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1. Introduction

The effect of carrier relaxation and nonzero detuning of

the resonant frequency of active and passive media on the

stability of scalar dissipative solitons in a bistable laser was

first considered in [1]. This formulation of the problem

is most relevant when searching for conditions for the

implementation of dissipative solitons in micro-lasers with

vertical extraction of radiation with a large aperture and

with passive layers on quantum dots or wells integrated into

a semiconductor micro-resonator. In the works [2,3] the

possibility of realizing bistability modes in micro-lasers was

considered theoretically, and in [4] — it was considered

using experimental data. The polarization state of the

radiation was not taken into account in this case.

In this paper, we consider the stability of generation

modes that are basically homogeneous over the laser

aperture in the subthreshold mode, i.e., in the hysteresis

region of the homogeneous generation mode and the

generationless state. Under the conditions of stability of a

scalar dissipative soliton, we take into account the formation

of field perturbations with different states of polarization.

The uniform lasing mode can be implemented both in wide-

aperture lasers and in lasers with a small aperture, for

example, in semiconductor micro-lasers with one or two

transverse modes (corrected for the shape of the modes).
The thresholds for the onset of relaxation and polarization

oscillations in a wide-aperture bistable laser are obtained

analytically and numerically with a change in the resonant

detuning of the active medium (alpha factor) and/or the

relaxation times of two media. Comparison was made

for the stability region of a homogeneous mode with the

stability region of solitons with a nontrivial topology of the

phase distribution or an inhomogeneous polarization state

of light ([5]).

2. Model of the medium and types of
relaxation oscillations

Active medium model is four-level one, the spin-flip

model, [6]. The passive medium model for a saturable

absorber is the two-level one. In both cases, we con-

sider only the carrier population dynamics, assuming that

the relaxation rate of dipole moments is much higher,

i.e. γ‖ ≪ γ⊥, see rate equations (3.3) and (3.4) in the

work[6]. In the case of a four-level model of the active

medium, two radiative transitions with opposite electron

spins generate photons with opposite spin directions, more

precisely, we consider two photon field amplitudes with

opposite circular polarization, E±. The total difference

between the populations of two resonant transitions is

denoted by the dimensionless real amplitude N. In the

absence of loss anisotropy effects, it generates oscillations

only of the total intensity of the two field components

I = |E+|
2 + |E−|2. The difference between the population

inversions of two transitions is denoted as n. It is related

to fluctuations in the difference between the intensities of

two field components δI = |E−|2−|E+|
2. The relaxation

rate γJ of the population difference n and at the same

time the intensity difference δI is substantially greater than

the relaxation rate of the inversion N. The values of

the small parameter εJ = γ‖/γJ are given in [6] in the

interval 1/201 ≤ εJ ≤ 1/3. In the approximation of the

two-level model εJ → 0, and then it is necessary to set

n = 0 and δI = 0 in the rate equations.

The difference between the frequencies of two transitions

of the active medium and the anisotropy of the media in

the resonator is neglected. As a consequence, the types of

oscillations between the populations of the media and the

field intensity can be divided into relaxation types (oscilla-
tions between the total population of the medium N and a
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in active and passive media and the total intensity I) and

polarization types (oscillations between the difference of the

populations of two transitions in the active medium n and

the difference between the intensities of the two radiation

components δI). Further, it will be shown that with a change

in the frequency detuning of the medium, the build-up of

oscillations of the total field intensity with δI = 0 (relaxation
oscillations in a two-level medium) is possible or, conversely,
the build-up of oscillations between the amplitudes of two

field components with different polarization directions E±
with δI 6= 0, but with a constant total intensity, I = const.

The alpha factor is denoted as the dimensionless detuning of

the resonant frequency of the active or passive medium δg

or δa with respect to the longitudinal mode of the resonator.

The simplest way to match the resonant frequencies of the

active and passive media is to choose the same medium

for the saturable absorber as for the laser. In the case of

a semiconductor micro-laser, it is possible to place passive

and active layers (quantum wells or dots) integrated on one

substrate [2,4]. The dimensionless relaxation times of the

total population of carriers of two media are related to the

dimensional relation τg,a = κγ−1
‖ , where κ — is the factor

of linear loss of a resonator.?s specified longitudinal mode.

Next, we calculate the stability increments Re λ de-

pending on the parameters of two resonant media: the

relaxation time of the total intensity τg,a and εJτg of the

relaxation time of the differences populations and intensities

of two radiation components δI in the active medium.

We consider the stability of homogeneous solutions in the

wide-aperture laser model with respect to perturbations

with a given spatial (transverse) scale l and wave vector

k = 2π/l . Note that the characteristic size of dissipative

solitons of order l = 5−8 corresponds to k = 1. Therefore,

when estimating the instability conditions for dissipative

solitons (with calibrated sizes),that for their breakup, only

perturbations with γ(k) > 0 for k > 1 are dangerous. At

the same time, homogeneous perturbations with k = 0 also

violate the stability of localized states, since they lead to

temporal oscillations of the soliton amplitude, which are

uniform along the distribution coordinate. For a dissipative

soliton, such oscillations with sufficiently large amplitude

can lead to the breakdown into a generationless state if the

intensity oscillation amplitude is greater than the difference

between the intensities of the upper and intermediate

branches of the hysteresis.

3. Equations for field and populations

In the quasi-optical and mean-field approximations, the

vector field envelope of the electric strength E = Ex , Ey

is related to the total strength Ẽ by the relation

Ẽ = 2Re[E(x , y, t)eik0z−iω0t], where z is coordinate along

the resonator axis, x and y are transverse Cartesian coordi-

nates, t is time, ω0 is carrier frequency and k0 is correspond-

ing wavenumber. It is also convenient to use the left and

right circular polarization components E± = 1√
2
(Ex ± iEy).

The amplitudes of the envelope are complex and the

intensity of the circular components is expressed in terms

of the Stokes parameters s i , see [7]:

I = |E+|
2 + |E−|

2 = s0, 1I = |E−|
2 − |E+|

2 = s3. (1)

In the regions of the soliton, where δI = s3 = 0, the is linear

light polarization, otherwise is- elliptical one or circular one.

In dimensionless form, the equations for the field and

populations are as follows:

∂tE± − (i + d)∇2
⊥E± =

[

−1− (1− iδa)a

+ (1− iδg)(N ± n)
]

E±, (2)

τg∂tN = −(1 + bg I)(N − Ns) + bgδI(n − ns),

τg∂t n = −(1/εJ + bgI)(n − ns) + bgδI(N − Ns ),

τa∂ta = −(1 + ba I)(a − a s). (3)

These equations, unlike [6], take into account the population

dynamics of a passive medium (absorber) with a two-level

model (a is inverse population normalized to linear losses),
and unlike [6,8] The loss angular selectivity factor d is

introduced into the equation for the field. In relaxation

equations (3), the following notation is used for the steady-

state populations of two media as functions of the intensities:

Ns (I, δI) =
N0

1 + bgI −
εJb2

gδI2

1+εJ bg I

,

ns(I, δI) =
εJbgδI

1 + εJbg I
Ns (I, δI), a s(I) =

a0

1 + ba I
. (4)

In the inertialess approximation, the dimensionless relax-

ation times are τg,a → 0. The value of the dimensionless

saturation factor bg is determined by the choice of normal-

ization of the field amplitude E±. In accordance with (4),
we use normalization with unit saturation intensity of the

absorber, ba = 1. The dimensionless time in (2) and (3) is

normalized to unit linear losses: t = κt̃ . In contrast to [8],
here we do not take into account the loss anisotropy of two

cavity modes with a given linear polarization and assume

that the resonant frequencies of two modes with orthogonal

polarizations coincide.

4. Stability of homogeneous solutions

Solving equations (2) and (3) in the homogeneous

case, we necessarily obtain the case of linear polarization

δI = s3 = 0 for the four-level model, when εJ 6= 0. Solution

with a single circular polarization, when the amplitude of

the other component is zero, is always unstable for εJ 6= 0

[5]. For εJ = 0, the equations of the medium and the

field without anisotropy are degenerate with respect to the

polarization state, i.e., then, any homogeneous polarization

states can be realized. Ignoring the anisotropy of media,

let’s consider the instability of only a linearly polarized

field, |E±| = |Es |.
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Figure 1. Boundaries of the region of instability with respect to homogeneous perturbations (1, Andronov−Hopf bifurcation, the region

to the right of the curve) and the region of small-scale instability (to the right of the curve) 2, including the region 1) on planes of

dimensionless relaxation times (τg , τa). The diagram (b) shows the value of the most dangerous instability scale δlm. δkmax = 2π/δLm,

depending on the relaxation time of the passive medium τa , for which the growth increment reaches a maximum, and the value of the

relaxation time of the active medium τg(τa) corresponds to the boundary of the small-scale instability region, curve 2.

Small-scale instability of homogeneous or localized so-

lutions appears only in wide-aperture lasers. For lasers

with a small aperture, the perturbations can be considered

as uniform. Let’s substitute into (2), (3) the perturbed

homogeneous solution: E± ∼= (Es + F±)eivt , a ∼= a s + δa ,
N ∼= Ns + δN, n ∼= δn. Here F± is the amplitude of pertur-

bations of the circular components. The resulting linear

equations are divided into equations for the amplitudes

of relaxation, F = F+ + F−, and polarization, R = F+−F−,
perturbations. From them it is not difficult to obtain

algebraic equations for the oscillation amplitude:

F(t) ∼= APeλt + B∗
peλ

∗t, R(t) ∼= Ameλt + B∗
meλ

∗t,

δa(t) ∼= qeλt + q∗eλ
∗t,

{

δN(t) ∼= peλt + p∗eλ
∗t,

δn(t) ∼= ηeλt + η∗eλ
∗t .

(5)

The solvability condition of the latter, firstly, is the cubic

equation for the growth rate of perturbations λ:

τgτaλ
3 + (τg bas + τa bgs )λ

2 +
[

bgs bas + 2(τa Ns bg

− τga s ba)Is
]

λ + 2(bas Ns bg − bgs a s ba)Is = 0 (6)

for relaxation oscillations, where bas ,gs = 1 + ba,g Is

and Is is total intensity of the unperturbed mode. Secondly,

for polarization oscillations we obtain a quadratic equation:

τgλ
2 + λ(1/εJ + bgIs ) + 2bg Ns Is = 0. (7)

Solution (7) always gives Re λ± < 0, i.e., there is no

Andronov−Hopf bifurcation for polarization oscillations and

perturbations with constant total intensity and δI 6= 0 is

always damped. For

τg <
1

8bg Ns Is
(1/εJ + bgIs )

2

the oscillation in damped oscillatory modes of motion

they are missing because Im λ± = 0 In the inertialess limit

εJ → 0, the population difference n does not oscillate or

accompanies the relaxation oscillations of the population

sum. The regions of instability of relaxation oscillations (the
Andronov−Hopf bifurcation) are shown in Fig. 1.

Next, we consider the small-scale instability of a homo-

geneous or soliton solution. We substitute the perturbed

amplitudes into (2) and obtain linearized equations with

coefficients depending on the coordinates, which are ex-

pressed through the soliton amplitude E±s . Stationary

solution (3) E± = E±s(x , y)eivt taking into account (4)
(a = a s , N = Ns , n = ns) is determined by the equations:

(i + d)∇2
⊥E±s − (1 + iv)E±s − (1− iδa)a s E±s

+ (1− iδg)(Ns ± ns)E±s = 0. (8)

The equations for perturbed amplitudes, which are also

valid for soliton perturbations, F±(x , y, t)

E±∼=E±s(x , y)eivt +F±eivt ,
N ∼= Ns (x , y)+δN

a ∼= a s(x , y)δa
, n ∼= δn

(9)
are putting down separately for relaxation F = F+ + F− and

polarization R = F+−F− perturbations. Next, we substitute

the perturbation amplitudes with a given scale |k| and

growth increment λ:

F ∼= Apeλt+ikr + B∗
peλ

∗t−ikr, R ∼= Ameλt+ikr + B∗
meλ

∗t−ikr,

δa ∼= qeλt+ikr + q∗eλ
∗t−ikr,

{

δN ∼= peλt+ikr + p∗eλ
∗t−ikr,

δN ∼= ηeλt+ikr + η∗eλ
∗t−ikr.

(10)
For homogeneous solution Is = const, and linear equations

on Ap,mB p,m, p, η become algebraic. The condition for
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Figure 2. Dependences (a) of the growth increment of small-scale perturbations λ = γ + iω on the boundary of the Andronov−Hopf

bifurcation region (curve 1 in Fig. 1) and (b) frequency of time oscillations on the wave number; almost does not depend on the scale

of perturbations in the region of their instability (curves 1, 2 for two frequencies). The values of the relaxation times τa = 0, τg = 3.79

(curve 1), τa = 5, τg = 5.1 (2), τa − 10, τg = 6.61 (3), τa = 20, τg = 9.77 (4).
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Figure 3. Dependences (a) of the growth increment of small-scale disturbances at the boundary of the small-scale instability region

(curve 2 in Fig. 1) and (b) frequencies temporal oscillations of ω from the wave number. The values of the relaxation times τa = 0,

τg = 1.4 (curve 1), τa = 5, τg = 3.18 (2), τa − 10, τg = 5.12 (3), τa = 20, τg = 8.84 (4).

their solvability are equations for the growth increment of

the sixth degree by λ for relaxation perturbations. For

polarization oscillations with amplitude R, it separates and

becomes a third-degree equation:

τgλλ
2
kk + (1/εJ + bg Is)λ

2
kk + 2Ns bgIs (λk − δgk2) = 0,

(11)
where

λk = λ + dk2, λ2kk = λ2k + k4 = (λ + dk2)2 + k4,

and for k = 0 to (7) in (11) the solution λ = 0 is

added. It is this branch of solutions, which tend to

zero for k → 0, that generates the small-scale instability of

polarization perturbations. The expansion (11) for small

values of k2 ≪ 1 gives two solutions with increment close

to zero: λ(k2) ∼= λ±δ + λ±1k2 for δg > 0, and for δg < 0

respectively:

λ+1 = δg−d and λ+δ =0, or λ−1=−4(δg +d)NsbgIsτgε
2
Js c1

and λ−δ
∼= −2Ngs < 0, εJs =

εJ

1 + bg IsεJ
.

Only the first of them in the first order of smallness in k2

gives a positive growth increment. The increment maximum

is reached at k = kmax, besides kmax = 0 for δg < d and

k2
max = εJsNs bgIs

δg − d
1 + δ2g

> 0, for δg > d. (12)

Finally, the maximum increment is given by:

λmax =
1

2
εJs Ns bg Is

(δg − d)2

1 + δ2g
. (13)

Of interest is only the case of positive values of detunings,

when λ(0) = 0, λmax > 0, and since the last relation makes

sense only under the condition k2
max ∼ δg − d > 0, then the

polarization oscillations for small values of k2
max do not

Optics and Spectroscopy, 2022, Vol. 130, No. 10
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Figure 5. Dependences (a) of the growth increment of polarization oscillations for three values of the alpha factor in the region of small-

scale instability of the uniform generation regime and (b) the frequency of time oscillations ω(k) i.e.curves 1, 2, 3 for three frequencies in

the right figure from the wave number δg = 0 (curve 1), −0.3 (2), 0.3 (3). The absorber is resonantly tuned, δa = 0. The increment of

polarization oscillations does not depend on the relaxation time τa , but τg = 5; d = 0.06.

decay only for δg > d, i.e., only for positive values of the

alpha factor.

It is possible to derive an expression for the growth

threshold of relaxation oscillations, which is valid, as in the

case of polarization oscillations (12), for small values of

k2 ≪ 1. The increment equation for relaxation oscillations

already has six roots, three of which degenerate for

homogeneous perturbations, λ(0) = 0:

[

(τaλ + bas )(λ
2
k + k4) − 2a s ba Is(λk − δa k2)

]

×
[

(τgλ + bgs )(λ
2
k + k4) + 2Ns bg Is(λk − δg k2)

]

+ 4a s Ns ba bgI2s (λk − δg k2)(λk − δak2) = 0, (14)

where λk = λ(k2) + dk2 and δdg,da = δg,a−d . Substitution

into (14) λk
∼= (λ1 + d)k2 + λ2k4 gives the solution

λ1 ∼=
δdg − bgasδda

1− bgas
, bgas =

bgs Nas

bas Ngs
.

Thus, at k → 0, λ(k2) → 0 the growth increment of

relaxation oscillations is λ > 0 if λ′(0) = λ1 > 0:

δg > d + bgas(δa − d),

bgas =
(1 + bgIs)

2ba a0

(1 + ba Is)2bg g0

< 1. (15)
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scale k = 1 are additionally shaded. Curve 3 is for the region of small-scale instability due to polarization oscillations, curve 4 is for

relaxation oscillations; g0 = 2.117, τg = 5, τa = 10.

5. Calculation of dependences of growth
increments of perturbations

Using the solution of equations (11), (14), we present

here a pattern of the stability of polarization and relaxation

oscillations, taking into account their dependence on the

spatial scale k = |k|. First, we consider the case of zero

values of the alpha factor, δg = δa = 0. Figure 1 shows the

regions of instability of the homogeneous solution Es for

homogeneous perturbations k = 0, curve 1, and for small-

scale instability, curve 2. The region of existence of the latter

under conditions of stability of homogeneous perturbations

is adjacent to the region 1. The calculations were

carried out for the most characteristic value of the control

parameter i.e. gain ratio g0 = 2.114, for which the stability

regions of polarization solitons are calculated: a0 = 2,

bg = 0.1, ba = 1, d = 0.06. Figure 2 shows the calculation

of the complex growth rate of small-scale perturbations,

λ(k) = γ(k) + iω(k), from their scale for several points of

the boundary of the region of instability of homogeneous

perturbations. It can be seen that as the relaxation time

increases, the maximum value of the increment decreases,

as does the width of the perturbation spectrum, passing

to a region with predominantly Andronov−Hopf instability,

Optics and Spectroscopy, 2022, Vol. 130, No. 10
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once the two boundaries of the regions in Fig. 1,are merging.

Finally, Fig. 3 shows the dependences of increments on the

scale at the boundary of the small-scale instability (curve 2

in Fig. 1).

Figure 4 shows the dependences of the decrease incre-

ment of polarization oscillations for zero values of the alpha

factor.

Now let’s consider the polarization and relaxation os-

cillations for the alpha factor above the threshold value,

see (14). Figure 5 shows the dependences of the decrease

and increase increments of polarization oscillations for

values of the alpha factor δg = 0.3 (δg > d) and δg = −0.3

(δg < −d).

It can be seen that, with respect to relaxation oscillations,

the homogeneous generation mode is unstable only for

positive values of the alpha factor, δg > d, and the max-

imum increase increment is reached for sufficiently long-

wavelength perturbations, δlm ∼ 50−100, kmax = 2π/δlm,

i.e., by order of magnitude greater than the characteristic

width of the soliton. Perturbations with such a scale

increase mostly without temporal oscillations. Polarization

oscillations at negative values of the alpha factor (resonance
detuning) are damped. Homogeneous perturbations, k = 0,

are always neutrally stable, γ = 0.

Figure 6 shows the increase increments of relaxation

oscillations for the same conditions as in Fig. 5. It can

be seen that at sufficiently large values of the alpha factor

relaxation oscillations also increase (instability), and for both

values of the sign of the resonant detuning δg .

Figure 7 shows the regions of instability with respect

to the increase of polarization and relaxation oscillations

on the plane of resonant detunings, (δg , δa). The regions

of instability are given by the threshold conditions (12),
δg > d, and (15), δd > d + bgas (δa−d), respectively. The

threshold conditions do not depend on the relaxation times

in the 0 < k2
max ≪ 1 approximation, which is observed for

the chosen parameters. This means that an increase in

detuning δg leads to the development of instability for all

values τg,a at once. However, for dissipative solitons with a

calibrated width, the stability regions increase significantly,

see curves 3 and 4 in Figs 7 and 8. On the right side of

Fig. 7 and Fig. 8, the regions of small-scale instability of

solitons are shown, the position estimate of which is given

by the positive increment γ(k) > 0 for k = 1.

Fig. 8, a shows the regions of instability of relaxation

perturbations of the homogeneous solution (7) for ho-

mogeneous perturbations (k = 0, curve 1) and for small-

scale instability (curve 2) corresponding to Fig. 1. Es-

timated areas of small-scale instability of harmonics with

a characteristic scale k = 1 for relaxation oscillations and

for different values of the alpha factor, are additionally

shaded. They are given by the condition γ(k) > 0 for

k = 1. It can be seen that the small-scale instability with

a large wavelength, k = 1 (curves 3, 4), affects the stability

of a homogeneous mode or soliton much less than long-

wave harmonics with k → 0, if the absorber relaxation time

is large enough, τa > 10, and even for sufficiently large

alpha factors, up to δg > 1−2. In the second diagram,

Fig. 8, b are shown to compare the boundaries of the

instability regions of the homogeneous regime (curves 1

and 2 for homogeneous and small-scale disturbances, as

in the figure on the left) with the boundaries regions

of instability of vector solitons with different Poincar?

charge η [5] (Poincar? charge is understood as the number
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of revolutions of the main axis of the polarization ellipse

when going around the polarization singularity point along

a closed contour). It can be seen that the boundary of

the region of instability of the scalar soliton (with charge

η = 0) almost coincides with the boundary of the region

of small-scale instability of the homogeneous generation

regime, and in the region of instability under homogeneous

perturbations, which can be realized for lasers with a small

aperture, the polarization solitons with a large Poincar?

charge.

Conclusion

The stability thresholds for polarization and relaxation

oscillations in lasers with saturable absorption are deter-

mined within the framework of a four-level model of the

active medium, taking into account the polarization of

radiation. It is shown that, at small values of the alpha

factor, the instability can be compensated by passing to

localized modes (vector solitons), which is most significant

for large relaxation times of the active medium. The

regions of stability due to both types of oscillations are

determined, and it is shown that polarization oscillations

of the medium can also develop in wide-aperture lasers, i.e.,

oscillations at which the total intensity is almost constant,

and the difference between the intensities of the circular

components of the radiation oscillates with increasing

amplitude. Increasing the relaxation time and alpha factor

of the absorber relative to the values of these quantities for

the active medium increases the region of stability of the

uniform generation mode (Figs 7 and 8). The same applies

to localized generation modes (solitons) (Fig. 8).
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