13,01

Влияние высокотемпературного отжига на физико-химические свойства систем на основе $FeSi_x$

© Д.Е. Николичев, Р.Н. Крюков, А.В. Здоровейщев, Ю.М. Кузнецов, Д.А. Здоровейщев, Ю.А. Дудин, М.В. Дорохин, А.А. Скрылев

Нижегородский государственный университет им. Н.И. Лобачевского,

Нижний Новгород, Россия

E-mail: nikolitchev@phys.unn.ru

Поступила в Редакцию 6 декабря 2022 г. В окончательной редакции 28 декабря 2022 г. Принята к публикации 28 декабря 2022 г.

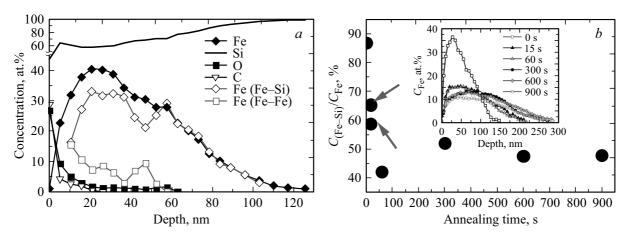
Установлено, что физико-химические свойства структур на основе силицидов железа, полученных ионной имплантацией ионов железа в кремний, существенно зависят от времени последующего высокотемпературного отжига. На поверхности образуются объекты с различными геометрическими параметрами и увеличивается шероховатость. Отжиг при 1000° С в атмосфере Ar сопровождается уменьшением содержания химической связи Fe—Si в первые 60 с. Причиной падения теплопроводности при увеличении температуры отжига является формирование силицидных комплексов.

Ключевые слова: силицид железа, термоэлектрик, ионная имплантация, химический состав, рентгеновская фотоэлектронная спектроскопия.

DOI: 10.21883/FTT.2023.03.54752.547

1. Введение

Разработка термоэлектрических преобразователей энергии перспективна с точки зрения их потенциального применения в различных сферах [1]. Использованию термоэлектриков в качестве источников питания препятствует низкое значение КПД. Эффективность термоэлектрического преобразования материала с электропроводностью σ и теплопроводностью χ при абсолютной температуре T и коэффициенте термоЭДС α определяется безразмерной термоэлектрической добротностью $ZT = (\alpha^2 \sigma T)/\chi$. Наилучшим показателем среди промышленных материалов при комнатной температуре на данный момент обладает теллурид висмута с $ZT \approx 1.0$ [1]. Основная проблема увеличения ZTзаключается в повышении эффективности термоэлектрического преобразования при использовании материалов с высокой электропроводностью и низкой теплопроводностью, но независимое их варьирование в рамках одного материала практически невозможно [2].


Интерес к соединениям кремния заключается в его распространенности и простоте встраивания таких систем в существующие схемы. Соединения Si обладают широким спектром электрофизических свойств. Поэтому возможность создания термоэлектрических преобразователей на его основе выглядит крайне актуальной задачей.

В работе рассматриваются соединения ${\rm FeSi}_x$, полученные методом имплантации ионов ${\rm Fe}$ в подложку кремния с последующим высокотемпературным отжигом. Силициды железа широко применяются в полупроводниковой электронике как оптические, фотонные устройства, ин-

тегральные электронные и спинтронные системы [3-5]. Эти варианты дополняются возможностью создания на их основе термоэлектрических преобразователей. На данный момент для такого рода материалов было достигнуто значение ZT, равное 0.4 и 0.2 для электронного и дырочного полупроводника соответственно [6]. Перспектива увеличения ZT просматривается в создании многофазной системы на основе сильнолегированного кремния с нановключениями силицидов железа [7], и изучение химического состава и физических свойств является актуальной задачей.

2. Экспериментальная часть

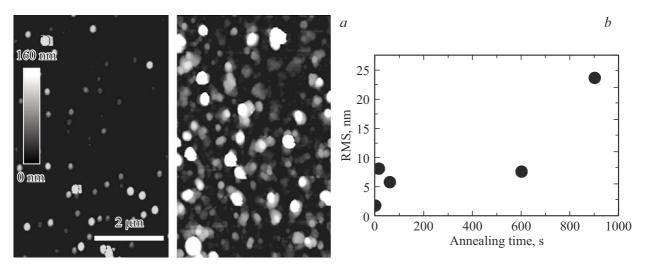
В настоящей работе исследованы кремниевые структуры с включениями силицидов железа, сформированные методом ионной имплантации и термического отжига. Исследование химического состава структур проводилось методом рентгеновской фотоэлектронной спектроскопии (РФЭС), дополненной методикой послойного ионного травления. Работа проводилась на сверхвысоковакуумном комплексе Omicron Multiprobe RM. Эмиссия фотоэлектронов происходила под воздействием MgK_{α} -излучения, и проводилась запись Φ Э-линий Fe 2p, Si 2s, Si 2p, O 1s, C 1s. Диаметр области анализа составлял 3 mm. Послойный анализ структур проводился распылением слоев ионами Ar⁺ с энергией 1 keV. Угол между ионным пучком и поверхностью образца составлял 45°. Протокол идентификации химических связей и количественного анализа представлен в [8,9]. При анализе профиля Φ Э-линии Fe 2p установлено, что в соединениях FeSi_x наблюдаются пики потерь энергии

Рис. 1. *а*) Профиль распределения концентрации химических элементов и химических связей по глубине в имплантированном железом кремнии до проведения отжига. *b*) Зависимость соотношения концентрации Fe в химической связи Fe—Si к общему содержанию Fe в системе (стрелками обозначены образцы Si:Fe, отожженные при одинаковых условиях; приведено процентное соотношение площадей под кривыми распределений Fe—Si и Fe). На вставке: профили распределения относительной концентрации железа, полученные при различной длительности отжига.

на плазмонных колебаниях с энергией $\sim 730\,\mathrm{eV}$ [10], и соотношение интенсивностей линий плазмонных потерь и основного дублета Fe 2p составляет $\sim 1:2$. Эта особенность позволила провести оценку концентрации химических связей Fe—Si.

При ионной имплантации Si подложка марки КЭФ-5000 толщиной 500 μ m облучалась ионами Fe с зарядами +1, +2 и +3 при ускоряющем напряжении $80\,\mathrm{kV}$ на установке "Радуга 3". Набранная доза составляла $5\cdot 10^{16}\,\mathrm{cm}^{-2}$. После ионной имплантации образцы отжигались при $1000^{\circ}\mathrm{C}$ в течение 0, 15, 60, 300, 600 и 900 s в атмосфере Ar в установке быстрого термического отжига Jipelec JetFirst200C.

Морфология поверхности образцов исследовалась с помощью атомно-силового микроскопа (ACM) Solver Pro в полуконтактном режиме с использованием зондов HA NC (HT-MДT). Регистрировались сканы $50 \times 50 \, \mu \text{m}^2$ и $7 \times 7 \, \mu \text{m}^2$.

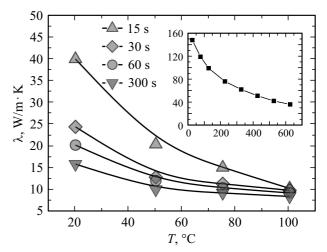

Для измерения коэффициента теплопроводности использовалась модифицированная методика 3ω [11]. На поверхность образцов наносился слой Al₂O₃ толщиной ~ 7 nm, затем 3-нанометровый слой Pd-Au. После формировался контакт в виде полосы длиной 3 mm и шириной 20 μ m с использованием фотолитографии и стравливания металлического слоя до диэлектрика. Толщина диэлектрика была подобрана таким образом, чтобы, с одной стороны, обеспечивать хорошую электрическую изоляцию, с другой — не вносить существенной ошибки в измерение коэффициента теплопроводности. При пропускании через контакт переменного электрического тока с использованием программируемого генератора переменного тока Keithley 6221 происходила регистрация частотной характеристики напряжения на утроенной частоте с помощью программируемого селективного вольтметра-усилителя Stanford SR810 Lock-In. В процессе измерения образец находился на графитовой

печи, находящейся в вакуумной камере с давлением 10^{-3} Torr, и печь разогревалась галогеновой лампой.

Поскольку рабочей областью для термоэлектрического преобразователя энергии является имплантированный слой, для устранения влияния основной кремниевой части образца в адаптированной методике последовательно регистрировались частотные характеристики двух образцов: образец с имплантированным железом и исходная подложка с нанесенным слоем Al_2O_3 . Нанесение диэлектрика на высокоомную кремниевую подложку обусловлено необходимостью учета вклада от него в коэффициент теплопроводности при измерениях, а не изоляцией контакта от подложки. Для устранения систематической погрешности слой Al_2O_3 наносился в едином технологическом цикле и на подложку, и на образец с имплантированным железом.

3. Результаты и обсуждение

Имплантированное в кремний железо имеет ассиметричное распределение (рис. 1, а) с максимумом содержания Fe на глубине 20 nm, что соответствует глубине, полученной при расчете в программе SRIM [12]. Кислород и углерод детектировались только на поверхности образца, что говорит об отсутствии в источнике ионов загрязнителей. В системах, отожженных дольше 15 s, наблюдается втягивание кислорода на большие глубины, достигающие $60-80\,\mathrm{nm}$. Два образца, отожженные в течение 15 s, отражают воспроизводимость результатов (рис. 1, b). Различия в содержании вызваны погрешностью метода РФЭС и возможной неоднородностью плотности тока ионов Fe в пучке. Также стоит указать на практически одинаковые профили распределения содержания элементов в структурах, отожженных в течение 300 и более секунд, что говорит об истощении


Рис. 2. a) АСМ-изображения поверхности исходного образца (слева) и образца, отожженного в течение 900 s (справа); b) зависимость шероховатости от времени отжига.

термически стимулируемых процессов в системе уже при $300 \,\mathrm{s}$ (рис. 1,b, вставка). Существенное увеличение ширины профиля Fe наблюдается уже при длительности отжига от $60 \,\mathrm{s}$. Вероятно, отжига с минимальной длительностью достаточно и для восстановления кристаллической структуры материала после имплантации, и для образования нанокристаллов FeSi_x. Это также просматривается в профилях распределения химических связей на глубинах $15-40 \,\mathrm{nm}$ (рис. 1,a).

Профили распределения содержания химических связей Fe, представленные на рис. 1, а, показывают, что приповерхностная область обогащена железом в элементном состоянии. Это может быть объяснено процессами вытеснения к поверхности атомов металла, не встроившихся в решетку Si. Также можно предположить, что при достижении значительной дозы атомы Fe скапливаются в виде кластеров, образование которых подтверждается данными просвечивающей электронной микроскопии [13]. Вероятно, это происходит из-за быстрой потери энергии ионами железа при большом количестве их столкновений с атомами радиационно поврежденной матрицы.

На рис. 1, *b* представлена зависимость доли химической связи Fe—Si в общем содержании железа от времени быстрого термического отжига. Из данных видно, что максимальная доля Fe, находящегося в соединении с Si, определяется в исходном образце как 88%. Проведение отжига с длительностью всего 15 s приводит к резкому сокращению концентрации Fe—Si. Увеличение длительности более 60 s не приводит к достоверно определяемым изменениям количественных характеристик.

Изменения свойств системы Si: Fe сопровождаются модификацией поверхности образцов (рис. 2,a). На ACM-изображениях поверхности образцов, не подвергнутых отжигу, регистрируются объекты микронного масштаба. С увеличением времени отжига их количество

Рис. 3. Температурная зависимость теплопроводности ионносинтезированных структур $FeSi_x$, отожженных при температуре $1000^{\circ}C$ в течение 15, 30, 60 и 300 s. На вставке: зависимость теплопроводности исходной подложки Si $K \ni \Phi$ -5000.

увеличивается. Исходный образец имеет минимальную шероховатость (рис. 2,b), а наибольшего значения шероховатость достигает при длительности отжига $900\,\mathrm{s}$. Тенденция предполагает дальнейшее увеличение шероховатости при увеличении длительности отжига, и это указывает на отсутствие связи между поверхностными процессами и термостимулированной диффузией Fe вглубь. В результате исследований выявлена нестабильность системы FeSi_x , полученной имплантацией ионов Fe. Это проявляется в сокращении концентрации атомов Fe, связанных с Si, в процессе проведении отжига при $1000^{\circ}\mathrm{C}$.

Температурные зависимости теплопроводности (рис. 3) показывают, что по мере увеличения тем-

пературы отжига падает значение коэффициента теплопроводности структуры.

На вставке рис. 3 приведена теплопроводность исходной кремниевой подложки с нанесенным на нее слоем диэлектрика Al_2O_3 , и из сравнения значений видно, что введение в кремний железа приводит к сильному снижению коэффициента теплопроводности. Это, вероятно, обусловлено коалесценцией силицидных комплексов железа вблизи поверхности, вызывающих эффект блокировки фононных мод [1].

4. Заключение

Увеличение длительности отжига приводит систему в равновесие, и соотношение количества химических связей Fe—Si/Fe выходит на значение 1:1. Отжиг стимулирует диффузию атомов Fe вглубь подложки Si, а в приповерхностных слоях протекают процессы, приводящие к появлению образований микронных и субмикронных размеров. При отжиге в атмосфере аргона, несмотря на восстановление кристаллической структуры, определяющим фактором для падения теплопроводности является формирование комплексов силицидов железа и металлических включений.

Финансирование работы

Работа выполнена в рамках реализации проекта H-487-99 по программе стратегического академического лидерства "Приоритет-2030".

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] D.M. Rowe. Thermoelectrics Handbook. Macro to Nano. Boca Raton: CRC/Taylor & Francis, N.W. (2006). P. 28–91. https://doi.org/10.1201/9781420038903
- [2] Y.C. Dou, X.Y. Qin, D. Li, L.L. Li, T.H. Zou, Q.Q. Wang. J. Appl. Phys. 114, 4, 044906 (2013). https://doi.org/10.1063/1.4817074
- [3] Q. Wan, T.H. Wang, C.L. Lin. Appl. Phys. Lett. 82, 19, 3224 (2003). https://doi.org/10.1063/1.1574845
- [4] K. Yamaguchi, K. Shimura, H. Udono, M. Sasase, H. Yamomoto, S. Shamoto, K. Hojou. Thin Solid Films 508, 1–2, 367 (2006). https://doi.org/10.1016/j.tsf.2005.07.354
- [5] I.A. Tarasov, M.A. Visotin, A.S. Aleksandrovsky, N.N. Kosyrev, I.A. Yakovlev, M.S. Molokeev, A.V. Lukyanenko, A.S. Krylov, A.S. Fedorov, S.N. Varnakov, S.G. Ovchinnikov. J. Magn. Magn. Mater. 440, 15, 144 (2017). https://doi.org/10.1016/j.jmmm.2016.12.084
- [6] H. Lange. Physica Status Solidi B 201, 1, 3 (1997). DOI: 10.1002/1521-3951(199705)201:1<3::AID-PSSB3>3.0.CO;2-W
- [7] R. Fortulan, S.A. Yamini. Mater. 14, 20, 6059 (2021).DOI: 10.3390/ma14206059

- [8] A.V. Boryakov, S.I. Surodin, R.N. Kryukov, D.E. Nikolichev, S.Yu. Zubkov. J. Electron Spectroscopy. Rel. Phenomena 229, 132 (2018). https://doi.org/10.1016/j.elspec.2017.11.004
- [9] N. Ohtsu, M. Oku, A. Nomura, T. Sugawara, T. Shishido, K. Wagatsuma. Appl. Surf. Sci. 254, 11, 3288 (2008). https://doi.org/10.1016/j.apsusc.2007.11.005
- [10] A.V. Sidashov, A.T. Kozakov, V.I. Kolesnikov, D.S. Manturov,
 S.I. Yaresko. J. Friction. Wear 41, 6, 549 (2020).
 DOI: 10.3103/S1068366620060185
- [11] K. Maize, Y. Ezzahri, X. Wang, S. Singer, A. Majumdar, A. Shakouri. In: Twenty-fourth Annual IEEE Semiconductor Thermal Measurement and Management Symposium / Eds R. Wilcoxon, R. Collins. IEEE Service Center, Piscataway (2008). P. 185. DOI: 10.1109/STHERM.2008.4509388
- [12] http://www.srim.org
- [13] Е.А. Чусовитин, С.В. Ваванова, И.А. Петрушкин, Н.Г. Галкин, Р.М. Баязитов, Р.И. Баталов, Г.Д. Ивлев, Т.С. Шамирзаев. Хим. физика и мезоскопия 11, 3, 374 (2009).

Редактор Е.В. Толстякова