max}$, cm ⁻³	η, %	σ^2 , Å ²	$D, \text{cm}^2 \text{c}^{-1}$
10	$1.42 \cdot 10^{17} \\ 3.9 \cdot 10^{17}$	34	$2.9 \cdot 10^{5} \\ 3.84 \cdot 10^{5}$	$4.33 \cdot 10^{-13}$
16	$3.9 \cdot 10^{17}$	42	$3.84 \cdot 10^{5}$	$5.64 \cdot 10^{-13}$
10*	Нет данных	78*	Нет данных	$(2.0\pm0.2)\cdot10^{-12}{}^{*}$

Примечание. Параметры, отмеченные звездочкой (*), взяты из [1] и относятся к миграции ²⁸Si из слоя внедрения не в эпитаксиальной структуре, а в полуизолирующем GaAs.

Рис. 1. Профили концентрации внедренного кремния при непрерывном режиме имплантации примеси в эпитаксиальную структуру $n-n_i$ -типа: I — исходный профиль электронов в n-слое; 2 — расчетный профиль для режима имплантации $50\,\mathrm{кэB},\ 5\cdot10^{13}\,\mathrm{cm}^{-2}+100\,\mathrm{кэB},\ 5.62\cdot10^{12}\,\mathrm{cm}^{-3};$ профили концентрации электронов, полученные после электронного отжига в течение $10\,\mathrm{c}\ (3)$ и $16\,\mathrm{c}\ (4)$.

структуры является сера, то, вероятно, в процессе имплантации и ЭО происходит перераспределение серы в направлении к поверхности в область с высокой концентрацией радиационных дефектов (РД). Возможно также, что в процессе отжига наряду с кремнием в глубь полупроводника мигрируют РД, в частности вакансии галлия $V_{\rm Ga}$, с которыми, как известно, сера образует нейтральные комплексы. Если предположить, что сера связывает часть $V_{\rm Ga}$ в нейтральные комплексы, то это должно приводить, с одной стороны, к уменьшению степени электроактивации кремния в слоях до и после глубины $1100\,\text{Å}$, а с другой — к уменьшению коэффициента диффузии 28 Si, если кремний диффундирует по вакансиям галлия. Это и наблюдается в эксперименте (табл. 1, рис. 1).


На рис. 2 приведены экспериментальные профили концентрации электронов после имплантации кремния и последовательно проведенных электронных отжигов, а также расчетный профиль внедренного кремния. В табл. 2 представлены параметры концентрационных профилей легирования.

Видно, что после второго ЭО наблюдается несколько более глубокое проникновение кремния в GaAs (рис. 2) и возрастает концентрация и степень электроактивации примеси по сравнению с первым ЭО. Коэффициент диффузии увеличивается незначительно, хотя миграция кремния происходит из слоя *п*-типа проводимости в собственный GaAs, т.е. фактически в электрическом поле $n-n_i$ -перехода. Изгиб зон на границе этого перехода приводит к образованию встроенного отрицательного заряда со стороны собственного GaAs, который нейтрализуется в n-слое. В этой отрицательной области $n-n_i$ -перехода возможна аккумуляция V_{Ga} , которые, как известно [8], могут нести единичный, двойной или тройной отрицательный заряд. Увеличение концентрации V_{Ga} должно приводить к увеличению коэффициента диффузии D в соответствии с соотношением [8]

$$D_{\text{eff}} = D_0 + D_- \left(\frac{n}{n_i}\right) + D_{2-} \left(\frac{n}{n_i}\right)^2 + D_{3-} \left(\frac{n}{n_i}\right)^3, \quad (3)$$

где индексы при соответствующих коэффициентах обозначают заряд вакансий.

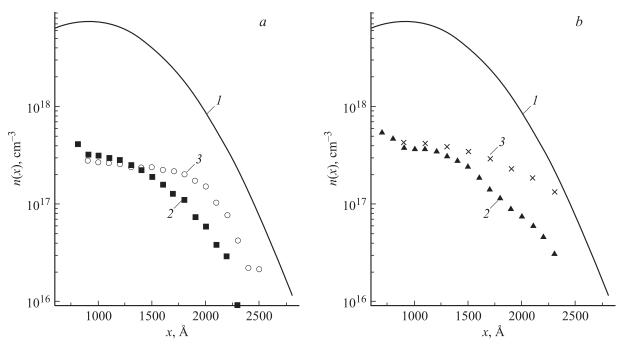
Необходимо отметить, что уравнение (3) справедливо лишь в предположении, что концентрация носителей заряда всегда определяется только концентрацией заряженных вакансий.

Рис. 2. Профили концентрации внедренного кремния при непрерывном режиме имплантации примеси в полуизолирующий GaAs: I — расчетный профиль для режима имплантации $50 \, \text{кэB}, \, 5.62 \cdot 10^{13} \, \text{сm}^{-2} + 75 \, \text{кэB}, \, 1.88 \cdot 10^{12} \, \text{сm}^{-3}$; профили концентрации электронов, полученные после первого (2) и второго (3) электронного отжигов в течение $10 \, \text{с}$.

Таблица 2. Основные диффузионные параметры кремния в полуизолирующем GaAs после ЭО в течение 10 с

Отжиг	$n_{\rm max}$, cm ⁻³	η, %	σ^2 , Å ²	$D, \text{cm}^2 \text{c}^{-1}$
Первый ЭО Второй ЭО	$2.24 \cdot 10^{17} \\ 2.59 \cdot 10^{17}$	54.2 76.0	$5.275 \cdot 10^5 7.753 \cdot 10^5$	$1.88 \cdot 10^{-12} \\ 3.12 \cdot 10^{-12}$

Однако к рассматриваемым процессам нужно относиться с большой осторожностью. Дело в том, что при воздействии электронов в материале генерируются неравновесные носители заряда и ионизованные атомы матрицы полупроводника в концентрации $\sim 10^{19}\,{\rm cm}^{-3}$ [9]. Расчеты, выполненные по методике [10], показали, что для использованной в работе энергии электронов (100 кэВ) толщина ионизированного слоя значительно больше глубины залегания $n-n_i$ -перехода. Поэтому исследуемые процессы осуществляются в сильно ионизованном материале. Наблюдаемые эффекты обусловлены не столько влиянием электрического поля $n-n_i$ -перехода, потенциал которого при температуре отжига не превышает 0.5 эВ, сколько ионизационнотермическим уменьшением высоты барьеров миграции и электроактивации примеси [1], как в случае первого ЭО. На это указывает, в частности, близость значений коэффициентов диффузии (табл. 2) для обеих длительностей отжига.


3.2. Влияние режимов имплантации

На рис. 3, *а*, *b* приведены концентрационные профили электронов после термического и последующего электронного отжигов для двух режимов имплантации. Здесь также представлен профиль концентрации внедренного кремния. В табл. 3 представлены значения коэффициентов диффузии кремния после отжигов.

Таблица 3. Коэффициенты диффузии кремния в полуизолирующем GaAs для различных режимов имплантации после термического и последующего электронного отжигов

Режим имплантации	Коэффициент диффузии, $c m^2 c^{-1}$			
	ТО	Э0		
Непрерывный Частотно-импульсный	$1.6 \cdot 10^{-15} \\ 3.0 \cdot 10^{-15}$	$4.5 \cdot 10^{-13} \\ 3.1 \cdot 10^{-12}$		

Из рис. З и табл. З следует, что после ТО и особенно после ЭО слоев, полученных имплантацией кремния в частотно-импульсном режиме, перераспределение примеси более значительно по сравнению с непрерывным режимом имплантации, на что указывают значения коэффициентов *D*. Величина *D* после ЭО практически совпадает со значениями, приведенными в табл. 2. Наиболее вероятная причина наблюдаемых различий в поведении

Рис. 3. Профили концентрации внедренного кремния при непрерывном (a) и частотно-импульсном (b) режимах имплантации примеси в полуизолирующий GaAs: I — расчетный профиль для режима имплантации $100 \, \text{кэB}$, $1 \cdot 10^{14} \, \text{см}^{-2}$; профили концентрации электронов, полученные после термического отжига (2) и последующего электронного отжига (3).

²⁸Si для исследуемых режимов имплантации связана с различной дефектностью материала как после внедрения примеси, так и после термического отжига.

Таблица 4. Степень дефектности GaAs после имплантации и после термического отжига

	После имг			тации	После ТО	
Режим имплантации	χ_{\min}^{ex}	χ_{\min}^{in}	χ_{\min}^{th}	N_d/N_0 , ат%	N_d/N_0 , ат%	N_d/N_0 , ат% (после удаления $1500\mathrm{\AA}$)
Непрерывный Частотно- импульсный			0.035 0.035		$\sim 0.10 \\ 0.00$	~ 0.09 0.00

На рис. 4 приведены спектры резерфордовского обратного рассеяния для образцов GaAs. В табл. 4 представлены значения минимального выхода χ_{min} и степень дефектности материала. Рассчитывалась относительная концентрация дефектов в имплантированном слое [11]:

$$\frac{N_D}{N_0} = \frac{\chi_{\min}^{ex} - \chi_{\min}^{in}}{1 - \chi_{\min}^{in}},\tag{4}$$

где N_D, N_0 — концентрация дефектов и атомная плотность GaAs соответственно; χ^{in}_{\min} и χ^{ex}_{\min} — значение χ_{\min} до и после имплантации соответственно. Область интегрирования для расчета χ^{ex}_{\min} была выбрана за пиком дефектов на глубине $R_p + 2\Delta R_p$. В табл. 4 также приведены значения теоретического χ^{th}_{\min} выхода ионов гелия.

Видно, что после имплантации (рис. 4, табл. 4) в непрерывном режиме степень дефектности материала существенно больше по сравнению с частотно-

Рис. 4. Энергетические спектры ионов гелия ($E=1.86\,\mathrm{MpB}$), рассеянных кристаллом $\langle 100 \rangle$ GaAs, имплантированного кремнием с энергией $100\,\mathrm{kpB}$ дозой $10^{14}\,\mathrm{cm^{-2}}$ с плотностью тока $0.1\,\mathrm{mkA\cdot cm^{-2}}$ при $300\,\mathrm{K}$ в непрерывном (3) и частотно-импульсном (4) режимах. I — исходный осевой; 2 — исходный рандомный.

импульсным режимом, хотя энергия, доза, плотность ионного тока и температура внедрения кремния были одинаковыми. После отжига (табл. 4) дефекты отжигаются не полностью, причем удаление с поверхности слоя полупроводника толщиной 1500 Å практически не изменяет остаточную дефектность в материале. Последнее обстоятельство указывает на то, что дефекты проникают за пределы имплантированного слоя. Из сопоставления результатов, приведенных в табл. 3 и 4, можно сделать вывод о том, что остаточные дефекты после непрерывной имплантации и ТО выступают в качестве ловушек для кремния, препятствуя его миграции в глубь GaAs. Эти дефекты не отжигаются и при последующем ЭО. Учитывая результаты работ [1-3], можно также констатировать, что этот эффект проявляется при сравнительно больших дозах имплантации ($\geq 10^{14}\,\mathrm{cm}^{-2}$), так как в цитируемых работах они составляли $\sim 10^{13}\,{\rm cm}^{-2}$.

4. Заключение

- 1. Электронный отжиг эпитаксиальных структур GaAs: S $n-n_i$ -типа, предварительно легированных кремнием 28 Si в непрерывном режиме дозой $\leq 5 \cdot 10^{13}$ см $^{-2}$, приводит к уменьшению коэффициента диффузии кремния и к снижению степени электроактивации примеси по сравнению с аналогичными характеристиками диффузии при электронном отжиге имплантированного 28 Si полуизолирующего GaAs.
- 2. При дополнительном электронном отжиге структуры $n-n_i$ -типа, в которой n-слой создан имплантацией $^{28}\mathrm{Si}$ в непрерывном режиме дозой $<10^{13}\,\mathrm{cm}^{-2}$ и электронным отжигом, коэффициент диффузии примеси увеличивается незначительно по сравнению с первым отжигом, хотя миграция кремния осуществляется в поле $n-n_i$ -перехода. При этом степень электроактивации кремния возрастает примерно в 1.5 раза.
- 3. При частотно-импульсной имплантации 28 Si (длительность импульса $1.3 \cdot 10^{-2}$ с, скважность 100) дозой 10^{14} см $^{-2}$ и последующем термическом отжиге в GaAs образуется существенно меньшая концентрация остаточных дефектов по сравнению с непрерывным режимом облучения. Дефектный слой простирается в глубь GaAs на глубину, превышающую толщину n-слоя после термического отжига. Наличие этого слоя уменьшает коэффициент диффузии кремния как при термическом, так и при электронном отжигах. При этом в последнем случае диффузия происходит в поле n- n_i -перехода.

Работа поддержана грантом РФФИ № 02-02-16280.

Список литературы

- [1] М.В. Ардышев, В.М. Ардышев. ФТП, 32, 1153 (1998).
- [2] М.В. Ардышев, В.М. Ардышев, С.С. Хлудков. ФТП, 34, 70 (2000).

- [3] М.В. Ардышев, В.М. Ардышев, С.С. Хлудков. ФТП, **34**, 28 (2000).
- [4] М.В. Ардышев, В.М. Ардышев. Изв. вузов. Физика, 41 (11), 44 (1998).
- [5] В.М. Ардышев, В.А. Селиванова, О.Н. Коротченко, А.П. Мамонтов. А.с. № 235899 от 01.04.1986.
- [6] Х. Риссел, И. Руге. Ионная имплантация (М., Наука, 1983).
- [7] A. Bakowski. J. Electrochem. Soc.: Sol. St. Sci. and Technol., 127, 1644 (1980).
- [8] E.L. Allen, M.D. Deal, J.D. Plummer. J. Appl. Phys., 67, 3311 (1990).
- [9] М.В. Ардышев, В.М. Ардышев, С.С. Хлудков. Тр. 5-й Межд. конф. "Актуальные проблемы электронного приборостроения «АПЭП-2000»" (Новосибирск, Россия, 2000) т. 2, с. 119.
- [10] Н.А. Аброян, А.Н. Андронов, А.И. Титов. Физические основы электронной и ионной технологии (М., Высш. шк., 1984).
- [11] Дж. Мейер, Дж. Эриксон. Ионное легирование полупроводников (М., Мир, 1973).

Редактор Л.В. Беляков

Effect of pre-doping and implantation regime on silicon diffusion in gallium arsenide subject to radiation annealing

M.V. Ardyshev, V.M. Ardyshev, Yu.Yu. Krjuchkov*

Kuznetsov Siberian Physicotechnical Institute, 634050 Tomsk, Russia * Tomsk Polytechnical University, 634050 Tomsk, Russia

Abstract Using voltage-capacitance and Rutherford backscattering techniques, parameters of silicon diffusion from preformed n-type layers to semiinsulating GaAs, caused by electron-beam annealing and conventional thermal treatment, have studied in the work. The layers were doped either with sulphur or silicon. A degree of 28 Si electrical activation and diffusion coefficient are found to depend upon dopant, which was utilized for shaping the layer, and upon implantation regime (continuous or pulsefrequency with duration of pulse $1.3 \cdot 10^{-2}$ s and the on-off time ratio 100).