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Approach to the approximation of the transfer characteristic and

correlation response of Fourier holography scheme
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An approach for approximating the transfer characteristic and response in the +1th order of diffraction of a

4 f Fourier holography scheme by a Gaussian-like model as applied to image processing with power-law spatial-

frequency power spectra is proposed. The relations between the parameters of the approximation models and

the reference image spectra are found by numerical simulation depending on the reference spectrum exponent.

The approximation errors and the possibility of their optimization in the required range of spatial frequencies,

determined by the nonlinearity of the exposure characteristics of holographic recording media, are shown. The

validity of the approach is confirmed by comparing the results of numerical simulation with experimental data.
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Introduction

In optics, the approximation of linear systems is widely

used, that allows to describe the structure of one of the two

equal characteristics connected by the Fourier transform —
its transfer function and/or impulse response [1]. Since it

is not the complex-valued amplitudes which are directly

measured, but the intensities of the wave fields, in practice,

as applied to the classical 4 f -Fourier holography scheme

(Fig. 1), the transfer characteristic H(ν) is usually measured

in the working order diffraction dependence of the local

diffraction efficiency η(ν) (in terms of intensity) of the

hologram on the spatial frequency ν

Hp(ν) = η(ν) = Ĥ
p
S(ν), (1)

where the superscript p indicates the diffraction order

in which measurements are taken, S(ν) — the spatial-

frequency power spectrum (Wiener spectrum) of the

reference image used to record the hologram, and Ĥ —
operator of a holographic recording medium (HRM), taking
into account the conditions for recording a hologram and

the exposure characteristics of a HRS (EC HRS). Here we

use the term transfer characteristic to distinguish (1) from a

complex valued transfer function.

Instead of the impulse response, for practical reasons, the

autocorrelation function (ACF) of the standard recorded on

the hologram is often used, which is formed in the +1-

th order of diffraction in the output plane Out when the

hologram is illuminated by the reference spectrum S(ν)
(presenting a reference image in the input plane In) and

related to the transfer characteristic for the +1th order of

diffraction (1) by the Fourier transform

R(ζ ) = F̂H+1(ν), (2)

where ζ — coordinate in the back focal plane of the second

Fourier transform lens L2 — of the output plane of the

circuit Out, F̂ — Fourier transform operator. The ACF is

a diffraction-limited image of a point reference source used

to record the hologram, i.e., the point blur function.

Here and below, where possible without compromising

the meaning, we assume the separability of variables and

use notations with functions of one variable to reduce the

size of expressions. Consideration will be carried out in

relation to the correlation response (2), i.e. to the +1-th

order of diffraction, which will be omitted below.

Real information is characterized by spacecountryreality-

but-frequency power spectra, which in the article for brevity

will be called simply spectra, with a power decay [2–
4]. As applied to the Fourier holography scheme (Fig. 1),
the transfer characteristic (1) with power-law spectra of

reference images recorded on a hologram in a limited

frequency range determined by the dynamic range of

the EC HRS can often be approximated by exponential

functions, since

a) frequency-contrast characteristics of information input

paths, both optical and electronic, usually decrease with

increasing frequency [1], i.e. information input paths play

the role of additional low-frequency filters ( LFF);
b) spatial limitation of the size of the processed infor-

mation by the aperture of the frame window leads to a
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Figure 1. 4 f -Fourier holography scheme with a flat off-

axis reference beam: In and Out — input and output planes,

respectively; L1, L2 — Fourier transform lenses with focal

lengths f , H — hologram, Im u δ — image and off-axis point

reference source respectively, +1-th and −1-th — corresponding

diffraction orders.

weakening of the zero and low-frequency components of

the spectrum as a result of the convolution of the spectrum

with the Fourier transform of the aperture —
”
low spatial“

frequencies;

c) EC HRS, represented by the dependence of the diffrac-

tion efficiency on exposure, usually have a sigmoidal form in

the area of the direct (increasing) dependence [5–7], which

causes additional bandpass filtering on the hologram —
attenuation of the transfer characteristic (1) relative to the

reference spectrum in the ranges of both low and high

spatial frequencies [4,8–10];

d) additional filtering is also due to the form factor of

the hologram [11], which is especially relevant for Fourier

holograms and their special case — holographic matched

filters, which in reality are matched only in a limited

range spatial frequencies, determined both by the dynamic

range of the EC HRS, and the conditions for recording the

hologram — by choosing the frequency of equality of the

local amplitudes of the spectrum and the plane reference

beam [4,8–10]. In this case, the limited dynamic range of

the EC HRS, which usually does not exceed two orders of

magnitude, even in the case of a low-frequency hologram,

as a rule, results, if not in a rejection, then in a very strong

attenuation of zero and extremely low spatial frequencies.

From the point of view of clarity and convenience of

the analytical description, the approximation of the transfer

characteristics by Gaussian functions is attractive, but real

spectra are characterized by an exponent of the argument

(spatial frequency) different from 2, as a result of which the

Gaussian model generally gives an inadequate description of

the transfer characteristic and the ACF of the scheme. The

use of other models makes it difficult to obtain compact and

descriptive analytical expressions.

A number of papers are devoted to the search for

a convenient and adequate model for approximating the

response of the 4 f -scheme; we mention [4,8–10] as applied
to the correlation processing of images. In these studies,

convenient and practically sufficient for the problem of

recognition by the criterion of the magnitude of the signal-

to-noise ratio [12] simplified approximation models were

used. For example, in [8] the transfer characteristic (1)
is approximated by a triangular 3-function, and in the

analytical description of the correlation response (2) only

one parameter — its frequency (3-function) of the maxi-

mum, which in the first approximation corresponds to the

frequency of equality of the local intensities of the spectrum

of the reference image and the plane reference beam when

recording the hologram. This approach turned out to be

effective in the framework of the problem of recognizing

images subjected to affine transformations relative to the

reference ones.

But for a number of real recognition conditions, for

example, in the presence of projective distortions of the

recognizable image relative to the reference one, a simple

and convenient model [8] turned out to be insufficient —
a complete description of both spectra and holograms was

required [13], which requires significant computational re-

sources. The complication of problems solved by the Fourier

holography method [14–22], including computer [16–19],
and the corresponding complication of algorithms also

actualizes the issue of adequate, visual and, which is

important for practical real-time applications [16–19] of

computationally inexpensive approximation.

This article shows the possibilities and limitations of

approximating the transfer characteristic and correlation

response of a Fourier holography scheme by a Gaussian-like

model under the assumption that the hologram is recorded

when the amplitude of the reference beam is equal to or

exceeds the local amplitude of the reference beam at zero

spatial frequency. The approach allows to find a compromise

solution to the −visibility dilemma of the analytical model

and to reduce the requirements for the processing power

of the processor in the case of a computer implementation

through the use of an analytical model.

1. Approach and approximation model

Let us represent the transfer characteristic of the circuit,

i.e., the reference power spectrum S(ν) recorded on the

hologram with a power decay, the exponential model

H(ν) = exp

(

− ln(α)

(

−ν

να

)D)

, (3)

where ν — spatial frequency, η(ν) — dependence of the

local diffraction efficiency of the hologram (DE) on the

spatial frequency, D — exponent, να — model parameter —
frequency measured by level

α =
H(να)

H(0)
=

η(να)

η(0)
,
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Figure 2. Dependences of the modulus of relative error R of approximation by the model (4) on the level of the spectrum α: 1 — the

power spectrum of the power S(ν) = ν−1.1 (a), S(ν) = ν−2.6 (b), 2 — considering LFF; 3 — considering the sigmoidal EC HRS,

FF and LFF (a: D = 0.895, ν0.606 = 11.6, b:̇ D = 1.07, ν0.606 = 6.57); 4 — taking into account the sigmoidal EC HRS, FF and LFF

(a: D = 0.92, ν0.606 = 11.8, b: D = 1.01, ν0.606 = 5.551).

i.e., defined as the ratio of the value of the transfer

characteristic (local DE hologram) at a given frequency να
to its maximum value (within the — approach at zero

frequency). The convenience of this model is that the

parameter να does not change when the exponent D
changes, and for α = 0.606 and D = 2 we have a Gaussian

model. For simplicity and clarity, we will further consider a

particular version of the level α = 0.606, i.e.

H(ν) = exp

(

−νD

2νD
0.606

)

, (4)

where ν0.606 — parameter equal to the frequency at

which the local diffraction efficiency of the hologram

η(ν) = exp(0.5) = 0.606 from its maximum value η(0).

The applicability and limitations of such an approximation

are illustrated in Fig. 2, a, b, in which the absolute values of

the relative errors of approximation by the model (4) of

the transfer characteristics are given on a semilogarithmic

scale, taking into account the factors mentioned in the in-

troduction: low-frequency filtering (LFF), described by the

Gaussian function, sigmoidal EC HRS(photographic plates

”
LOI2−653“, developer GP2 [23]) and form factor (FF),
determined by the visibility of the spectrum interference

pattern and flat reference beam. The errors are given for two

power-law spectra: in Fig. 2, a — S(ν) = ν−1.1 — satellite

image of a winter landscape and fig. 2, b — S(ν) = ν−2.6 —
implementation of two-dimensional fractal Brownian motion

adequately modeling the image cloud cover [24]. In the

latter case, the spectral maximum at zero frequency, which

stands out from the rest of the spectrum by 2.4 orders of

magnitude, was attenuated during simulation, as was the

case when recording real holograms due to the limited

dynamic range of the EC HRS. The argument in Fig. 2

is the relative DE holograms

α =
H(να)

H(0)
=

η(να)

η(0)
,

t. e. Fig. 2 shows the relative error of approximation of the

shape of the transfer characteristic scheme.

As can be seen from Fig. 2, with an increase in the

exponent D, the approximation error decreases, and the

selection of the parameters of the approximation model,

which are physically determined by the mode of recording

the hologram and its processing, including the EC HRS,

makes it possible to optimize the relative error in the

required range of spectrum intensities (local diffraction

efficiency of the hologram η(ν) — transfer characteristic of

the circuit) associated with the range of spatial frequencies.

For the similar processing methods, a relative error of no

more than 0.1 is traditionally considered acceptable, this

level is exceeded only in the high-frequency region —

the exponential model (4) gives underestimated values

compared to the power law at high frequencies.

The correlation response of the holographic scheme in

Fig. 1, as the Fourier transform of the function (4), is

described by a similar expression only for D = 2, i.e. i.e. only

for the Gauss function G(ν)

F̂G(ν) = F̂ exp

(

−ν2

2ν2
0.606

)

= exp

(

−ζ 2

2γ2

)

, (5)

where ζ — coordinate in the output (correlation) plane Out

of the circuit in Fig. 1, γ = ζ0.606 = 1
2πν0.606

— parameter

designation used in the article only for the parameter of the

Fourier transform of the Gaussian function. If D 6= 2, then

the Fourier transform of the function (4) when describing

the response of the circuit, especially taking into account the

additional filtering due to the EC HRS and the differences

between the object (input) spectrum and the reference

(recorded on the hologram) spectrum, gives a cumbersome

and an inconvenient expression for practical purposes.
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Let us take for the ACF, i.e., the Fourier transform of the

function (4), also a Gaussian-like approximation model

R(ζ ) = F̂H+1(ν) = F̂ exp

(

−νD

2νD
0.606

)

≈ exp

(

−ζ d(D)

2
(

ζ0.606(D, ν0.606)
)d(D)

)

, (6)

where d(D) — exponent depending on the exponent D
in the spectrum model (4) and represent the parameter

ζ0.606(D, ν0.606) as follows way:

ζ0.606(D, ν0.606) = Kp(D)γ, (7)

where

Kp(D) =
ζ0.606(D, ν0.606)

γ
(8)

— functional coefficient defining the relationship between

the — parameter ζ0.606(D, ν0.606) for an arbitrary exponent

of — the argument D and the parameter γ of the Fourier

transform of — the Gaussian function (5).
The exponent d(D) can be represented in a similar way

d(D) = Kd(D)D, (9)

where Kd(D) — function coefficient.

Approximation (6), (7) is practically relevant due to the

fact that the parameter ζ0.606(D, ν0.606) characterizes the

autocorrelation radius of the reference image recorded on

the hologram r =
√
2ζ (D, ν0.606), i.e. i.e. determines the

correlation estimate of the image information capacity —
its generalized spatial frequency [4,12]

� =
L
r

=
L√

2ζ0.606(D, ν0.606)
,

where L — the size of the reference image when it is

represented by a function of one argument. For a function of

two coordinates, the generalized spatial frequency is defined

as the ratio of the areas of the image and the correlation [12].
The question of validity of approximation (6) has a

number of aspects, first of all:

1. The accuracy of the representation of the parameter

ζ0.606(D, ν0.606) by (7) — this question is relevant for

the problems involving a single passage of radiation from

the input plane of 4 f -scheme of the Fourier holography

(Fig. 1) to the output, in which the measurements are

carried out: the intensity of the response or the radius of

the correlation [12];
2. The accuracy of the impulse response approximation

(or GM ACF) — this issue within our approach is reduced

to the approximation of the exponent d(D) by (9) and is

relevant for more complex circuits, in which the impulse

or correlation response is used for further processing, for

example, resonant architecture circuits, including those im-

plementing memory models [15,20,21] and nonmonotonic

logic [22].

We will consider these questions in turn below. Since the

representations (7) and (9) mathematically do not follow

from (6), then the analytical finding of the functional

coefficients Kp(D) and Kd(D) does not give convenient

expressions. Therefore, the answers to these questions are

found numerically.

2. Approximation of the correlation
response

2.1. Approximation of the approximation response

parameter

To find the functional coefficient Kp(D) (8), which relates

the parameters of the transfer function and the correlation

response — of the global maximum of the autocorrelation

function (GM ACF), a family of dependences of the ratio

of the parameters ζ0.606/γ (6) for a series of values

of the exponent D in the range D ∈ [0.5, 4] and the

range of values of the amplitude spectrum parameter (4)
ν0.606 ∈ [1, 100] pixels for a spectrum realization length

of N = 218 = 262 144. The values N and range of the

spectrum parameter ν0.606 were chosen to ensure the

accuracy of the numerical simulation of the correlation

response.

Three approximation models were considered, previously

selected for reasons of visual similarity of the graphical

representation of the models with the calculated data:

sigmoidal

Kps (D) = a s
(

1− exp
(

−bs (D − cs )
)es

)

, (10)

logarithmic (good visual match in the range D ∈ [1.0, 2.0])

Kpln(D) =
(

ln(D + a ln)
)c ln + bln (11)

and hyperbolic (good visual match in the range D > 2.0)

Kphyp(D) = 1.6

(

1 +
1

D

)

+ ahyp, (12)

where a, b, c and e — parameters, their letter indices point

to the model. The selection of parameters was carried out

according to the criterion of the minimum mean square

deviation (RMS) of the value of the approximation of the

results of numerical experiments. Table 1 shows the RMS

values for these models depending on the approximation

range.

As can be seen from the table, the narrowing of the

approximation range leads to an increase in its accuracy,

while the sigmoidal model (10) gives the best approximation

for the criterion of RMS minimum RMS in wider ranges

than models (11) and (12). Since the standard deviation is

an estimate integral over the entire range, then Fig. 3, a, b

shows the dependences of the relative approximation errors

on the exponent D, allowing a more detailed idea of the

approximation errors.
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Figure 3. (a, b) Dependences of the relative error R of the approximation of the coefficient Kp(D) on the exponent D: model (10) for

the range [0.5, 1.0] (1), [0.5,1.5] (2), [0.5,2.0] (3), [0.5,3.0] (4), [0.5,4.0] (5); model (11) for range [1.0,2.0] (6), model (12) for range

[2.0,3.0] (7), [3.0,4.0] (8).

It can be seen that the model (10) gives a much more

accurate approximation in both narrow and wide ranges.

At the same time, we note that in the corresponding

ranges, all models give an error that, on the whole, is more

than an order of magnitude smaller than the threshold 0.1

traditionally accepted for analog calculations.

2.2. Approximation of the correlation response

The dependence Kd(D) was found using the minimum

standard deviation criterion of the approximation model (6)
on the actual correlation response in the range ζ ∈ [0, ζmax],
where ζmax was determined by three criteria:

a) representations of 99.5% of the spectrum energy as

applied to D = 2 [1];
b) dynamic range of measurement and, accordingly,

approximation of the ACF 1st order;

c) dynamic range of ACF measurement of the 2nd order.

The Kd dependences obtained in numerical experiments

were approximated by the model

Kd(D) = A−B1

(

1−exp

(

−D
C1

))

−B2

(

1−exp

(

−D
C2

))

,

(13)
where A, B1, B2,C1 and C2 — parameters: values and RMS

of approximation for each of these options are given in

Table 2.

Figure 4 shows on a semi-logarithmic scale the relative

errors of approximation of the GM ACF form for the variant

a), where β = R(ζ )
R(0) — relative amplitude of GM ACF.

For b) and c), the dependences had a similar form, but

with the expansion of the approximation range, the relative

approximation error generally increased.

3. Experimental procedure

To experimentally confirm the validity of the above

approach, in the scheme of Fig. 1, a series of Fourier
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Figure 4. Relative errors in the approximation of the GM ACF

shape when choosing the approximation range from the condition

of representing 99.5% of the spectrum energy as applied to D = 2:

D = 0.5 (1), 1.0 (2 ), 1.5 (3), 2.5 (4), 4.0 (5).

holograms of the image of two-dimensional fractal Brownian

motion (DFBM) was recorded, the spectrum of which is

described by the model [23]

S(ν) = ν2H+1,

where H ∈ [0, 1] — Hurst parameter. As a standard for

recording holograms, we used the DFBD implementation

shown in Fig. 5 with the value of the Hurst parameter

H = 0.8, which corresponds to the exponent of the power

spectrum D = 2.6. The holograms were recorded at

different ratios of the amplitudes of the signal and reference

beams, i.e. they had different form factors and were

matched in different ranges of spatial frequencies. Recorded

holograms were presented with both reference and low-

frequency Gaussian filtered images with different values of

the filter parameter. Correlation responses were measured

using LI-602 dissector characterized by a wide dynamic

range.
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Table 1. RMS and values of approximation parameters Kp(D) for different ranges D

Range D
Model (10)

Model (11)
Model (12)

a ln = 0.2, bln = 0.2

parameters RMS parameter c ln RMS paramiter ahyp RMS

[0.5,4.0] as = 1.44712 0.0076 0.85 0.081 0.2 0.328

bs = 0.74342

cs = 0.46575

es = 1.18905

[1,4.0] 0.85 0.0765 0.21 0.047

[1,3.5] 0.85 0.053 0.21 0.051

[0.5,3.0] as = 1.37323 0.0052

bs = 0.7904

cs = 0.4385

es = 1.29348

[1,3.0] 0.9 0.032 0.21 0.057

[1,2.5] 0.9 0.014 0.21 0.066

[0.5,2.0] as = 1.222 0.00286

bs = 0.889

cs = 0.393

es = 1.48578

[1,2,0] 0.9 0.005 0.21 0.08

[0.5,1.5] as = 1.056 0.00161

bs = 1.0073

cs = 0.35825

es = 1.6775

[0.5,1.0] as = 0.8592 0.00095

bs = 1.17409

cs = 0.33101

es = 1.87929

[2.0,4.0] as = 1.619 0.0006

bs = 1.00332

cs = 0.63857

es = 1.05991

[3.0,4.0] as = 1.615 0.00046 0.6 0.012 0.2 0.002

bs = 0.67154

cs = 0.44753

es = 0.80415

[2.0,3.0] as = 1.619 0.00049 0.7 0.005 0.2 0.003

bs = 1.00332

cs = 0.63857

es = 1.05991

Fig. 6 shows three examples of the responses of the

circuit in Fig. 1: (1) and (2) — responses to the

reference image Fig. 5 of two holograms from the se-

ries, which can be defined as high-frequency (1) and

low-frequency (2), measured values of the GM ACF

parameter ζ0.606 = 0.175mm and z eta0.606 = 0.94mm,

respectively, and also (3) — the response of a high-

frequency hologram to an image subjected to low-pass

filtering by a Gaussian filter, the measured value of

the response parameter ζ0.606 = 0.5mm, correlation co-

efficient — 0.128. The experimentally measured re-

sponses (points) were approximated by the model (6)
(lines).
Fig. 6 shows a good agreement between the Gaussian-like

model (6) of the approximation of the correlation response

(GM ACF) and the experimental data when both reference

Optics and Spectroscopy, 2022, Vol. 130, No. 9
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Table 2. Approximation model parameter values (13) and RMS

Range selection option
Parameter values

RMS of approximation
A B1 B2 C1 C2

A) 4.79749 2.59236 1.8393 0.25871 1.8771 0.0027

b) 5.91143 4.4454 1.85496 0.43043 6.26752 0.02196

c) 8.92392 7.5411 64.29551 0.20088 313.6806 0.00976

Figure 5. Implementation of two-dimensional fractal Brownian

motion with Hurst parameter H = 0.8.

0.5 3.02.52.0 3.5

a

0

1.0

0.2

0.6

0.8

1.0 1.5

z, mm

0.4

0

1 3 2

Figure 6. Global maxima of autocorrelation functions: 1 —
high-frequency hologram; 2 — low-frequency hologram; 3 —
response of a high-frequency hologram to a standard subjected

to LFF; dots — experiment, lines — approximation (6); RMS

of approximation: 1 — 4.35 · 10−4, 2 — 5.36 · 10−4, 3 —
7.214 · 10−4 (3).

(curves 1 and 2) and smeared low-frequency image filter

(curve 3).

Conclusion

Thus, when the Fourier holography scheme processes

information with power-law spectra, due to the limited

dynamic range of holographic recording media, the transfer

characteristic and autocorrelation function can be approxi-

mated with an accuracy acceptable for practical purposes

by a Gaussian-like model. The exponential models of the

spectra are characterized by a significant decrease in the

proportion of high-frequency components compared to the

exponential ones, but in practice this factor is largely leveled

out both by low-frequency filtering in the information input

paths and by the nonlinearity of the exposure characteristics

of holographic recording media, which leads to a limited

frequency range of the transfer characteristic. In some

cases, the limitation of the frequency range is already

necessary from the conditions of the problem, for example,

to ensure the required signal-to-noise ratio in the correlation

comparison of images [12]. The selection of the parameters

of the approximation model allows you to optimize the

model for the required frequency range.

In a number of practical problems, to input computer-

synthesized holographic filters into the processor, space-time

light modulators with a pronounced discrete structure and

a limited number of quantization levels are used [18,19].

In this case, the described approach allows to optimize the

requirements for computing power and memory size for

calculating the filter.
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