01

Моделирование оптических неоднородностей в Cr^{2+} : CdSe-лазерах с подвижными активными элементами

© М.В. Волков, ^{1,2,4} В.А. Гарюткин, ¹ Н.Г. Захаров, ^{1,2} Г.М. Мищенко, ¹ В.О. Рябов, ^{2,3} Ф.А. Стариков ^{1,4}

607188 Саров, Нижегородская обл., Россия

607186 Саров, Нижегородская обл., Россия

e-mail: vitaliy.ryabov.1999@mail.ru

Поступило в Редакцию 16 ноября 2022 г. В окончательной редакции 23 января 2023 г. Принято к публикации 24 января 2023 г.

Выполнено моделирование нагрева подвижных лазерных активных элементов из Cr²⁺:CdSe, и проведена оценка возникающих в них оптических неоднородностей показателя преломления. В результате расчетов обнаружено, что возникающие в процессе работы лазера распределения температуры в активном элементе можно представить в виде суммы двух составляющих: первая формируется за счет баланса между тепловыделением в активном элементе за счет накачки и отводом тепла из него, что приводит к возникновению аберрации, представляющей собой сумму "наклона" и "дефокусировки", вторая формируется непосредственно во время прохода пятна накачки через активный элемент, определяется только плотностью тепловыделения, не связана со способом охлаждения активного элемента и приводит к возникновению "гауссоподобной" аберрации, амплитуда которой прямо пропорциональна мощности тепловыделения и обратно пропорциональна частоте вращения активного элемента.

Ключевые слова: подвижные активные элементы, оптические неоднородности показателя преломления, Cr^{2+} : CdSe-лазер.

DOI: 10.21883/JTF.2023.03.54841.248-22

Введение

Лазеры на основе кристаллов халькогенидов, легированных двухвалентными ионами хрома (Cr²⁺:ZnSe, Cr²⁺:ZnS, Cr²⁺:CdSe, Cr²⁺:CdS, Cr²⁺:CdTe и др.), позволяют получать эффективную генерацию с перестраиваемой длиной волны в диапазоне от 2 до $3.6 \,\mu\mathrm{m}$ [1]. Основная проблема, ограничивающая мощность всех твердотельных лазеров, это организация эффективного теплоотвода. В случае лазерных сред на основе соединений халькогенидов, легированных ионами Ст, эта проблема особенно остра из-за большого значения термооптической постоянной dn/dT. Поэтому в таких активных элементах возникают сильные тепловые линзы, выводящие резонатор из области устойчивости. Как следствие — мощность, полученная в традиционных лазерных схемах, невысока. Например, средняя выходная мощность Cr²⁺:CdSe-лазеров ограничивается уровнем

Для дальнейшего увеличения мощности генерации в непрерывном режиме при сохранении удовлетворительной расходимости лазерного излучения необходимо

минимизировать влияние тепловой линзы. Для этой цели можно использовать схемы с подвижным активным элементом, уменьшение нагрева активной среды здесь происходит за счет ее механического выведения из области накачки и генерации. Использование схем с подвижным аквтивным элементом позволяет "размазать" тепло по большому объему и осуществлять теплообмен на довольно большой площади активного элемента. Первой реализацией этого подхода была, повидимому, работа [3], в которой двигалась пластина из неодимового стекла. Была получена средняя выходная мощность около 40 W при импульсно-периодической ламповой накачке. Развитие этого направления привело к реализации нерерывной генерации с вращающимися активными элементами из кристаллов [4,5].

В работе [4] использовался активный элемент из кристалла Cr^{2+} :ZnSe в форме кольца, который крепился на двух охлаждающих фланцах. С помощью двигателя постоянного тока осуществлялось вращение активного элемента. Реализована непрерывная генерация с пиковой мощностью 140 W.

¹ Российский Федеральный ядерный центр, Всероссийский научно-исследовательский институт экспериментальной физики,

² Национальный исследовательский Нижегородский государственный университет им. Лобачевского, 603950 Нижний Новгород, Россия

³ Филиал Московского государственного университета им. М.В. Ломоносова, 607328 Саров, Нижегородская обл., Россия

⁴ Саровский физико-технический институт филиал федерального государственного автономного образовательного учреждения высшего образования "Национальный исследовательский ядерный университет Московского института физических исследований,

В работе [5] в качестве активного элемента использовался кристалл Cr²⁺:CdSe в форме параллепипеда, который перемещался перпендикулярно оси резонатора со скоростью 28 m/s. Отметим, что активный элемент был выращен из паровой фазы по технологии, описанной в работе [6]. На временном промежутке, когда пучок накачки проходит активный элемент, получена генерация с пиковой мошностью 20 W.

Оптические неоднородности показателя преломления в активном элементе играют важную роль, поскольку именно они определяют расходимость пучка и предельную мощность генерации лазера с хорошим качеством пучка. Очевидно, что оптические неоднородности показателя преломления в подвижном активном элементе могут существенно отличаться от неоднородностей, которые возникают в стационарном элементе.

Цель настоящей работы — численное исследование оптических неоднородностей, возникающих в подвижных активных элементах из кристалла Cr^{2+} :CdSe.

1. Математическая постановка задачи

Активный элемент из кристалла Cr^{2+} : CdSe представлял собой параллелепипед, закрепленный на боковой поверхности вращающегося диска (рис. 1). На рис. 1 также представлено также круглое пятно накачки, пунктирной линией показана его траектория по активному элементу.

Перемещение активного элемента происходило в плоскости XOY за счет его непрерывного вращения по окружности радиуса R с угловой скоростью Ω , т.е. рассматривалась постановка, аналогичная [4]. Если полностью заполнить боковую поверхность диска активными элементами, то можно реализовать непрерывную генерацию. Излучение накачки направлено параллельно оси Z. Градиент тепловыделения в активном элементе вдоль оси Z будет зависеть от изменения каустики излучения накачки. Так как размеры активного элемента, как правило, много меньше длины резонатора, то в

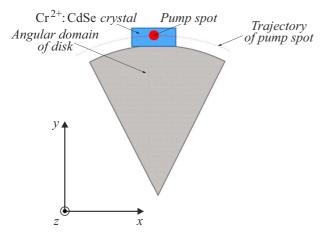


Рис. 1. Геометрия задачи.

расчетах в качестве приближения примем отсутствие градиентов температуры вдоль оси Z.

Для решения задачи нагрева вращающегося активного элемента решалось двумерное нестационарное уравнение теплопроводности [7]:

$$\frac{\partial T}{\partial t} = \chi \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) + F(x, y, t) - \frac{2\phi_{air}(T - T_{air})}{c_p \rho L_z},$$
(1)

где χ — коэффициент температуропроводности кристалла, F(x,y,t) — функция источника тепловыделения, ϕ_{air} — коэффициент теплообмена активного элемента с окружающей средой при температуре T_{air}, L_z — длина активного элемента, c_p — удельная теплоемкость активного элемента, ρ — плотность активного элемента. Уравнение теплопроводности решалось до момента времени, когда распределение температуры перестает меняться с последующим проходом пятна накачки через активный элемент.

Для сокращения времени счета задача теплопроводности подвижного активного элемента разбивалась на две части: стационарную и нестационарную. В первой части тепловыделение "размазывается" по траектории пучка накачки и находится стационарное распределение температуры активного элемента. Функция тепловыделения стационарного источника имеет следующий вид:

$$F(r) = \frac{P}{(c_p \rho V_{st})} \cdot \exp\left[\frac{(-2(r-R)^2)}{\omega_p^2}\right],\tag{2}$$

где $r=\sqrt{(x^2+y^2)}$, P — мощность тепловыделения в активном элементе, R — радиус траектории пятна накачки, ω_p — радиус пятна накачки, V_{st} — нормированный объем стационарного источника тепловыделения. Его можно определить как

$$V_{st} = \sqrt{2\pi^3} \omega_p R L_z. \tag{3}$$

Полученное поле температуры используется в качестве начального условия для нестационарной части, где в качестве источника тепловыделения выступает пятно накачки. Функция тепловыделения нестационарного источника имеет следующий вид:

$$F(x, y, t) = \frac{P}{c_p \rho V_{ns}} \times \exp \left[\frac{-2((x - x_0(t))^2 + (y - y_0(t))^2)}{\omega_p^2} \right], \quad (4)$$

где V_{ns} — нормированный объем нестационарного источника тепловыделения, определяемый выражением

$$V_{ns} = \frac{\pi \omega_p^2}{2} L_z. \tag{5}$$

Как отмечено выше, в расчетах активный элемент вращается по окружности радиусом R с угловой скоростью Ω . В этом случае координаты пятна накачки

на активном элементе можно определить следующим образом:

$$x_0(t) = R\cos(\Omega t),\tag{6}$$

$$y_0(t) = R\sin(\Omega t). \tag{7}$$

Используемый метод решения задачи теплопроводности подвижного активного элемента, как показало контрольное сравнение, с хорошей точностью описывает результаты честного решения нестационарной задачи. Отличие результатов — менее одной десятой процента, но время расчета при этом на порядок величины меньше.

Как отмечено выше, активный элемент закреплен на периферии вращающегося диска. На нижней (ближайшей к центру вращения) стенке кристалла предполагался обмен тепла с термопастой за счет теплопроводности. Поэтому граничное условие на нижней стенке кристалла имеет следующий вид:

$$-\lambda_T \left(\frac{\partial T}{\partial y} \right)_1 = -\lambda_{AE} \left(\frac{\partial T}{\partial y} \right)_2, \tag{8}$$

где λ_T — коэффициент теплопроводности термопасты, λ_{AE} — коэффициент теплопроводности активного элемента.

На остальных стенках активного элемента был реализован конвективный теплообмен с воздухом с граничным условием:

$$\phi_{air}(T - T_{air}) = -\lambda_{AE} \left(\frac{\partial T}{\partial n} \right).$$
 (9)

Формулу для расчета коэффициента теплообмена с воздухом можно оценить по формуле для вращающегося диска [8], где в качестве радиуса диска возьмем радиус траектории пятна накачки R:

$$\varphi_{air} = Nu \frac{\lambda_{air}}{R},\tag{10}$$

где λ_{air} — коэффициент теплопроводности воздуха. Число Нуссельта Nu — зависимый параметр и определяется через соотношение других безразмерных параметров:

$$Nu = 0.4(\text{Re}^2 + Gr)^{1/4},$$
 (11)

где Re — число Рейнольдса, Gr — число Грасгофа. Для нахождения числа Рейнольдса использовалось соотношение

$$Re = \frac{\Omega R^2}{v_{\perp}},\tag{12}$$

где Ω — угловая скорость вращения, ν_{air} — кинематическая вязкость воздуха.

Число Грасгофа опредедлялось согласно следующему выражению:

$$Gr = \frac{g\beta_{air}R^3\pi^{3/2}\Delta T}{v_{air}^2},\tag{13}$$

где g — ускорение свободного падения, β_{air} — коэффициент объемного расширения, ΔT — перепад температуры между активным элементом и воздухом.

В формуле (11) число Грасгофа отвечает за естественную конвекцию, и в случае больших скоростей вращения и малых перепадов температуры ΔT его можно не учитывать при расчетах коэффициента теплообмена.

Изменение фазы пучка $\Delta \phi(x,y)$ после прохождения активной среды длинной L_z с температурной неоднородностью определим согласно следующей формуле:

$$\Delta \varphi(x, y) = k_0 L_z \frac{dn}{dT} T(x, y), \tag{14}$$

где $k_0 = 2\pi/\lambda$ — волновое число, λ — длина волны лазерного излучения.

В табл.1 указаны числовые значения констант, используемые в расчетах.

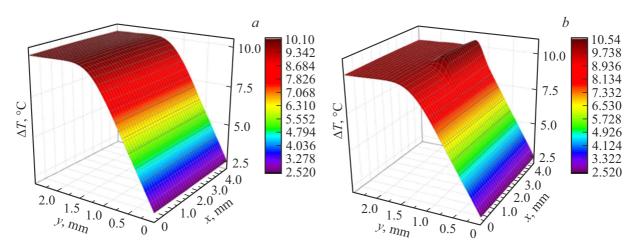
2. Результаты расчетов и их обсуждение

Перейдем к обсуждению результатов численного моделирования. На рис. 2 приведено характерное распределение перепада температуры $\Delta T(x,y)$ между активным элементом и окружающей средой, когда пучок накачки находится вне активного элемента и в его центре. В данном расчете мощность тепловыделения $P=40\,\mathrm{W}$, частота вращения активного элемента $\Omega=100\,\mathrm{Hz}$.

Для более детального анализа оптических неоднородностей рассмотрим сечение распределения температуры по оси y при $x=2.25\,\mathrm{mm}$, когда пучок накачки находится вне активного элемента и в его центре. Данные сечения приведены на рис. 3.

Как видно из рис. 3, профили температуры, возникающие во вращающемся активном элементе непосредственно в области пятна накачки, можно представить в виде суммы двух составляющих. Первая составляющая формируется за счет баланса между тепловыделением в активной области и отвода тепла (кривая *I* на рис. 3, *a*). Как видно из представленных графиков, данная составляющая не меняется за время прохода пятна накачки через активный элемент, т.е. имеет регулярный характер. Вторая составляющая — нерегулярная, она связана с нагревом активного элемента непосредственно во время прохода пятна накачки (рис. 3, *b*). По вертикальной оси нерегулярная составляющая имеет гауссов профиль, совпадающий по ширине с шириной пятна накачки.

Рассмотрим сначала оптическую неоднородность, которая формируется за счет регулярной составляющей профиля температуры в активном элементе (кривая 1 на рис. 3, a).


Аппроксимируем фазовые искажения параболической зависимостью

$$\Delta \varphi(y) = Ay^2 + By + C = \frac{k}{2F_T}y^2 + k\alpha y + C,$$
 (15)

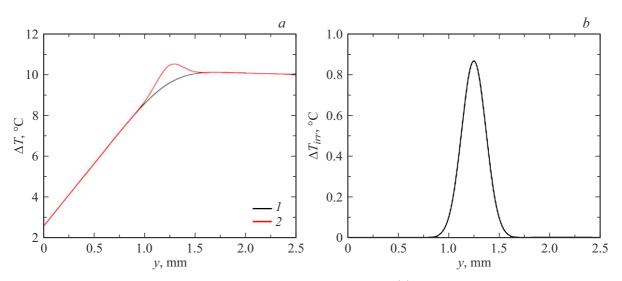

где F_T — фокус тепловой линзы, α — угол наклона волнового фронта. Коэффициент $A=\frac{k}{2F_T}$ отвечает за

Таблица 1. Числовые значения констант, используемые в расчетах

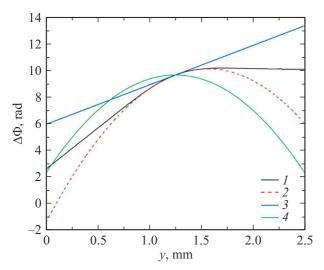

Параметр	Значение	
Размеры кристалла Cr^{2+} :ZnSe $L_x \times L_y \times L_z$	$4.5 \times 2.5 \times 4.5 \mathrm{mm}$	
Удельная теплоемкость кристалла Cr ²⁺ :ZnSe	$0.255 J/(g \cdot K) [4]$	
Коэффициент теплопроводности кристалла Cr ²⁺ :ZnSe	$0.069 \text{W/(cm \cdot K)} [5]$	
Термооптическая постоянная dn/dT для кристалла Cr^{2+} :ZnSe	$10^{-4} \mathrm{K}^{-1} [2]$	
Коэффициент теплопроводности термопасты λT	1 W/mK	
Температура воздуха T_{air}	22°C	
Кинематическая вязкость воздуха v_{air}	$1.6 \cdot 10^{-5} \mathrm{m}^2/\mathrm{s} [9]$	
Теплопроводность воздуха λ_{air}	$26.2 \cdot 10^{-3} \text{W/mK} [9]$	
Коэффициент объемного расширения eta_{air}	$3.67 \cdot 10^{-3} \mathrm{K}^{-1} [10]$	
Длина волны лазерного излучения λ	2.8 mm	
Радиус пятна накачки ω_p	0.24 mm	
Радиус траектории пятна накачки R	72.25 mm	

Рис. 2. Распределение перепада температуры между активным элементом и окружающей средой, когда пучок накачки находится вне активного элемента (a) и в его центре (b).

Рис. 3. Сечение распределения перепада температуры по оси y при x=2.25 mm (a), когда пучок накачки находится вне активного элемента (1) и в его центре (2) и их разница (b).

Рис. 4. Профиль регулярных фазовых искажений вдоль оси вдоль оси y(1), его аппроксимация (2) как сумма аберраций "наклон" (3) и "дефокусировка" (4).

аберрацию типа "дефокусировка", $B = k\alpha$ — за "наклон" по оси y.

На рис. 4 показан профиль регулярных фазовых искажений вдоль оси y, его аппроксимация параболой и соответствующие аберрации типа "дефокусировка" и "наклон". Характерный размер основной моды в эксперименте — $200-400\,\mu\mathrm{m}$, поэтому аппроксимация осуществлялась в диапазоне значений y от 0.75 до $1.75\,\mathrm{mm}$.

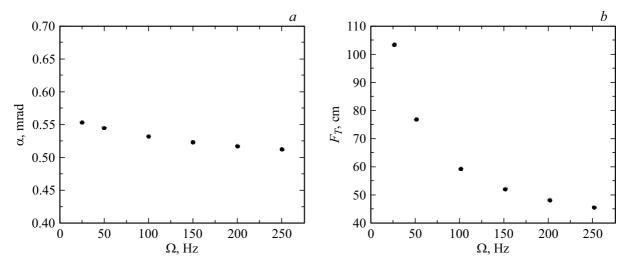
Таким образом, регулярная составляющая профиля температуры в активном элементе приводит к возникновению аберраций "наклон" и "дефокусировка". Оценить значения наклона α и фокуса тепловой линзы F_T можно из выражения (15). Отметим, что для компенсации аберрации типа "наклон" в эксперименте можно использовать ретроотражатель типа "кошачий глаз". По этой причине она не окажет существенной роли на расходимость лазерного пучка. Величина тепловой линзы, наоборот, крайне важна. Сильная тепловая линза может привести к выходу резонатора из области устойчивости и, как следствие, к ухудшению качества пучка. При выборе типа резонатора следует учитывать этот эффект. Например, можно использовать схему резонатора, в которой уже учитывается оптическая сила возникающей линзы. Как правило, такие схемы разрабатываются под заданные тип резонатора и мощность излучения накачки, и работают они в узком диапазоне параметров лазерной системы, см., например, [11–13].

На рис. 5 представлены результаты расчетов наклона волнового фронта α и фокуса тепловой линзы F_T при различных значениях частоты вращения активного элемента. Мощность тепловыделения в данной серии расчетов — 40 W, что соответствует уровню лазерной генерации ~ 120 W [14].

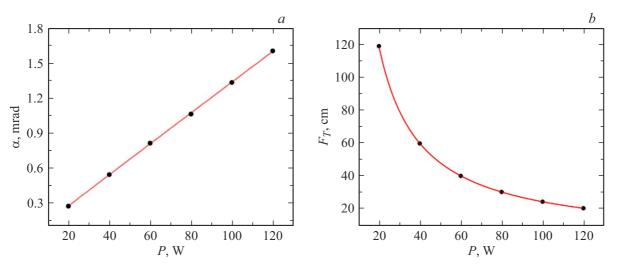
Как видно из представленных на рис. 5 результатов, наклон волнового фронта слабо зависит от частоты вращения активного элемента. Слабая зависимость наклона волнового фронта от частоты вращения связана с незначительным увеличением коэффициента теплообмена с окружающей средой, и, как следствие, незначительным увеличением уходящего через верхнюю поверхность активного элемента потока тепла.

Фокус тепловой линзы в отличие от наклона существенно зависит от частоты вращения: при увеличении частоты с 50 до 200 Hz величина фокуса тепловой линзы уменьшилась с 70 до 50 cm. Характерное расстояние L_T , на которое распространяется температурная волна за время оборота активного элемента, можно найти по формуле

$$L_T = \sqrt{4\pi\chi\frac{1}{\Omega}}. (16)$$


Для частоты $\Omega=100\,\mathrm{Hz}$ значение $L_T\approx0.73\,\mathrm{mm}$, что меньше рассматриваемых размеров кристалла. Поскольку с увеличением частоты вращения активного элемента характерное расстояние, на которое распространяется температура в активном элементе за время оборота, уменьшается, за один оборот тепло "размазывается" по меньшему объему активного элемента. В результате градиенты температуры в направлениях от нижней и верхней стенок к области накачки увеличиваются, и формируется более сильная тепловая линза. Стоит отметить, что выбор частоты вращения активного элемента будет зависеть от типа резонатора и его способности удерживать тепловую линзу.

На рис. 6 представлены зависимости наклона волнового фронта α и фокуса тепловой линзы F_T от мощности тепловыделения в активном элементе. Частота вращения активного элемента в данном расчете $\Omega=100\,\mathrm{Hz}$.


Расчетная зависимость фокуса тепловой линзы хорошо аппроксимируется аналитической функцией $F_T \sim P^{-1}$. При увеличении мощности излучения накачки в 2 раза фокус тепловой линзы уменьшится также в 2 раза. Наклон волнового фронта линейно зависит от мощности тепловыделения $\alpha \sim P$.

Далее рассмотрим изменение аберраций "наклон" и "дефокусировка" при организации дополнительного теплоотвод на верхней (дальней от оси вращения) стенке кристалла. Диапазон значений коэффициентов теплообмена был выбран от 250 до 1500 W/m²K, поскольку в данный диапазон попадает коэффициент теплообмена с водой $\phi \sim 1000 \, \text{W/m²K}$ [8]. Соответствующие зависимости фокуса тепловой линзы и наклона от коэффициента теплообмена верхней стенки активного элемента показаны на рис. 7.

Как можно видеть из рис. 7, при увеличении коэффициента теплообмена верхней стенки с окружающей средой наклон уменьшается вследствие уменьшения разности потоков тепла отводимых с нижней и верхней поверхностей активного элемента. Важным является то, что значение фокуса тепловой линзы практически

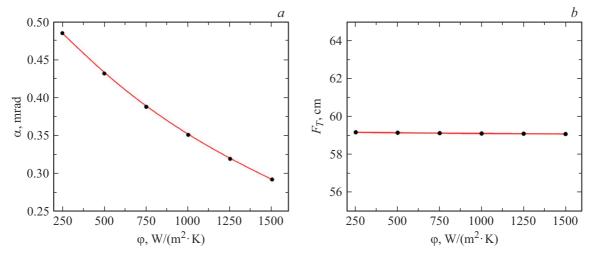
Рис. 5. Зависимость наклона (a) и фокуса тепловой линзы (b) от скорости движения активного элемента.

Рис. 6. Зависимость наклона волнового фронта (a) и фокуса тепловой линзы (b) от мощности тепловыделения в активном элементе.

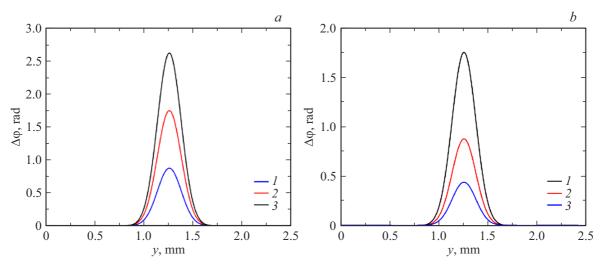
не меняется, поскольку суммарный тепловой поток, отводимый со стенок кристалла, остается постоянным. Соответственно увеличение градиента температуры в направлении от верхней стенки к области накачки "компенсируется" уменьшением градиента температуры от нижней стенки к области накачки.

Перейдем к рассмотрению оптической неоднородности, которая формируется за счет нерегулярной составляющей профиля температуры в активном элементе (рис. 3, b). В отличие от "дефокусировки" и "наклона" данная оптическая неоднородность непосредственно будет влиять на качество пучка во время лазерной генерации. На рис. 8 показаны центральные сечения нерегулярной оптической неоднородности по оси y.

Все приведенные сечения нерегулярной оптической неоднородности по оси у имеют, так же как и пучок накачки, гауссов профиль с шириной, равной ширине пятна накачки. Следовательно, нерегулярная оптическая


неоднородность определяется только плотностью тепловыделения и не зависит от скорости теплообмена с окружающей средой.

Соответствующие рис. 8 зависимости значения фазового набега $\Delta \phi_{\rm max}$ при $y=1.25\,{\rm mm}$ от мощности тепловыделения и частоты вращения активного элемента показаны на рис. 9.


Зависимость максимума фазового набега $\Delta \phi_{\rm max}$ нерегулярной оптической неоднородности от мощности тепловыделения и частоты вращения активного элемента имеет следующий вид:

$$\Delta \varphi_{\rm max} \sim \frac{P}{\Omega}.$$
 (17)

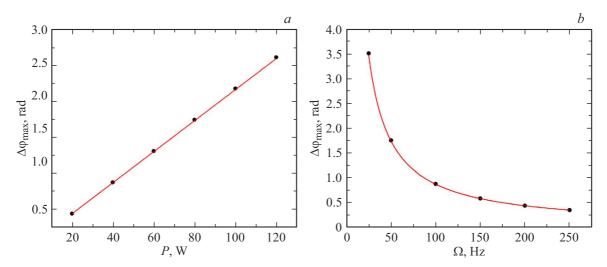

Таким образом, в эксперименте при увеличении мощности излучения накачки в 2 раза (что соответствует увеличению мощности тепловыделения в \sim 2 раза) для сохранения расходимости лазерного пучка на прежнем

Рис. 7. Зависимость наклона (a) и фокуса тепловой линзы (b) от коэффициента теплообмена верхней стенки активного элемента с окружающей средой.

Рис. 8. Центральные сечения нерегулярной оптической неоднородности по оси y, a — при различной мощности тепловыделения: I — 40, 2 — 80, 3 — 120 W (при Ω = 100 Hz); b — при разных частотах вращения активного элемента: I — 50, 2 — 100, 3 — 200 Hz (при P = 40 W).

Рис. 9. Зависимости максимумов фазового набега $\Delta \phi_{\max}$ нерегулярной оптической неоднородности: a — от мощности тепловыделения, b — от частоты вращения активного элемента.

Лазерный кристалл	ZnSe	CdSe	CdTe
Теплоемкость θ , $J/(g\cdot K)$	0.34 [1] 0.339 [4.5]	0.255 [4] 0.258 [5]	0.205 [4] 0.21 [5]
Коэффициент теплопроводности q , $\mathbf{W}/(\mathrm{cm}\cdot\mathbf{K})$	0.13 [5]	0.062(a) [5] 0.069(c) [5]	0.0585 [4] 0.063 [5]
Термооптическая постоянная dn/dT , $\cdot 10^{-6} { m K}^{-1}$	63.4 [1] 59.7–52 [5]	100 [1]	147–98.2 [5] 100 [14]

Таблица 2. Термооптические и спектроскопические свойства кристаллов

уровне нужно также в 2 раза увеличить частоту вращения активного элемента.

В табл. 2 представлены термооптические свойства кристаллов Cr^{2+} :ZnSe и Cr^{2+} :CdTe. Для сравнения там же приведены данные для Cr^{2+} :CdSe. Среди халькогенидов, легированных ионами Cr^{2+} , данные кристаллы имеют высокие значения сечения усиления в спектральном диапазоне от 2 до $3.6\,\mu m$.

Как видно из таблицы, термооптические свойства кристаллов CdTe и CdSe численно очень близки, а кристалл ZnSe существенно выделяется в лучшую сторону. Теплопроводность ZnSe выше более чем в два раза, а dn/dT меньше примерно в 1.6 раз. Из этого следует, что в эксперименте при прочих равных условиях в кристалле ZnSe требуемые частоты вращения активного элемента в 4 раза меньше. Также в кристалле ZnSe тепловая линза будет слабее в \sim 4 раза, другими словами, предельная мощность излучения накачки для кристалла ZnSe в \sim 4 раза больше.

Заключение

Работа посвящена численному моделированию нагрева вращающихся лазерных активных элементов из Cr^{2+} :CdSe и оценкам возникающих в них оптических неоднородностей. При моделировании рассматривались активные элементы в форме параллелепипеда, вращающиеся на диске перпендикулярно оси генерации. Предполагалось, что на нижней (ближайшей к центру вращения) стенке элемента нанесена термопаста, на остальных стенках был реализован конвективный теплообмен с воздухом.

Полная "лобовая" задача нагрева вращающегося активного элемента является трехмерной и нестационарной, и ее решение требует больших объемов памяти ЭВМ и временных затрат. Для сокращения времени счета задача теплопроводности для вращающегося активного элемента разбивалась на две части: стационарную и нестационарную. На стационарном этапе тепловыделение от пятна накачки "размазывается" по кольцевой траектории пятна и находится распределение температуры в активном элементе в первом приближении, которое далее используется в качестве начального условия для нестационарной задачи с вращением. Такой

подход, как показало контрольное сравнение, с хорошей точностью описывает результаты "полного" расчета. Отличие результатов менее одной десятой процента, но время расчета при этом на порядок величины меньше.

В результате расчетов показано, что возникающее в процессе работы лазера распределение температуры (и соответственно показателя преломления) в активном элементе условно можно разделить на две составляющие.

Первая составляющая формируется за счет баланса между тепловыделением и отводом тепла из активного элемента и приводит к возникновению аберрации, которая является суммой аберраций "наклон" и "дефокусировка". Амплитуда этих аберраций зависит от мощности накачки и коэффициента теплообмена активного элемента с окружающей средой. В случае плоско-сферического резонатора в эксперименте аберрация "наклон, компенсируется поворотом глухого зеркала и не повлияет на качество лазерного пучка. Аберрация "дефокусировка" может привести к ухудшению качества пучка, поэтому следует учитывать ее величину при выборе типа резонатора.

Вторая составляющая профиля температуры формируется непосредственно во время прохода пятна накачки через активный элемент и имеет то же пространственное распределение, что и пучок накачки. Она зависит только от плотности тепловыделения и не связана со способом охлаждения активного элемента. Амплитуда соответствующей аберрации прямо пропорциональна мощности тепловыделения и обратно пропорциональна скорости вращения активного элемента. Отметим, что данная аберрация будет непосредственно ухудшать качество лазерного пучка, для уменьшения ее влияния необходимо увеличивать частоту вращения активного элемента.

Финансирование работы

Работа выполнена при поддержке национального проекта "Наука и университеты" (проект FSWR-2021-012) за счет субсидии федерального бюджета на финансовое обеспечение государственного задания на выполнение научно-исследовательских работ.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, Ch. Kimet. Laser Photon Rev., 4 (1), 21 (2010). http://dx.doi.org/10.1002/lpor.200810076
- [2] M.K. Tarabrin, D.V. Ustinov, S.M. Tomilov, V.A. Lazarev, V.E. Karasik, V.I. Kozlovsky, Yu.V. Korostelin, Yan K. Skasyrsky, M.P. Frolov. Opt. Express, 27 (9), 12090 (2019). https://doi.org/10.1364/OE.27.012090
- [3] S. Basu, R. Byer. Opt. Lett., 11 (10), 617 (1986). DOI:10.1364/OL.11.000617
- [4] I. Moskalev, S. Mirov, M. Mirov, S. Vasilyev, V. Smolski, A. Zakrevskiy, V. Gapontsev. Opt. Express, 24 (18), 21090 (2016). https://doi.org/10.1364/OE.24.021090
- [5] Н.Г. Захаров, Р.А. Зорин, В.И. Лазаренко, Е.В. Салтыков, А.А. Лобанова, А.В. Маругин, В.А. Гарюткин, Г.М. Мищенко, М.В. Волков, Ф.А. Стариков. Письма в ЖТФ, 48 (6), 16 (2022). https://doi.org/10.1364/OE.24.021090
- [6] В.А. Акимов, В.И. Козловский, Ю.В. Коростелин, А.И. Ландман, Ю.П. Подмарьков, Я.К. Скасырский, М.П. Фролов. Квант. электрон., 38 (3), 205 (2008).
- [7] А.Н. Тихонов, А.А. Самарский. Уравнения математической физики (Наука, М., 2004)
- [8] Х. Уонг. Основные формулы и данные по теплообмену для инженеров. Справочник (Атомиздат, М., 1979)
- [9] D.R. Lide. *Handbook of Chemistry and Physics, 84th Ed.* (CRC Press, 2003-2004)
- [10] И.К. Кикоин (ред.). *Таблица физических величин. Справочник* (Атомиздат, М., 1976)
- [11] W. Koechner. *Solid-State Laser Engineering* (Springer, 2013), v. 1. DOI:10.1007/0-387-29338-8
- [12] A. Bereczki, N. Ursus. Opt. Laser Technol., 96, 271 (2017).
- [13] M. Harlander, A. Heinrich, C. Hagen, B. Nussbaumer. Proc. SPIE, 8959, 895908-1 (2014).
- [14] U. Hommerich, I.K. Jones, Ei Ei Nyein, S.B. Trivedi. J. Crystal Growth, 287, 450 (2006).