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The initial information on the molecular functions necessary for calculations of spectra is always of discrete

nature, being either quantum-chemical calculations or experimental data. Selection of the model functions built

on this information and then used to calculate the intensities of the fundamental transitions and low overtones is

not restricted by any conditions, yet these same functions can result in errors when used for the high-overtone

transitions. In particular, the errors are found in calculations for OH, PN, YO, CaO, PS, NS, SH, PH, and NO. We

analyze the sources of the errors and give recommendations of how to avoid them. The molecular functions should

be chosen such that the Normal Intensity Distribution Law is fulfilled. In order to increase the accuracy of the

calculations, it is also desirable that their analytical properties in the complex plane be as close as possible to those

of the real functions.
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intensities.

DOI: 10.21883/EOS.2022.09.54822.3428-22

Introduction

The main feature of overtone transitions is a very fast

decrease in intensity with increasing overtone number —
the intensity drops by 1−2 orders when moving to the

next overtone, so for numerical calculation of the intensities

of very high overtonesquadruple accuracy is required [1].
This is quantitatively described by the so-called

”
Normal

Intensity Distribution Law“ (NIDL), according to which

the logarithm of the intensity is a linear function of the

square root of the upper level energy Ev in units of the

vibrational quantum ω [2,3]. The exceptions are anomalies,

i.e., separate lines, the intensity of which is much weaker

than it follows from NIDL, due to a specific interference

effect [3,4]. The normal intensity distribution law is fulfilled

for all diatomic molecules, as well as for quasi-diatomic local

vibrations in polyatomic molecules, which is confirmed by

experimental data and theoretical calculations [2,5–7]. The

physical nature of NIDL is described in detail in [3,8,9],
where it is shown that it is closely related to the behavior

of the molecular potential in the strong repulsion region.

The normal law of intensity distribution is a powerful

tool for analyzing the calculated intensities of overtone

transitions.

To calculate the intensities of dipole transitions, it is

necessary to know the potential energy U(r) and the

electric dipole moment d(r) of the molecule as functions

of the internuclear distance r . In the case of transitions

with a small change in the vibrational quantum number

v , as a rule, 1v ≤ 2, the shape of these functions does

not affect the result, but this is not the case for higher

overtones. In particular, using the example of calculations

of the intensities of transitions v ← 0 for SiO, CS, CO, and

LiCl, it was shown that the use of non-analytical functions

with discontinuous derivatives, for example, splines, leads

to nonphysical saturation of the intensities at v ≥ 5 for

SiO [10], v ≥ 7 for CS [1,11], CO and LiCl [10]. Therefore,
in modern calculations, only analytic functions are used [12],
but the problem still remains, since, as we will see,

additional restrictions are needed.

Further studies have shown that model functions should

have special properties of analyticity in the complex

plane, close to the properties of true molecular func-

tions [13], and a method was proposed to quantify

the degree of such closeness [9,13] . It is based on

the obvious requirement that the results of calculations

depend relatively weakly on the choice of the shape

of the dipole moment function (DMF) with formally

different analytical properties. See [9] for an example

of similar intensities for CO calculated with an irregular

DMF with branching points and with a rational func-

tion. In this case, one can expect that the remaining

discrepancy gives an estimate of the accuracy of the

calculation.

In this article, using NIDL, we analyze the calculation

data for some diatomic molecules contained in the inter-

national databases ExoMol [14] and HITEMP [15] and

propose methods for improving the calculations accuracy.

Significant deviations from NIDL are interpreted as errors

due to incorrect choice of DMF or potential energy function,

which is justified in the Discussion. Methods for improving

the calculations accuracy are considered in the Conclusion.
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Figure 1. Calculated Einstein coefficients Av0 (in s−1) for

vibrational-rotational transitions in the ground electronic state X25

of the hydroxyl radical according to [16] taken from the Exo-

Mol database (https://www.exomol.com/ ). J′′ = 0.5, v = 1−13.

The NIDL straight line is drawn through the points v = 2−8,

ω = 3738.465 cm−1 [16]; point v = 9 — possible anomaly.

Saturation of intensities due to DMF
non-analyticity

The figures below show the intensities of transitions

v ′, J′ ← v ′′, J′′ from the lower state v ′′ = 0, J′′ = 0, 0.5, 1

or 1.5 to the upper state v ′ = v ≥ 1, J′ = J′′ + 1. The

NIDL straight line is drawn through the points starting from

the first overtone v = 2 excluding the anomalies.

Figure 1 shows the data by Brooke et al. [16] for the

hydroxyl radical. The deviations from the NIDL linear

dependence as a result of using splines occur at v ≥ 9.

Figure 2 shows the data by Yorke et al. [17] for phospho-
rus nitride. The deviations from the linear dependence of

NIDL due to the use of splines occur at v ≥ 6. Wrong data

at v ≥ 6 was not included in ExoMol.

A similar situation occurs for yttrium monoxide (Fig. 3)
and calcium oxide (Fig. 4). Saturation due to the use of

splines was also observed for carbon monosulfide CS (Fig. 3
in [1] and Fig. 4 in [11]). In the study [11] a piecewise

DMF with discontinuities of derivatives at r = 1 and 3.4 Å
was proposed, but this should also lead to strong deviations

from NIDL.

Saturation of intensities due to rapid DMF
change in the complex plane

In the study [12], taking into account our considerations

about the need to use analytic functions, a model analytic

DMF in the form of a polynomial in the so-called
”
damped“

coordinate was proposed:

z = (r − r ref) exp[−β2(r − r ref)
2
− β4(r − r ref)

4], (1)
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Figure 2. Einstein coefficients for transitions in the X16+ state of

phosphorus nitride according to [17]. J′′ = 0, v = 1−66. The

NIDL straight line is drawn through the points v = 2−5, the

intensities at v ≥ 6 are obviously wrong.
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Figure 3. Einstein coefficients for transitions in the X26+ state

of yttrium monoxide according to [18]. J′′ = 0.5. Point v = 4 —
anomaly. The NIDL straight line is drawn through the points

v = 2, 3, 5, 6. ω = 861.5 cm−1 [18]. The intensities at v = 7−17

are obviously erroneous.

where r ref — a fixed parameter close to the equilibrium

bond length re, and β2, β4 — variable parameters. However,

the polynomial in powers of the variable z does not satisfy

the requirement that the DMF does not change too fast in

the complex plane r [9] — DMF grows exponentially and

oscillates. Unfortunately, there is no way to check whether

there is a NIDL fault in at high v Fig. 5 for phosphorus

monosulfide (PS), since saturation of the intensities at

v > 15 is caused by the use of double precision in numerical

calculations. Be reminded that the use of double precision in

carbon monoxide CO resulted in saturation at v > 20 [21]
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Figure 4. Einstein coefficients for transitions in the X16+ state of

calcium oxide according to [19]. J′′ = 0. Point v = 4 — anomaly.

The NIDL straight line is drawn through the points v = 2, 3, 5, 6.

ω = 733.4 cm−1 [20]. The intensities at v = 7−12 are obviously

erroneous.
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Figure 5. Einstein coefficients for transitions in the X25 state of

phosphorus monosulfide according to [12]. J′′ = 0.5, v = 1−81.

The NIDL straight line is drawn through the points v = 2−9.

Points v = 13 and 19 are possible anomalies. The intensities

at v > 20 are obviously erroneous.

with comparable values of A. A similar situation takes place

for nitrogen sulfide (Fig. 6).

Let us discuss in more detail the results for

thio(mercapto)-radical (Fig. 7) obtained by Yurchenko et

al. [22] and Gorman et al. [23]. In the first article the

transitions in an isolated ground electronic state X were

considered, and in the second, excited states A and B were

added along with the spin-orbital interactions X−X, X− A

and X−B calculated using ab initio methods. Although the

minimum of the A state is reached at the level of v = 25
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Figure 6. Einstein coefficients for transitions in the X25 state

of nitrogen sulfide according to [22]. J′′ = 0.5, v = 1−36. NIDL

straight line through points v = 3−9. Points v = 2 and 11 are

possible anomalies. The intensities at v > 12 are obviously

erroneous.

of the X state, the second article notes an appreciable

contribution of the A state to the calculated absorption

spectra at energies above 10 000 cm−1, which corresponds

to level v = 5 of the state X. Therefore, the observed

increase in intensities in the interval v = 9−12 could be

associated with the contribution of the state A. In fact, as

can be seen from the comparison of the data of these two

works in Fig. 7 (circles and crosses), the contribution of

the state A in the range v = 1−14 is relatively small and

does not affect the incorrect behavior in any way, i.e. the

increase in intensity above the possible anomaly at v = 8.

As an alternative explanation for the incomprehensible

growth, one can propose the influence of discontinuities

in the higher DMF derivatives as a result of the use of

splines for representation of the ab initio data or rapid

changes of the DMF in the complex plane (see Discussion).
We performed a simplified calculation using the Born-

Oppenheimer potential (without spin-orbital interaction and

small corrections) and analytical DMF, expression from [12]
with parameters from [23] (dots), and the hill is gone. From

this we can conclude that here splines are also to
”
blame“.

However, in a similar situation for phosphinidene (PH),
everything is different.

Data for the phosphinidene are shown in Fig. 8. The

Einstein coefficients Av0 from the ExoMol database (cir-
cles), plotted in NIDL coordinates, behave

”
in waves“.

For comparison, we plotted the Iv0 overlap integral that

we calculated, which exhibits an almost perfect NIDL in

what follows, we use only the Born-Oppenheimer potential,

ignoring the spin-orbital interaction and other contributions

(the calculations showed, see pluses in Fig. 8, that this

simplification has almost no effect on the results). According
to the theory (appendix in [9]), the transition amplitude can

be represented as the product B0T0 of two factors. The

second of these two factors depends only on the potential,

69∗ Optics and Spectroscopy, 2022, Vol. 130, No. 9
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Figure 7. Einstein coefficients for transitions in the X25 state

of the thio(mercapto)-radical according to the data in [23] (circles,
E′′ = 368 cm−1, v = 1−36) and [22] (crosses, E′′ = 360 cm−1,

v = 1−14). Lower state: J′′ = 0.5, 3′′ = +1, 6′′ = −0.5,
�′′ = +0.5, parity e,+; upper states: J′ = 0.5, 3′ = −1,
6′ = 0.5, �′ = −0.5, parity f,−. NIDL straight line through points

v = 2−6, ω = 2711 cm−1 [24]. Point v = 8 — probably anomaly.

The intensities at v > 9 are obviously erroneous. The vertical line

shows the position of the minimum of the first excited electronic

state. Black circles — our calculation.

and only on its repulsive branch, and ensures a rapid

decrease in intensity with the overtone number according to

NIDL. The first factor, which depends on both the potential

and the DMF, changes much more slowly, but can lead

to
”
anomalies“ (i.e., weak transitions) if it passes through

zero (
”
sharp“ anomaly in the shape of a beak on a semi-

log plot) or approaches zero but does not cross the x -axis
(
”
flat“ anomaly). In fact, the overlap integral is the same

transition matrix element, but with DMF≡ 1, so NIDL

should have the same slope (same factor T0) for any DMF,

not having non-physical singularities in the complex plane

and slowly changing in comparison with the wave functions

of vibrational-excited states. By shifting the NIDL straight

line up by a parallel translation, we see that the circles

move in waves above this straight line. The reason for this

behavior could be the discontinuity of the higher derivatives

of the potential function at the equilibrium point re (see (1)
in [25]), where the upper summation limit N is different

to the left and right of re. We did the calculation with a

modified potential function where N = 1 on both sides and

got the same result shown by the squares. Therefore, DMF

”
is to blame“ and we have attracted our irregular function

with 12 parameters [9]. First, we fit it to the analytical

DMF from [25] by choosing 200 points in the interval

0−4 Å and having determined the parameter values using

the least squares method, the result is shown by crosses.

The amplitude of the waves has noticeably decreased, but

the deviation from NIDL is still large. Then we fit it by

the least squares method to 47 points ab initio calculated

in [25] over the interval 0.7−6 Å, and the waves completely

disappeared (asterisks). The failure at high transitions is

explained by the non-analyticity of the potential function.

The difference in the behavior of the intensities is

explained by Fig. 9, which shows how two DMFs change

on the real axis and in the complex plane along a straight

line parallel to the real axis. On the real axis, the two
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Figure 8. Einstein coefficients for transitions in the X36−

state of phosphinidene according to [25] data (circles) and our

calculations: pluses — Born-Oppenheimer potential and analytical

DMF from [25]; squares — the same with modified potential (see
text); crosses — potential from [25] and our irregular DMF [9] with
12 parameters fitted by the least squares method to the analytic

DMF from [25]; asterisks — the same, but our DMF is fitted to

ab initio DMF from [25]; triangles — overlap integral Iv0 ; bottom
straight line — NIDL for overlap integral; upper straight line — the

same line shifted by a parallel translation; ω = 2365.2 cm−1 [24].
Lower state: E′′ = 0, v ′′ = 0, J′′ = 1, N′′ = 0, parity e−. Upper

states v ′ = 1−17, J′ = 2, N′ = 1, parity e+.
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Figure 9. DMF behavior for phosphinidene (PH) on the real

axis (1: crosses — ab initio [25], dotted line — analytical DMF

from [25], dashed — our irregular DMF with 12 parameters [9])
and in the complex plane along the line Im r = 0.4 Å (2 and 3). 2
and 2

′ — real and imaginary parts of DMF from [25]. 3 and 3’ —
the same for our irregular function.
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functions are almost indistinguishable and reproduce well

the ab initio points in the interval 1−2 Å, which makes the

main contribution to the original standard integral for the

transition matrix element. From this graph it is completely

incomprehensible why they give such large discrepancies in

intensities.

In the transformed integral (see Discussion), we shift

the integration contour to the complex plane, and the main

contribution comes from the region 0.7−2 Å. Along a line

parallel to the real axis our irregular DMF changes smoothly,

while the DMF from [25] exhibits non-physical oscillations

and
”
winds“ around it. The latter means a very fast change

of the function (large first derivative) in the region 0.7−2 Å,

including re = 1.422179 Å [25], and this is reflected in the

intensities of high overtones. Be reminded that NIDL was

derived under the assumption that the DMF changes slowly

compared to the wave functions of vibrational-excited states.

As can be seen from the Fig. 8, the problems with the

intensities calculated using the DMF from [25] begin at very

small v .

Special case — nitric oxide

Calculations for nitric oxide (NO) were made in the

studies [26–28]. The potential energy, spin-orbital inter-

action and dipole moment in the ground electronic state

as functions of r were calculated by quantum chemistry

methods in [26], then the point data were approximated by

analytical and piecewise analytical functions. In particular,

DMF was represented by a rational function. Although the

intensity calculations were performed for all possible 1v ,

only 1v ≤ 7 in [26] and 1v ≤ 16 in [27] were included into

the final line lists.

Figure 10 shows the intensities of the R(0.5) line for a

very weak SR rotational band with a change in the total

angular moment projection � (3/2↔ 1/2), but also for

strong QQ and RR bands without � changes (1/2−1/2
and 3/2−3/2) the picture looks the same. The slope of the

NIDL straight line a for the weak band is 4.2, and for the

strong bands a = 4.1, the standard deviation of the points

from the straight line is 0.1 in both cases. Be reminded, that

the slope depends only on the steepness of the repulsive

branch of the potential [3,8], it should be the same for all

bands, which, as we see, is perfectly fulfilled.

Transitions up to v = 16 follow NIDL quite well, but for

higher transitions the calculation is obviously wrong. The

unusual situation is that the
”
wrong“ points for v > 16 lie

below the NIDL straight line, as if there was no contribution

from the repulsive branch, that should not happen (see the

next section). In fact, the absolute value of the transition

matrix element was limited to 10−9D, that corresponds

to approximately v = 17 according to Fig. 4 in [26], so

non-zero values at v >16 should really be ignored. More

interesting in the mentioned Fig. 4 is the behavior of the

matrix elements for v > 16, which were calculated without

limiting their magnitude: the intensities change in waves

and, obviously, they will be higher than the NIDL straight

line in the corresponding coordinates. In our Fig. 10,

there is already a barely noticeable waviness in the interval

v = 7−16, and it noticeably increases at v > 16 in Fig. 4

in [26]. This can be related both to the poles of the analytic

functions used to approximate the potential, the spin-orbital

interaction, and the dipole moment, and to the discontinuity

of the higher derivatives of the potential and the spin-orbital

interaction, since both the poles and the discontinuities lie

near the region of classical motion.

To find out the reasons for the incorrect behavior of the

intensities, we carried out an approximate calculation using

only the Born-Oppenheimer potential function (without

other contributions) and DMF; at the same time, we

eliminated the discontinuity of the derivatives by setting

the number of terms in the sum (see (2) in [26]) equal

to 3 to the left and right of re. For v < 17 our calculation

”
by eye“ coincides with Fig. 4 of [26], but for v > 17 our

intensities are 2−4 orders lower (not shown ). As in the

case of phosphinidene (PH), DMF strongly oscillates when

shifted to the complex plane, which most likely explains the

deviations from NIDL. It should be noted that the wrong

shape of the functions cannot but affect the transitions that

are low in v , hindering the achievement of the high accuracy

of calculations required to solve some modern problems.

Discussion

An essential feature of overtone vibrational transitions

is the extremely small value of the integral of the matrix

element of the transition compared to the integrand. Note

that in this case,
”
the exact“ calculation of the integral with

the help of a computer should be treated with great care,

because the calculated value can differ from the true value
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Figure 10. Einstein coefficients for nitric oxide, transitions

v ′(= v), J′, �′
← v ′′(= 0), J′′, �′′ in the ground state X25

of nitric oxide according to [26,27] (v = 3−16, circles) and [28]
(v = 3−26, crosses). �′ = J′ = 1.5, �′′ = J′′ = 0.5, parity e,+;

SR branch. The NIDL straight line is drawn through the points

v = 3−15, ω = 1904.20 cm−1 [24]. The intensities at v > 16 are

obviously erroneous.
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arbitrarily and, moreover, unpredictably. Indeed, molecular

functions are known only with some accuracy, but small

errors in the integrand can lead to unpredictably large

changes in the integral itself.

The problem with calculating this integral is that the

entire domain of classical motion on the real axis contributes

to it, and the integration path cannot be shifted to the

complex plane, where the amplitude of the integrand could

be reduced. Landau and Lifshitz [29, § 51] transformed it

to another form and, shifting the integration contour C
to the complex plane, showed that the main contribution

to the new integral comes from the neighborhood of the

singular point r0, where the potential function goes to

infinity (r0 = 0 in a diatomic molecule), i.e., not from the

entire contour C, but only from the neighborhood of r0,
where the final result is formed. It was assumed that the

potential function and the DMF have no other singular

points that could affect the integral value, and that the

DMF slowly changes compared to the vibrational wave

functions of strongly excited states. The proof included

the aforementioned identical transformation of the integral,

which allowed to shift the integration contour from the real

axis to the complex plane and apply the steepest descent

method. The goal was to reduce the integrand1 to the

value of the integral itself, that allowed to use approximate

expressions for wave functions. In the original integral, as

mentioned above, this was impossible, since a small change

in the integrand led to an unpredictably large change in the

integral.

As a result, the transition matrix element was represented

as a product of the so-called
”
tunneling factor“, which

describes the penetration of the system into the repulsion

region, by a slowly varying function of v . In the study [9]
we presented it as an integral over some contour C in

the complex plane, in which the maximum value of the

integrand on the contour C was of the same order as the

entire integral. The tunneling factor is responsible for the

small value of the transition matrix element and explains

the exponential decrease in the intensity with increasing

transition energy [9], i.e. NIDL (see below) and its relation

to the repulsive branch of the potential function. The term

”
tunneling factor“ implies its interpretation as the amplitude

of tunneling from the left turning point in the lower state

towards r0, followed by a transition to the upper state at

some point belonging to the neighborhood r0, and ”
reverse

tunneling“ to the left turning point of the upper state. A

similar phenomenon is known in the theory of collisions

and nonradiative transitions as
”
dynamic tunneling“ [30].

The molecule potential and dipole moment are formed

due to the electrostatic interaction of charges, which is

described by the Coulomb function 1/r . As mentioned

above, the potential function has a singular point r0 = 0,

where it tends to infinity due to internuclear repulsion.

However, there are other singular points associated with

the electronic contribution to the energy, namely branch

1 integrand multiplied by the width of the integration region, which is

by the order of 1 Å

points [29, §79] at intersections of electronic terms for

complex values of r . DMF also has branches at the same

points [13]. We have shown that the pole of the potential

at zero, or more precisely, the presence of a repulsive

branch leads to NIDL [3] and that the branches do not

distort NIDL [13]. Thus, the analytic properties of real

molecular functions results in that the intensities of overtone

transitions follow NIDL, and, obviously, the corresponding

model functions should also obey this rule.

The Coulomb function decreases not only on the real axis,

but also in any direction in the complex plane. Therefore,

the model functions, at least, should not increase rapidly

in the complex plane. Our calculations for CO show that

a moderate power-law increase of DMF (with a power

of 8 [9]) does not distort NIDL. If the DMF oscillates or

grows exponentially, as in (1), then the linear dependence

of NIDL is distorted, as shown in the figures. It is important

to emphasize that we are talking about fast changes in

the DMF precisely in the complex plane, where the main

contribution to the transformed integral is formed, while

there may not be fast changes on the real axis, as shown in

Fig. 9 for the PH. A rapid increase in the model functions

prevents the contour from shifting to the upper half-plane,

which reduces the absolute value of the integrand to the

value of the integral itself (see the beginning of this section).
As a result, the value of the integral is no longer determined

by the point r0, but by another area, which leads to an

increase in the calculation error.

Deviations from NIDL are unacceptable, because they

mean a very strong, several times and orders of magnitude,

change in intensities (the division price on our graphs

is 5 orders of magnitude!), which makes the calculation

meaningless. We emphasize once again that the
”
straight

“ NIDL has a deep physical basis: it is associated with the

repulsive branch of the molecular potential, while deviations

from NIDL are caused by specific analytical properties

of the DMF and the potential, which are properties of

a specific model, and not of a real molecule, and vary

greatly as the model changes. The general requirement

is that it is necessary to consider only those models that

give the straight NIDL, then the remaining relatively small

discrepancies can be treated as calculation errors. For

further refinement of the model, one can use anomalies

that are very sensitive to the choice of functions [31].
Note that the mentioned deviations from NIDL, caused

by non-physical features of the potential and dipole moment,

should always lead to an increase in intensities, because in

the presence of several singular points, the integral is deter-

mined by the one that gives the maximum contribution [29].
From this point of view, the result for NO in Fig. 10 is

noteworthy, where the intensities of high transitions are

lower than those expected according to NIDL. This behavior

clearly indicates the presence of a technical error.

It is important to emphasize that specific requirements for

model functions, such as limited growth or no oscillations

in the complex plane, may not be met, unless this leads

to distortion of NIDL; nevertheless, in this case, too, one

Optics and Spectroscopy, 2022, Vol. 130, No. 9
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can expect an increase in the calculation error of not only

high, but also low overtones. In particular, the presence

of nonphysical poles on the imaginary axis of the potential

of Meshkov et al. [32] for CO, although it does not distort

NIDL, can introduce an additional error in the intensity of

all lines, so that in the future it is desirable to construct

a potential without such features. The use of the Šurkus

variable in the model functions of the potential and dipole

moment [22] can also cause deviations from NIDL due to

the presence of poles in it.

We should also pay attention to the fruitfulness of

using several DMFs with significantly different analytical

properties to compare the results of calculating the rotational

intensity distributions in vibrational bands, as we demon-

strated for the 7−0 band of the CO [9,13] molecule. These

can be the functions which are completely regular in any

finite part of the complex plane, for example, polynomials;

functions with poles, such as Padé approximants and other

rational functions; branching functions. If it turns out that

the distributions are very different [13], this indicates a

defect in one of them or all functions. If, on the contrary,

the distributions are very similar [9], then all functions are

correct and the remaining difference can be treated as a

calculation error.

Conclusion

A modern approach to the formation of spectroscopic

databases, such as HITRAN [33], HITEMP [15], Exo-

Mol [14,34], etc., is to include in them all possible, even

very weak transitions. Special programs [35,36] have been

developed for calculating the frequencies and intensities of

vibrational-rotational transitions in diatomic molecules using

model molecular functions which parameters are chosen on

the basis of experimental and theoretical data. Recently

more and more attention has been paid to the problem

of increasing the accuracy of calculations, which promises

new applications [35]. However, this problem is considered

only in terms of the accuracy of the numerical solution of

the Schrödinger equation for given functions of potential

energy, dipole moment, etc., while the choice of the shape

of functions often remains outside the scope of these studies.

To obtain reliable predictions of the intensities of overtone

vibrational-rotational transitions it is necessary to choose

such model functions which provide
”
straight“ NIDL (ex-

cept for isolated anomalies) in a wide transition region up to

the limit of dissociation. Very high transitions in themselves

are of no practical interest due to the impossibility of

observing them, however, they serve as an indicator, a

sort of
”
magnifying glass“, which makes it possible to see

defects in the model functions, which lead to a significant

increase in the calculation error for all transitions, including

low overtones.

To improve the accuracy of calculations, it is also

desirable that, in terms of their analytical properties, the

model functions should be as close as possible to the

real functions. In particular, the model potential may

have a pole which creates a repulsive branch, and may

also have branches which imitate the intersection points

of electronic terms in the complex plane; at the same

points, the dipole moment should have branches too [13].
The popular generalized Morse functions using the Šurkus

variable, strictly speaking, do not meet these criteria due

to the presence of non-physical poles. The potential of

Meshkov et al. [32] for CO has a physical pole at zero, but

its other poles have no physical meaning. We emphasize

that the requirement formulated here regarding the analytic

properties of functions is not strict — only the requirement

of NIDL
”
straightness“ is strict. For example, the Morse

potential does not have a pole at zero, and yet the presence

of a repulsive branch is already enough for the NIDL to

be
”
straight“ with a proper choice of DMF; the potential

of Meshkov and co-authors, as mentioned above, has non-

physical poles, which, however, do not spoil the NIDL.

Attention should also be paid to the DMF behavior when

shifted to the complex plane: if the DMF oscillates, as we

saw in PH and NO, this can be an obstacle to achieving the

high accuracy required for some promising applications [35].
About analytical properties — the presence of common

branch points, the absence of non-physical poles of the

potential and dipole moment, the correct asymptotic be-

havior at zero and at infinity, etc. — one can say this:

the closer they are to the properties of real functions, the

smaller the error in calculating not only high, but also low

overtones. However, the practical implementation of this

strategy requires a lot of work.
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