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A brief review of the latest results of the application of the approximation of the potential of a diatomic molecule

by the Morse model function in applied spectroscopy is presented. The functions of the electronic terms of

the diatomic molecules BeH, F2, H2, HCl, and Be2 are compared with their two alternative approximations by

the Morse function. As a criterion, we used the differences between the original (approximated) term and its

Morse models, which, combined with the dependence of the anharmonicity of the original terms on the vibrational

quantum number ωex e(v), allowed to formulate some generalizations about the deformation of the form the original

term in the approximations. Simulation always leads to an increase in the bond energy in the range of 7− 50%

and to an increase in the number of vibrational levels. In favorable cases, the contour shape is reproduced with a

deviation of no more than 100−200 cm−1 in the lower part of the potential well.
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1. Introduction

The Morse model potential [1], despite a very rough

approximation, is widely used in molecular spectroscopy

and in other areas of optics and chemical physics. Ac-

cording to the Chemical Abstracts Service, over 6,000

references are given on the request
”
Morse Formula“Ȧs an

example, we present random selections of recent studies

in the field of spectroscopy [2–13], the influence of an

external field, laser dissociation of moleculescool [14–24],

thermodynamics, kinetics [25–34], solid and liquid physics-

sti [35–44], intermolecular interactions [45–56], Morse po-

tential properties [57–65] and v. d. [66–81]. In publica-

tions, the authors highly appreciate the usefulness of this

potential [2,4,10,50,62,63,64,66], the importance is often

emphasized by its mention in the titles of articles. In the

university teaching of molecular spectroscopy and physical

chemistry, Morse’s potential is given considerable attention,

including in laboratory practice, and didactic materials are

regularly published in specialized journals [82–89]. At

the same time, in the manuals, the question is presented

according to the established standard — for example, its

presentation at the stage of initial analysis [90,91] does not

differ much from recent monographs and textbooks [92]. In

particular, no analysis has yet been made of the distortions

introduced by approximation into the shape of the potential

curve and the vibrational structure of the electronic term.

In this study we develop this subject, which was started

in [93].

2. Problem formulation

The purpose of this study — to identify and systematize

the distortions that arise during approximation, and give

them a (semi)quantitative assessment.

Morse also showed in [1] that the approximation

U(r) = De

[

1− e−a(r−r e)
]2

, (1)

at which the vibrational energy G(v) takes vm + 1 values

G(v) = ωe

(

v +
1

2

)

− ωex e

(

v +
1

2

)2

,

v = 0, 1, 2, . . . vM, (2)

can be performed in two ways, depending on the choice of

initial parameters. If the bond energy De is unknown, it is

sufficient to know the coefficients ωe (harmonic frequency)
and ωex e (anharmonicity) in order to use also the known

value of the equilibrium bond length re , find De and

construct an electronic term (1) [93]. Let us call it M1.

This path is used by Morse in [1] to estimate the dissociation

energy of a number of molecules, the agreement with the

experiment is satisfactory. If the value of De is known, we

can use the experimental values of ωe and De together with

re to construct the term (1), we will call this term M2. The

terms M1 and M2 constructed for a particular molecule are

not identical, although they are sometimes referred to as the

same. Indeed, in the M1 case, three reference points lie

in the lower part of the potential well, and this part of the

potential, and hence the vibrational levels, are reproduced
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with maximum accuracy. As the energy increases, the

condition of the constancy of anharmonicity for the initial

term is fulfilled worse and worse, it usually increases. The

vibrational levels converge faster, and the original term

reaches the asymptote earlier than M1. The difference

between their energies becomes significant, the value of

De for M1 turns out to be strongly overestimated, hence

false vibrational levels appear. To construct the term M2

in the lower part of the potential, two reference points are

used, and the third determines the position of the asymptote,

so that the most significant discrepancy between M2 and

the original term occurs in its middle part and somewhat

higher.

To quantify the distortions of the original term U(r)

introduced as a result of the approximations M(r), follow-

ing [94,95], we used the difference δ(r) ≡ U(r) − M(r).

For several diatomic molecules, we constructed the U(r)

functions from high-precision theoretical data in the lit-

erature, which we considered experimental. Further we

calculated the model functions M1(r) and M2(r) for them

and the differences δ(r), as well as plotted the course of the

anharmonicity coefficients ωex e(v) for U(r). The value of

anharmonicity in [96] (formula (20.96)) is calculated from

the experimental sequence of energy differences of adjacent

vibrational levels (second differences):

G(v) − G(v − 1) = ω(v),

12G(v + 1/2) = ω(v) − ω(v − 1) = −2ωex e . (3)

For the Morse potential, it is constant. We can consider

the variable ωex e as a characteristic of the anharmonicity

of some section of the potential well of the curve U(r),

and then the empirical function ωex e(v) (or x e(v) if

we exclude the individuality of the molecule) reflects the

difference between the models M1 and M2 and the original

term U(r) [97]. Let us clarify that speaking about the

anharmonicity of the original term, we mean the value of

the first term of the sequence 12G(v), as is customary in

the literature [98,99].

When analyzing the differences δ(r), we tried to make

some generalizations of the distortions of the form U(r)

under Morse approximations. Anharmonicity ωex e for the

function M1 of real molecules was calculated from the

experimental frequencies of transitions between vibrational

levels v = 0, 1, 2 (by two values, n = 2). In the present

situation it turned out to be useful to compare with

the form of the anharmonicity function ωex e(v), which

agrees well with the details of the form of the term [93].

The complication of the form of the differences δ(r) is

observed in the following sequence: a monotonic increase

in anharmonicity — the existence of a minimum (first a

decrease, and then an increase) — a more complicated

dependence.
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Figure 1. Potential energy curve U(r) of the ground state X 26+

of the free radical BeH (solid curve) constructed from high-level

calculated data in [102], and its Morse reconstructions M1 (dotted
line) and M2 (dashed curve).

3. Results for them

3.1. Monotonic increase in anharmonicity

Differences δ(r) have the simplest form for terms in

which the anharmonicity increases monotonically over a

wide energy interval up to the middle of the potential well

and beyond. With a large amplitude of oscillations near

the asymptote, a sharp anomaly occurs due to a change

in the law of interaction between atoms, an increase in

the proportion of van der Waals interaction. This issue

is considered in detail in the studies of Le Roy and co-

authors [100,101], who modified the Morse function for

a wider region by increasing the number of parameters

(MorseLongRange model), but we will focus on the main

part of the potential, remaining in the ideology [1] and

without paying attention to the asymptotics. Let us consider

the potential curves of the ground state of the free radical

BeH and the F2 molecule belonging to this group.

3.1.1. Ter,m X 2
6

+ of the radical BeH This term is

an example of the simplest Morse approximation. A rough

estimate of the distortions introduced by the approximation

can be made from Fig. 1, which shows the potential curves

of the ground state X26+ of the free radical BeH (solid
curve) and its reconstruction M1 (dotted line) and M2

(dashed curve) constructed from high-level calculated data

in [102]. The M1 curve reproduces well the original term

in the lower part of the well up to ∼ 9000 cm−1, which is

about half of its depth. Then the attraction branch goes up,

the deviation from U(r) increases rapidly, and its asymptote

exceeds De by more than one and a half times. In the

resulting potential well, there are false vibrational levels

lying above De . The M2 curve lies below U(r) on the

entire section, including the repulsive branch, the deviation

increases on the attraction branch, and in the upper part of

the potential reaches its maximum value ∼ 5000 cm−1, and

near the asymptote the curve tends to the initially assigned
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Figure 2. Differences between the potential curve U(r) of the

ground state X26+ of the free radical BeH calculated with high

accuracy in [102] and its Morse approximations M1 (solid line) and
M2 (dashed curve). On the abscissa axis, dashes show the location

of the outer classical turning points r2 of the vibrational levels of

the term U(r), above and below the abscissa — the turning points

r2 of the M1 functions and M2 respectively. In the lower part of

the figure, the energy scale shows the arrangement of vibrational

levels for potential curves on U(r), M1, and M2. The insert

shows the anharmonicity 1ω(v) = ω(v) − ω(v − 1) = −2ωex e of

the U(r) term as a function of the quantum numbers v (triangles).
The straight horizontal lines show the anharmonicity constants for

M1 (solid gray line) and M2 (thick dashed line).

position. It can be seen that the original function reaches the

asymptote first, then M2, and finally M1. Since the potential

well M2 is wider than M1, the density of vibrational levels

in it should be higher.

A more accurate description of the deviations is given in

the coordinates δ(r) (Fig. 2). The dashes on the abscissa

show the position of the outer classical turning points r2
(r2 > re) for vibrational levels U(r). Above and below are

the values of r2 for models M1 and M2, respectively. The

additional scale in the lower part of the figure shows the

position in the energy scale of the vibrational levels of the

real term and approximations of M1 and M2, including for

M1 also false levels lying above De . It can be seen that both

repulsive branches M1 and M2 go below the original term,

and its attractive branch is located between them. In the

lower part of the term U(r), in the interval r from 1.1 to

1.9 Å, where the approximation M1 satisfactorily describes

the term U(r), the deviation in the attraction branch slowly

increases to about 200 cm−1, near level v = 4, ∼ 40%

of potential well depth U(r) and M2 [103]. The real

anharmonicity of ωex e in this case increases from 37 to

43 cm−1 (insert to Fig. 2), the constant anharmonicity of

the term M1 is equal to 37 cm −1. Further, the curve δ(r)
for M1 quickly goes down and reaches an asymptote, where

the excess of M1 over U(r) is about 10000 cm−1, and the

real ωex e = 150 cm−1. Due to this difference, 15 false levels

were formed that lie above the asymptote. The function δ(r)
for the term M2 forms a maximum at r ∼ 2.4 Å near v = 9,

at the maximum the deviation of M2 from the original term

is greater than 4500 cm−1. On the section from v = 9 to

the asymptote, 12% of the depth of the well, there are three

levels U(r) and 8 levels M2. Since the experimental value

of De was used in the construction of the M2 function, the

anharmonicity of ωex e due to the higher level density should

be noticeably greater than for M1. In this case, the condition

of conservation of the harmonic frequency ωe must also be

satisfied, so that the coincidence of the asymptotes U and

M2, marked by a vertical line on the scale in the lower part

of Fig. 2, is due to an increase in the anharmonicity of ωex e

from 37 to 58 cm−1 due to the dimensionless multiplier

x e [97]. This is accompanied by the appearance of five false

levels below the dissociation limit.

Thus, for BeH the function M1 satisfactorily approximates

the initial term in the lower part, about 40% of the potential

well, then, in the attraction branch, the deviation to higher

energy increases and near the boundary of the continuous

spectrum is 650 cm−1. Above the U(r) asymptote, this

deviation reaches the limit of 10000 cm−1, which is recorded

as 55% of the addition to the bond energy of 17590 cm−1.

In this case, the number of vibrational levels M1 in the

region De of the initial term decreases to ten. The attraction

branch of the function M2 already in the lower part quickly

goes to a lower energy with the maximum deviation from

U(r) at v = 9 by ∼ 30% from its energy. Near the last

vibrational level U(r) the deviation decreases to 3300 cm−1,

so that only in the interval below v = 1 (17% of the

well) the M2 deviation is less than 3000 cm−1, i.e. the

M2 approximation strongly distorts the original function

everywhere. In addition, the number of vibrational levels

increases to 17.

3.1.2. Term X 1
6

+

g of the molecule F2 The main

term X16+
g of the molecule F2 according to the form of

the function δ(r) constructed in Fig. 3 from the data high-

precision [104], is very similar to the BeH term described

above, except for the repulsion branch M1, which is located

above the real term U(r), but almost merges with it at

the boundary of the continuous spectrum. This feature,

although confirmed by a later calculation [105], still requires
a more thorough analysis. The model term M1 in the

interval 1.3−1.7 Å goes close to the potential U(r) within

limits not exceeding 100 cm−1. In this case, according to

the insert, the vibrational levels of the U(r) term converge

with increasing anharmonicity ωex e , 12−14 cm−1. This

region, up to v ∼ 7 (according to [106,107] vibrational

levels in total 22) is about 40% of the potential well

depth U(r). So this term can also be an example of

the simplest term satisfactorily described by the Morse

formula in the lower part of the potential. Further, the

anharmonicity increases with acceleration, the attraction

branch of the M1 curve quickly goes up (the difference

Optics and Spectroscopy, 2022, Vol. 130, No. 9
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Figure 3. Differences between the potential curve U(r) of

the ground state X 16+
g of the F2 molecule calculated with high

accuracy in [104], and its Morse approximations M1 (solid line)
and M2 (dashed line). On the abscissa axis, dashes show the

location of the outer classical turning points r2 of the vibrational

levels of the term U(r). The insert shows the anharmonicity

values −2ωex e of the U(r) term as a function of the quantum

number v (circles), as well as the corresponding values of the

anharmonicity constant for M1 (upper dotted line) and M2 (lower
dashed line). In the lower part of the figure, the energy scale shows

the arrangement of vibrational levels for the potential curves U(r),
M1, and M2.

δ(r) is negative), and tends to the limit value, which is

higher than the initial one by ∼ 4000 cm−1, approximately

35% of De = 13400 cm−1. The M2 curve is located below

U(r), in the attraction branch the distance between them

increases to the maximum value ∼ 1800 cm−1 for r ∼ 2 Å
(∼ 80% of the well depth, about v = 14), and then the

curve smoothly reaches the given position of the asymptote.

In the potential well, 5 false vibrational levels appear due

to an increase in anharmonicity compared to U(r). For

M1 there are 16 such levels. Here also, first the original

function reaches the asymptote, then M2, and finally M1.

The deviation of M2 from U(r) near its last vibrational

level is ∼ 800 cm−1, so that the distortions of the term

U(r) when M2 is approximated in a wide region exceed

∼ 500 cm−1.

3.2. Terms with minimum anharmonicity

New details are found in the form of terms whose

anharmonicity first decreases, passes through a minimum,

and then increases monotonically. To this group belong the

potential curves of the ground state of hydrogen molecules

H2 and oxygen molecules O2 [93] (in [93] this the feature
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Figure 4. Differences between the potential curve U(r) of the

ground state X 16+
g of the hydrogen molecule H2 calculated with a

high accuracy, and its Morse approximations M1 (dashed line) and
M2 (dashed line) according to the data [113]. Inserts: a — section

of potential curves with the intersection of the approximation M2

with the potential curve U(r), b — anharmonicity −2ωex e of the

term U(r) as a function of the quantum number v , as well as the

corresponding values of the anharmonicity constant for M1 (upper
dotted line) and M2 (lower dashed line).

was called the anomaly of Herzberg, AH), HF and the

corresponding isotopes [97]. Historically, deviations of the

Morse approximation (of the M2 type, as can be judged

from the figure) from the original term were first noted by

Herzberg for the basic term of hydrogen in the book [108],
where they are shown by a dotted line in Fig. 48. Below we

consider in more detail the potential curves of hydrogen and

HCl molecules. The latter is interesting as an intermediate

case, and has also been repeatedly cited in textbooks

and monographs as an example of applying the Morse

approximation [96,109–112].

3.2.1. Term X 1
6

+

g of the hydrogen H2 Figure 4

shows the differences δ(r) between the potential curve

U(r) of the ground state 16+
g of the hydrogen molecule H2

constructed from the results of a high-precision theoretical

calculation [113], and Morse approximations. Terms M1

and M2 of hydrogen with vibrational structure calculated

from the same data are shown in the study [93], fig. 1.

The dependences δ(r) for M1 and M2 have become

more complicated — in the attraction branch, both curves

demonstrate a minimum, then a maximum, and after that

they tend to an asymptote. The difference with M2 first

goes below zero, after the minimum it goes up, and after

crossing the x-axis near r ∼ 1.35 Å it reaches a maximum.

Direct intersection of terms is shown in the insert (a). This
means that the curve M2 in the energy interval from the

minimum to ∼ 20 000 cm−1, near the level v = 5, goes

above the term U(r), i.e.reproduces AH in the same section

of the potential curve. According to the insert (b), the

anharmonicity decreases in this interval, and it can be

assumed that this decrease serves as an empirical indication

68 Optics and Spectroscopy, 2022, Vol. 130, No. 9
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of the deviation of the potential function U(r) from the

Morse formula. Real AH is about 5 times less than shown

in the graph in [108]. On the δ(r) curve for M2, the

AH appears as its negative part lying below the axis, and

on the δ(r) curve for M1 — as a descending part from

the bottom of the well to a minimum of 600 cm−1 at

r ∼ 1.35 Å. On the rise to the maximum at ∼ 1.85 Å (a
section of the well between levels 5 and 9), M1 converges

with U(r) up to about 350 cm−1, and then their difference

increases monotonically. We can assume that in the

section up to r ∼ 2.2 Å (approximately 70% of the depth

of the well), where the average deviation is approximately

450 cm−1, the M1 approximation is satisfactorily reproduces

the form of the term U(r). Further, the difference δ(r)
goes monotonically to the asymptote ∼ 2500 cm−1 — the

excess of the extrapolated value De over the true value

38300 cm−1, approximately 7%. The existence of AH

somewhat narrows the potential well, which leads to a

decrease in anharmonicity and to a decrease in the average

deviation — in fact, to an improvement in the quality of the

approximation.

In the upper part of the well, approximately from the level

v = 6, there is a rapid increase in anharmonicity, and from

this level in the mentioned Fig. 48 of the book [108] below
the term U(r) there is a dashed curve function M2, which

increases the width of the potential well and the density of

vibrational levels. This feature, correctly noted by Herzberg,

is almost universal. For the BeH and F2 considered above, it

is this that determines the huge increase in the extrapolated

value of the bond energy De . A slight deviation of the

dotted curve on the outer side of the repulsion branch from

the bottom of the well to the level v = 1 in Fig. 48 in [108]
could not be registered.

The curve M2 approaches the general asymptote more

slowly than the curve U(r), and the curve M1 reaches its

asymptote even later. Because of this, extra vibrational levels

appear near the asymptote for the potentials M1 and M2

(in Fig. 2 in [93] one can see 4 and 3 extra levels on these

terms). For the potential M2, the maximum deviation from

the term U(r) ∼ 1500 cm−1 is observed at r ∼ 2.1 Å, near

the level v = 11, i.e at a distance (in energy) ∼ 12% of the

well depth from the asymptote. On the repulsion branch,

the differences δ(r) for both Morse approximations M1 and

M2 go up steeply and are positive, since these curves lie

below the potential U(r), and high in the region of the

continuous spectrum acquire at zero final value.

Additional information can be obtained by changing the

interval for determining the anharmonicity of the original

term [93], i.e. averaging the values of ωex e over several

levels. Previously, averaging over three values (n = 4) was

done in [111] for HCl, in [93] the results of averaging for

H2 and O 2. We plotted δ(r) differences for hydrogen with

ωex e values calculated both with n = 2 and with n = 3, 6

and 10. The most noticeable changes occur on the attraction

branch of the term M1. An increase in the averaging interval

to 3 and 6 leads successively to a weakening and almost

complete disappearance of the maximum on the δ(r) curve.
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Figure 5. Differences between the potential curve U(r) of the

ground state X 26+ of the HCl molecule calculated with high

accuracy in [114] and its Morse approximations M1 (solid line)
and M2 (dashed lines), calculated from two vibrational frequencies

(n = 2). On the abscissa axis, dashes show the location of the

outer classical turning points r2 of the vibrational levels of the term

U(r). Transitions involving v = 18− 20 vibrational levels have not

been observed experimentally. The insert shows the anharmonicity

values −2ωex e of the U(r) term as a function of the quantum

number v and shows the calculated anharmonicity values for M1

(upper dotted line) and M2 (lower dotted line).

At the same time, the excess of the extrapolated value De

to ∼ 3700 cm−1 increases. At n = 10 the situation changes

qualitatively — De sharply decreases, extrema again become

well expressed, the picture almost does not differ from

n = 3. It is noteworthy that the two terms calculated with

n = 3 and 10 intersect at r ∼ 2.0−2.1 Å. Obviously, these

changes reflect the peculiarity of the real term, mainly AH.

3.2.2. Term X 1
6

+ of the HCl molecule The insert

to Fig. 5 plots the dependence 1ω(v) of the differences

in the vibrational frequencies of HCl according to the

data [114], which shows a weakly pronounced positive AH

curvature, a decrease in the value of 1ω = −2ωex e by

1.5 cm−1 for v = 5. The dependences δ(r) have a form

intermediate between hydrogen and molecules without AH,

F2 and BeH considered above. For the δ(r) branch of the

attraction of the M1 function, a flattened section with an

inflection point, but without a pronounced maximum, is

observed, which is clearly visible in Fig. 4 for hydrogen.

Under these conditions, in the interval r from 1 to 2.1 Å
(up to v = 9, approximately 65% of the well depth), the
curve M1 does not move away from U(r) by more than

350 cm−1. In this interval the M1 model satisfactorily

reproduces the real term. Further the difference rapidly

increases to 5500 cm−1.

The δ(r) M2 function has no features that could be

associated with AH, but behaves differently from hydrogen

in some details. It differs more from M1 not far from

re , and the repulsion branch goes steeper than M1. Also

a strong dome-shaped deviation of M2 from the term

Optics and Spectroscopy, 2022, Vol. 130, No. 9
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Figure 6. Functions δ(r) for the ground state X 16+
g of the Be2

molecule constructed from the data of [116]: M1 (solid curve),
M2 (dashed curve). The insert shows the anharmonicity −2ωex e

of the U(r) term as a function of the quantum number v .

U(r), exceeding 1000 cm−1, starts near r ∼ 1.7 Å (near the
level v = 4). Its maximum value 3500 cm−1 at v = 14 is

observed near the asymptote (at a distance of 4950 cm−1,

i.e. at ∼ 13% potential well depth [114]). In the entire

important region from re to 2.7−2.8 Å the deviations of the

term M1 from the term U(r) are smaller than those of the

term M2. The extrapolated M1-value of the bond energy

De per 5500 cm−1, i.e. by ∼ 15%, exceeds the real value

of 37214 cm−1. The authors reviewing this example give a

close excess value of — 17% [96], 15% [110], 20% [112].

3.3. Noticeable deviations in the form of the
potential curve from the traditional

form

Deviations can be caused by features of the electronic

structure, such as Be2, or perturbations, such as
”
avoided

crossing“ (avoided crossing, a typical example — the ground

state of alkali halide molecules). We consider the term

X 16+
g of the ground state of the Be2 molecule, which is also

of interest because for it Merritt and co-authors compared

with Morse approximation M2 [115].

3.3.1. Term X 1
6

+

g of the molecule F2 Figure 6

shows the differences δ(r) between the term U(r) cal-

culated from high precision theoretical data [116] and its

interpretations M1 and M2. These differences have a

specific form, which is very different from the examples

considered above. The specificity of the ground state

of Be2 is that, under vibrational excitation, already at

v > 4−5 ( 11 levels in total), the electronic structure of

the molecule is rearranged in such a way that the covalent

interaction near the external turning point becomes van der

Waals dispersive [117]. This uniqueness manifests itself in

the arrangement of vibrational levels and in the unusual

form of the δ(r) function. According to [93,115,118], the
Burge−Sponer (B−Sh) [119,120] diagram has the form of

two straight line segments located at an angle, which is

generally characteristic of preventing the intersection of two

electronic terms, but here the reason is another. It was

found in the studies [115,118] that in the first section of the

B−Sh diagram, up to the break near r = 4 Å, near v = 4,

the connection is well described by the Morse potential,

but in the second section, the dependence is more complex.

Merritt et al. [115] in Fig. 3 showed the original term Be2
X 16+

g and its approximation by a Morse function of type

M2. The graph shows the intersection of terms at r = 3.1 Å
near v = 2, and in the lower part of the potential, the

function M2 lies on the outside — similar to AH, but with

the opposite sign. This feature leads to the formation of the

maximum of the δ(r) M2 function in the positive region

and its reaching zero value near r = 3.4 Å followed by the

formation of a minimum in the negative region at r = 4.1 Å
in the region of the B−Sh graph break. An analysis of the

second differences in [93] (insert in Fig. 4) showed one more

section on the Be2 electronic term up to r 3.1 Å (near the
level v = 2), at which the anharmonicity increases (AH vice

versa). In the second section up to r ∼ 4 Å (near the v = 5

level), the anharmonicity of ωex e drops sharply from 30 to

5 cm−1, and then it remains approximately constant up to

∼ 1 cm−1 (third segment). The curve M1 constructed with

high anharmonicity for n = 2 goes to the limit 751 cm−1

(Table 1 in the study [118]), which is 180 cm−1 below

the real bond energy 930 cm−1 [118]. Therefore, the

approximation M1 corresponds to the positive value of

the function δ(r), and the extrema of δ(r) M1 coincide

with M2.

4. Conclusion

The Morse molecule, which does not exist in nature,

together with the non-existent abstract harmonic frequency

ωe , represent the first anharmonic approximation with con-

stant anharmonicity ωex e , for which, by happy coincidence,

the Schr?dinger equation is solved almost strictly. Therefore,

the Morse molecule serves as a convenient initial object in

the study of many phenomena in various fields of chemical

physics. Kaplan [121] believes that the Morse potential is

widely used, in particular, in the study of the properties

of crystals, because
”
the properties of crystals are most

sensitive in the range of distances in which the Morse

potential quite satisfactorily describes the real potential

curve“. An attempt [122] to add a cubic term with a second

anharmonicity coefficient to the series (2) does not seem to

be developed.

When approximating the term U(r) by the Morse func-

tion, it is important to know the type and magnitude of the

introduced distortions, and their complete characteristic is

given by the difference δ(r) ≡ U(r) − M(r). The empirical

dependence ωex e(v) of the second energy differences of

successive vibrational levels of the term U(r), which charac-

terizes the dependence of the anharmonicity on the position

of the level in the potential well, is of great use for analysis.

The function ωex e(v) can be considered as a formal
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second approximation after ωe (harmonic approximation,

x = 1) and ωex e = C (the simplest anharmonic Morse

approximation). In terms of the shape of the potential

curve — parabola, one constant (ωe); Morse contour, two

constants (ωe , ωex e); real molecule, set (ωe , ωex e(v)
and δ(r)).

5. Conclusions

In formulating the conclusions, it should be added

that they are based on very limited material and can be

noticeably clarified in the future. In particular, qualitatively

new generalizations can be expected after a more detailed

study of molecules containing isotopes, mainly hydrogen

isotopes [97].
The expediency of using the empirical dependence of the

difference of functions U(r) − M(r), where U(r) — is the

original term, and M(r) — is the Morse approximation M1

or M2, to quantify the distortions of the real term of a

diatomic molecule with a valence bond and its vibrational

structure as a result of approximation.

The usefulness of using the empirical anharmonicity

dependence ωex e(v) as an auxiliary criterion for the

presence of singularities in the shape of the lower part of

the potential curve is shown.

A monotonic increase in anharmonicity correlates with

the simplest form of M(r), while an anomalous decrease

for several initial levels leads to its complication.

In favorable cases it is possible to obtain a satisfactory

approximation of M1 with an average difference (upwards
in energy) from the original term 100−200 cm−1 in the

lower part of 40−50% of the potential wells. Approximation

M2 gives significant deviations (more than 500−1000 cm−1

towards lower energy) almost at the entire depth of the well.

Approximation M1 usually leads to an increase in the

depth of the potential well to ∼ 50% or more and to its

narrowing in the region of bound states of the term U(r) —
in this region the number of vibrational levels decreases

(compared to the number of vibrational levels of the term

U(r)). For the M2 approximation, the well width increases

and the number of vibrational levels increases accordingly.

Approximations M1 and M2 lead to the appearance

of false vibrational levels. False levels are adjacent to

the asymptote of the original term: approximation levels

M1 — from the side of the continuous spectrum, levels of

approximation M2 — from the side of the discrete spectrum.

The described results refer to molecules with a valence

bond. It follows from the examples given in the study [93]
that in van der Waals molecules the anharmonicity changes

according to a different law. This issue requires special

consideration.

We would like to hope that the above information will

help specialists who use the Morse formula to approximate

the real term to optimize their working conditions, and

teachers will be given the opportunity to offer students new

tasks.

Note: Herzberg and Oui [123] in describing the results

of a precision study of the emission spectrum of hydrogen

H2 give the dependences G1(v) and 12G(v) (the last one in
Fig. 8 from [123] almost exactly coincides with our insert (b)
in Fig. 4), and their phrase in the conclusion

”
It would

be interesting to carry out a theoretical analysis that would

give a more detailed explanation of the behavior of the Bv

and 1G curves at low values v“ (meaning AH) acquires

additional relevance due to indicated by the prevalence of

this phenomenon.
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