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1. Introduction

Volumetric integral equations (VIEs) are based on the

representation of fields inside the volumes of bodies. They

were mainly used for structures with dielectric inclusions

in problems of electrodynamics and optics [1–27]. For

the first time, apparently, they were introduced in the

work [1]. The principle of obtaining them is very simple:

any body that has an electrical and/or magnetic response

to the action of the field is described by its polarization

currents as if they are located in a vacuum in the volume

occupied by the body [28]. This makes it possible to use

the apparatus of vacuum tensor Green’s functions (FGs)
to formulate the VIE, which are clearly known for free

space [28] and for some simple shielded regions with

electric and magnetic walls: hollow rectangular and round

cylindrical waveguides and resonators, spherical resonator

and a number of others. Dielectric bodies in vacuum and in

the indicated structures are described by VIEs. The use

of impedance screens complicates the problems, leading

to combined volume-surface integral equations (IE), which

we do not consider in detail here. Since metals are well

described by the dielectric permittivity (DP) of the Drude-

Lorentz model εm(ω, r) = εL(ω, r) − ω2
p/(ω

2 − iωωc), in

which the Lorentz term εL is almost constant and real

up to the plasma frequency ωp, then the VIE describe

small metallic particles and plasmons in them, including

localized plasmons. To describe a field in a metal, one or

all dimensions must be comparable with the penetration

depth, otherwise the metal body should be considered

as an impedance surface with a given surface impedance.

Recently, electrodynamic and optical problems have arisen

for bodies made of metamaterials with effective (obtained
by homogenization) material parameters [16–18,29]. Such

metamaterials can be chiral, biisotropic and bianisotropic

with electric and magnetic responses. In the frequency

region where the homogenization is performed correctly

and the spatial dispersion can be neglected, bodies made

of metamaterials can also be compared with the VIE in the

frequency domain. Note that the bodies of their photonic

crystals (PCs) in optics can in principle be described only

by a tensor DP with allowance for spatial dispersion. Then

the use of the VIE is possible only in the frequency

region where the spatial dispersion can be neglected Finally,

VIE can be formulated in the space-time domain [14,23].
Such non-stationary VIEs have recently become more

and more widely used. The specified wide range of

possible applications of VIE is not sufficiently reflected

in publications, which mainly consider the problems of

diffraction by dielectric bodies. One of the objectives

of the review is to reveal the possibilities of the VIE

method.

Although by now a significant number of commercial

software packages have appeared based on finite-difference

(grid) methods in the space-frequency (FDFD) and space-

time domains (FDTD), projection methods such as the

method of moments (MoM), variational methods such as

the method of finite elements (FEM) and a number of

other approaches to solving Maxwell’s equations, which

make it possible to analyze the structures considered in

the review, VIEs find more and more applications in

electrodynamics, optics, and other areas. The advan-

tages of VIE are especially evident for open boundary

value problems and similar problems with infinitely distant
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boundaries, for inhomogeneous, nonlinear, anisotropic and

bianisotropic structures, where it is not very convenient

or even impossible to work with commercial packages.

Especially the advantages of VIE are manifested for bodies

of small electrical dimensions (the electrical size of a body

is determined by the number of wavelengths inside it).
This, for example, is typical for localized plasmons in

metal nanoparticles, for plasmonic and magnetoplasmonic

waveguides. An example of the advantage of modeling

by the VIE method can be a sparse PC from dielectric

inclusions, when the area of inclusions is small compared

to the entire area — of the periodicity cell. If a PC

consists of a dielectric base into which objects (meta-atoms)
are periodically embedded, then to model the dispersion,

one should use the GF of an unlimited space with the

DP of the base For open problems, the area inside the

bodies is usually finite, and the solution area is infinite,

which creates difficulties for a number of methods, for

example, the grid method or the finite difference method

(FDM), FEM. For such problems, the VIE method gives

solutions with the fulfillment of the radiation condition,

i.e., correctly represents fields in the far-field region. The

solution of VIE based on discretization using volumetric

finite elements (FE) allows reducing the mathematical

dimension of problems by orders of magnitude (the number

of nodes, the number of FE or basis functions) in com-

parison with grid methods and FE-type methods based on

Maxwell’s differential equations. Below, the dimension of

the problem will be understood as the dimension of the

matrix during discretization. True, FDM and FEM lead

to sparse matrices, while FEM gives everywhere dense

matrices. But this is a small price to pay for its advantages,

especially since such problems are usually solved iteratively.

In principle, the approach based on the VIE method

using volumetric FEs makes it possible to implement fairly

universal software systems, but this, apparently, is the area

of future implementations of commercial electrodynamic

simulation software packages. Similar work is being done.

The convenience of the VIE method is also the fact that

on its basis bilinear and quadratic functionals are easily

formulated, the determination of the stationary values of

which makes it possible to determine the fields or integral

parameters of problems, for example, the frequencies of

dielectric resonators (DR), reflection coefficients, scattering

cross sections, direction response patterns. It is convenient

to perform homogenization for PCs and metamaterials on

the basis of the VIE solution [16–18], which is difficult to

do using commercial packages.

In this review, we mainly consider three-dimensional

open and screened boundary value problems with field

penetration into the volume, which are formulated as

diffraction problems or as eigenvalue problems. The two-

dimensional problem of free waves of a waveguide is

considered as a special case. Three-dimensional problems of

wave diffraction on impedance and ideal surfaces (surface
integral equations), as well as problems of diffraction on

bulk and other inhomogeneities in waveguides are not

considered and are mentioned in passing. Many methods

have been developed for these problems, including the

theory of waveguide excitation [28,30,31], especially in

cases where the eigenwave spectrum is known. In the

general case, we denote by the term VIE also volumetric

integro-differential equations (IDEs). There is disagreement

about the definition of which equations should be attributed

to the IDE. Often, hypersingular IEs are referred to as

IDEs, when the operator ∇⊗∇ = grad(div) acts on the

integral (i.e., on the kernel). We will call IDE equations

in which both integral and differential operators act on

the desired function, and the latter can act both on

the function under the integral and on the non-integral

term with it. The last case is reduced to the first by

the formal introduction of the delta singularity into the

kernel.

2. Integral and integro-differential
equations

An arbitrary body of volume V bounded by a

surface S in free space, described by a frequency

macroscopic DP ε(ω, r), is equivalent to the

action of the polarization electric current density

J
p
ε (ω, r) = ∂iPε = iωε0(ε(ω, r) − 1)E(ω, r), where

E(ω, r) — field, satisfying Maxwell’s equations.

∇×H(ω, r) = iωε0E(ε(ω, r) + J
p
ε (ω, r) + J0(ω, r), where

J0(ω, r) are third-party sources (density of third-party

current) that create a field. Maxwell’s second equation has

a standard form. Sources should be introduced into it if the

body has a response in the form of magnetic polarization.

Next, we omit the word
”
density“ and simply write

”
current“. In the absence of a body, J

p
ε ≡ 0, and L0 define

a side field E0, b f H0, which is convenient to add to the

field excited by the body. In particular, when the sources

are at infinity, this is a plane wave field. The body can

be single-connected and multi-connected. If the body has

magnetic properties, then the magnetic polarization current

L
p
µ(ω, r) = iωµ0 is also added to another Maxwell equation

(µ(ω, r) − 1)H(ω, r). The convenience of consideration

lies in the fact that these sources are localized in the body,

which can be inhomogeneous and anisotropic. If the body

is anisotropic, then one should take the tensor values for

the DP and magnetic permeability (MP):

Jp
ε (ω, r) = iωε0(ε̂(ω, r) − Î)E(ω, r),

Jp
µ(ω, r) = iωµ0(µ̂(ω, r) − Î)H(ω, r).

Further, everywhere Î is the unit tensor. Moreover, one can

consider a bianisotropic body. It take place the electrical

polarization

Pε = ε0χ̂ε(ω, r)E(ω, r) + c−1ξ̂(ω, r)H(ω, r)

and the magnetic polarization for it.

Pµ = µ0M = µ0χ̂µ(ω, r)H(ω, r) + c−1ζ̂ (ω, r)E(ω, r).
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Here M is the magnetization vector. Accordingly, the

introduced polarization currents are expressed in terms of

the susceptibilities.

χ̂ε(ω, r) = ε̂(ω, r) − Î, χ̂µ(ω, r) = µ̂(ω, r) − Î

and additionally in terms of the cross-polarization tensors ε̂

and ζ̂ if bianisotropy takes place. Bi-anisotropy requires

consideration of two IDEs, as well as a simple accounting

for electrical and magnetic properties. Cross-polarization

leads to additional terms that do not affect the idea of

algorithmization. We will not consider it. Polarization field

(solution of homogeneous equations), is written by us in

the form

Ep(r) = ik0

∫

V

⌊D̂G(k, r− r′)χ̂′ε(r′)Ep(r′)

− η0∇× G(k, r− r′)χ̂µ(r′)Hp(r′)⌋d3r ′, (1)

Hp(r) = ik0

∫

V

⌊D̂G(k, r − r′)χ̂′µ(r′)Hp(r′)

+ η−1
0 ∇× G(k, r− r′)χ̂′ε(r′)Ep(r′)⌋d3r ′, (2)

Here the differential operators D̂ = −i(∇⊗∇ + k2 Î)/k ,
∇⊗∇ = ∇∇, matrix ∇⊗∇ has components

∂α∂β , α, β = x , y, z , k = k0 sqrtε̃, the scalar GF

G(k, r− r′) = (4πR)−1 exp(−ikR), χ̂′ε = ε̂(r)/ε̃ − Î,
k0 = ω/c , R = r− r′ is the distance between source and

observation point. For inhomogeneous structures with the

GF-boundaries are depend on these points separately. In

the general case, we consider bodies in a homogeneous

unbounded medium without dispersion (base) with DP ε̃.

Therefore, instead of ε̂(ω, r) one should take ε̂(ω, r)/ε̃. For
bodies in vacuum G ≡ G0(k0, r) = |4πr|−1 exp(−ik0|r|).
Equations (1), (2) describe homogeneous problems, for

example, problems of free (natural) oscillations of the DR.

For inhomogeneous problems (diffraction problems), the

source fields should be added to these fields:

E0(r) =

∫

V0

D̂G(k, r− r′)J0(r′)d3r ′, (3)

H0(r) =

∫

V0

∇× G(k, r− r′)J0(r′)d3r ′. (4)

Here V0 is volume occupied by field sources. Point dipoles

can be taken as the simplest sources. Sources at infinity

create plane waves, and the problem of diffraction of plane

waves on a body arises. Now full fields are superpositions

E(r) = E0(r) + Ep(r) = E0(r) + K̂ε(r, E,H), (5)

H(r) = H0(r) + Hp(r) = H0(r) + K̂µ(r, E,H), (6)

where the upper circumflexes denote integral operators. It

is these total fields that should be used to calculate the

polarization currents, i.e., to substitute for integrals.

Equations (5), (6) belong to singular equations of the

Lippmann-Schwinger type [32]. In the original formula-

tion (1), (2) their kernels have non-integrable singularities

of the type |r− r′|−3, which makes it impossible to

use piecewise constant functions (or simple quadrature

formulas) for their direct numerical solution. Often such

IEs are called as hypersingular. Integrals of type (1), (2)
diverge in the usual sense, so special spaces of basis and

weight functions should be used, and the result should

be understood in a generalized sense as a distribution

(generalized function) [33–37]. Integrals diverging in the

usual sense in such singular IEs should be understood

in the Cauchy principal value sense [38,39], and their

divergence in the usual sense is due to the fact that the

corresponding integral operator, although bounded, is not

completely continuous hbox[8,35–39]. Physically, the

singularity is related to the GF of a point source, which

has the singularity |r− r′|−1. Its double differentiation

in defining the fields leads to the maximum singularity

|r− r′|−3. To avoid such differentiation, it is convenient

to reformulate the equations, in particular, to formulate

the VIE for electrodynamic potentials [40]. They can

be entered in different ways. Let?s demonstrate an

example of such a formulation for dielectric body using

an electric potential vector. It is defined by the equa-

tion

A(ω, r) =

∫

V

G(r − r′)Jp(r
′)d3r ′.

Using the body polarization current

Jp(r) = iωε0(ε(ω, r) − 1)E(ω, r) and the expression of the

electric field in terms of the electric vector-potential [28]
E(ω, r) = ⌊∇(∇ · A(ω, r)) + k2

0A(ω, r)⌋/(iωε0),
substituting the result under the integral, we obtain a

volumetric IDE for the potential vector A with kernel G,

which has the singularity |r− r′|−1. The integral includes

both A and the second derivatives of the components

of the potential. The solution of this IDE requires the

use of twice continuously differentiable basis functions,

since the second derivatives are included under the

integral, and the tangent components of the field must

be continuous at the boundary of the body. An example

of the transformation of a volume singular integral is

given in the classical monograph [41] (see also [8]).
The infinitesimal spherical neighborhood of the singular

point is excluded, the integral over it is replaced by the

surface integral over an infinitesimal sphere using the

Ostrogradsky’s formula, and the three-dimensional integral

is understood in the sense of Cauchy’s principal value as

the limit for a remote spherical neighborhood as its radius

tends to zero. As a result, an outside the integral term

arises. To calculate the remaining integral, one can apply

quadrature formulas or piecewise-constant FEs given during

discretization on cubes, as well as smoother volumetric

FEs. In this case, the diagonal matrix elements in the

resulting system of linear algebraic elements are set to

zero.
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Next, we will transform singular IEs to weakly singular

ones, i.e., e. to having kernels with reduced singularities,

integrable in the usual sense, which allows the use of

piecewise constant and other approximations The integral

operators of such problems are Fredholm?s ones, and the

problems are solvable [6–8]. Fundamentally, projection

methods are substantiated for the equations of electrody-

namics [35–37]. However, projection methods are not

always convenient, and in some cases VIEs have advantages

over them. For singular VIEs with the understanding of in-

tegrals in the sense described above, the Fredholm property

and solvability [8,21–27] are also proved To simplify further

calculations, we will consider transformations for a non-

magnetic body using the example of an VIE with respect to

an electric field (1):

E(r) = E0(r) + ik0

∫

V

D̂G(k, r− r′)χ̂′ε(r′)E(r′)d3r ′. (7)

Equation (2) then takes the form of

H(r) = H0(r)

+ ik0η
−1
0

∫

V

∇×G(k, r− r′)χ̂′ε(r′)E(r′)d3r ′. (8)

It makes it possible to calculate the magnetic field using

the solution of VIE (7). Using Maxwell’s n equation

in the form E(r) = −iη0ε̂−1(∇×H(r) − J0(r))/k0 and

substituting into the right side (8), we obtain the equation

for the magnetic field. Here η0 =
√
µ0/ε0. For an isotropic

body in vacuum, it has the form

H(r) = H0(r) + H̃0(r)

+

∫

V

∇×
[

G0(k0, r− r′)(1− ε−1(r′))∇′ ×H(r′)
]

d3r ′.

(9)

H̃0(r) +

∫

V

∇×
[

G(k, r− r′)(ε′(r′) − 1)J0(r′)
]

d3r ′.

(10)

This is the IDE for the magnetic field. It is convenient

for complex boundaries, since the magnetic field does not

tolerate jumps on them, so continuous basis functions can

be used. Dash bei operator ∇′× means that it acts on

dashed coordinates. For any vector function F we have

∇× G0(k0, r− r′)F(r′) =

−∇′ ×
[

G0(k0, r− r′)F(r′)
]

+ G0(k0, r− r′)∇′ × F(r′).

Applying the curl theorem ([42], pp. 175), we rewrite

IDE (9) as

H(r) = H0(r) + H̃0(r) −
∮

S

G0(k0, r− r′)

×
[

(1− ε−1(r′))∇′ ×H(r′)
]

× v(r′)d2r ′

+

∫

V

G0(k0, r− r′)∇′ ×
[

(1− ε−1(r′))∇′ ×H(r′)
]

d3r ′.

(11)
If IDE (9) requires continuously differentiable basis func-

tions to solve, then IDE (11) requires twice continuously

differentiable functions. Obviously, transformations can also

be performed with a tensor DP.

For electromagnetic (photonic) crystals, the equations are

modified simply by replacing the GF. The scalar GF of

periodic sources, whose phases are shifted according to

the Floquet-Bloch conditions by exp(−i(k + g)(r′), has the
form

G̃(r− r′) =
1

�0

∑

n

exp(−i(k + gn)(r − r′))

(k + gn)2 − k2
0ε̃

. (12)

Here �0 = a1 · (a2 × a3) is volume of a unit cell of

periodicity, a1, a2, a3 are translation vectors , b1, b2, b3 is-

triplet of reciprocal lattice vectors: aklbl = 2πδkl ,

bk = 2π(−1)P(klm)al × am/�0, P(klm) = ∓1 depending on

the even/odd permutations, b f gn = n1b1 + n2b2 + n3b3,

n = (n1, n2, n3). For a box-shaped cell a1 = (a1, 0, 0),
a2 = (0, a2, 0), a3 = (0, 0, a3), �0 = a1a2a3,

gn = (2πn1/a1, 2πn2/a2, 2πn3/a3) and the sum is

over all three indices −∞ < nk < ∞. FG (12) satisfies the

inhomogeneous Helmholtz equation with delta singularity

(∇2 + k2
0ε̃)G̃(r− r′) exp(−ikr′). The GF designated earlier

has a spectral representation of type (12) in the form

G(r− r′) =
1

(2π)3

∫

exp(−ik(r− r′))

k2 − k2
0ε̃

d3k. (13)

The triple integral over infinity is denoted by a single

symbol. This representation is convenient for integration

over coordinates, but requires the calculation of spectral

integrals. The use of FG (12) requires the summation of the

series. In a number of works, results were obtained on the

rapid summation of similar series. Sometimes the following

form of the GF, obtained by integration, for example, over

the variable kz by the residue method, can be useful:

G(r− r′) =
1

8π2

∞
∫

−∞

exp(−ikx (x−x ′)−iky (y−y ′)

−i k̃z (kx ,ky )|z−z ′|)

i k̃z (kx , ky )
dkx dky . (14)

Already here k̃z =
√

k2
0ε̃ − k2

x − k2
y . For damped (the

English term is evanescent) waves in the direction of

z k̃z = −i
√

k2
x + k2

y − k2
0ε̃. GFs are also often used
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in shielded areas. It is quite easy to obtain a GFs

for ideal screens [28], waveguides and resonators with

ideal walls, in particular, a rectangular waveguide and a

resonator [28,31,43], where it is constructed by the method

of multiple images or using known eigenfunctions. If

one formally denote the set of such functions ϕn(r) and

eigenvalues ωn, then the GF is constructed as a resolution

in the form of an expansion in ϕn(r)ϕ
∗
n (r′)/(ω − ωn) [44].

Problems with dielectric half-spaces are much more com-

plicated [28]. An example is the problem of a vertical

Sommerfeld dipole. This also applies to the problem of

a horizontal dipole. The presence of boundaries requires

obtaining three solutions for three orientations of the electric

dipole and three solutions for three orientations of the

magnetic dipole. The GFs of layered structures are given

in a large number of works, for example, in [45–50]. If the
body has no magnetic properties (µ = 1), then the potential

vector has components

Ap
α(r) =

∫

V0

Gαα(k, r − r′)J p
α(r

′)d3r ′,

α = x , y, z , i.e. is determined not by a scalar, but by a

diagonal tensor GF. With magnetic properties, one must also

introduce a magnetic vector potential.

Since the transformation of equations to less singular

kernels does not affect the free terms, we will carry them

out using the example of VIE (1) for an open DR. Free

oscillations of the DR correspond to the complex wave

number k0 = k ′
0. Instead of VIE (1), we will use the

equivalent IDE [2]

E(r) =

∫

V

{

k2
0G0(r − r′)[ε̂(r′) − Î]E(r′)

+ ∇G0(r − r′)∇′[(ε̂(r′) − Î)E(r′)]
}

d3r ′

+

∮

S

[ε̂(r′) − Î](v(r′)E(r′))∇′G0(r − r′)d2r ′. (15)

Here v(r) · E(r) = Ev(r) is the normal component taken

on the inner side of the surface, as is the quantity ε̂(r).
IDE (15) is singular with an integrable singularity It is

written for a vacuum GA, but can easily be rewritten for a

GA of a dielectric base G(k, r− r′). This form is convenient

for analyzing PCs or photonic-crystal waveguides with

hole inclusions. In this case, the VIE should be solved

only in the regions of holes (cavities), where the negative

susceptibility χ′(r) = 1/ε̃ − 1 < 0 characterizes a hole in

the dielectric space. The VIE (15) can be obtained

using, for example, the Stretton-Chu formulas [3], or by

directly applying vector integral theorems and transferring

to (1) operations of differentiation from the kernel to

the integration function [9,51]. In this case, one should

use the relation ∇G0(r − r′) = −∇′G0(r − r′) and (Gauss)
divergence theorem [9 ,40,51]. Since the point rushes to the

surface from the inside, and the normal component of the

electric field and the DP have a step on the surface S, in the

surface integral in formula (15) one should take the limiting

internal values on the surface. The external value corre-

sponding to the vacuum will be denoted by the symbol
”
+“,

and the internal value, respectively, as E−. The presence of

a DP jump leads to the appearance on the surface density

of the bound charge σ (r) = v · ⌊ε̂(r) − Î⌋E−(r), r ∈ S due

to the boundary condition v · (ε̂E− − E+) = 0. In the case

of scalar permeability, the IDE (15) can be converted into a

volume-surface IE [9,51]

E(r) =

∫

V

{

k2
0G0(r − r′)[ε(r′) − 1]E(r′)

− ε−1(r′)[E(r′)∇′ε(r′)]∇′G0(r− r′)
}

d3r ′

+

∮

S

[ε(r′) − 1](v(r′)E(r′))∇′G0(r− r′)d2r ′,

(16)
since then, due to the solenoidality of the vector

ε(r)E(r), we have E(r)∇ε(r) + ε(r)∇ · E(r) = 0 and

∇ · [ε(r)E(r) − E(r)] = ∇ · E(r) = ε−1(r)E(r)∇ε(r). In

this case, a charge density arises on the surface

σ (r) = [ε(r) − 1]E−
v (r) = E+

v (r) − E−
v (r), i.e. the surface

charge density is a scalar quantity and is expressed in terms

of the step in field. If the DP is constant inside the volume,

then the term with ∇′ε(r′) characterizing the bulk density

vanishes, and the IE simplifies

E(r) = k2
0(ε − 1)

∫

V

G0(r − r′)E(r′)d3r ′

+ (ε − 1)

∮

S

Ev(r
′)∇′G0(r − r′)d3r ′. (17)

In the IE (17) ∇′G0(r − r′) = −∇G0(r− r′), so it has the

form of representing the electric field in terms of the poten-

tial term with surface sources and potential and solenoidal

terms with volumetric sources. Indeed, according to the

Helmholtz theorem [42,52] E(r) = ∇× F(r) −∇8(r). This
is a representation of the field through its potential and

solenoidal parts. The problem is to formulate coupled

equations for the potentials F(r) and 8(r). Let?s consider

the integral

∫

V

G0(r− r′)∇′8(r′)d3r ′ =

=

∫

V

{

∇′[G0(r− r′)8(r′)] − 8(r′)∇G0(r− r′)
}

d3r ′.

It has the following form

−∇
∫

V

G0(r− r′)8(r′)d3r ′ +

∮

S

v(r′)[G0(r − r′)8(r′)]d2r ′.
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Here we have used the gradient theorem [42]. The gradient

is explicitly distinguished in the first term, because it’s

potential one. The surface integral is a certain vector

function with surface density v(r′)8(r). Let’s represent it as
∇× L(r) −∇9(r), F = k2

0(ε − 1)L. Taking the divergence,
we obtain the Poisson equation

∇29(r) = −
∮

S

v(r′)[∇G0(r− r′)8(r′)]d2r ′. (18)

Taking the curl we also obtain the Poisson equation

∇2F(r) = −k2
0(ε − 1)

∮

S

v(r′) ×∇G0(r− r′)8(r′)d2r ′.

(19)
We have imposed the solenoidality condition on the vector

F. To find F and 9 it is necessary to solve the Poisson

equations, which can be formally written explicitly using the

static GF G0(0, r− r′) = (4π|r − r′|)−1 Then the integral is

represented in the form

∮

S

v(r′)[G0(r− r′)8(r′)]d2r ′ = ∇× L(r) −∇9(r),

and the equation for the potential 8 takes the form

8(r) = k2
0(ε − 1)9(r) − k2

0(ε − 1)

∫

V

G0(r − r′)8(r′)d3r ′

+ (ε − 1)

∮

S

Ev(r
′)G0(r− r′)d2r ′.

(20)
This potential is defined with an accuracy to a constant. The

second volume integral in (17) has the representation

∫

V

G0(r− r′)∇′ × F(r′)d3r ′ =

=

∫

V

{

∇′ × [G0(r− r′)F(r′)] −∇G0(r− r′) × F(r′)
}

d2r ′.

or

−∇×
∫

V

G0(r− r′)F(r′)d3r ′

+

∮

S

v(r′) × [G0(r− r′)F(r′)]d2r ′.

Here the curl theorem is used. The theorems on gra-

dient,curl and divergence (Gaussian) express the volume

integrals of the action of these operators on certain functions

in terms of surface integrals of these functions and allow

one to transform the VIE. Such transformations (as well

as Green’s formulas) are a three-dimensional analogue of

integration by parts. Breaking (17) into potential and

solenoidal parts, we obtain

E0(r) = k2
0(ε − 1)

[

2

∮

S

v(r′) × [G0(r− r′)F(r′)]d2r ′

−
∫

V

G0(r − r′)∇′ × F(r′)d3r ′
]

.

(21)
An exciting field, for example, of a plane wave, which is

always solenoidal, is substituted into this equation. Taking

into account the equation for the potential 8, equation (21)
can be interpreted as a volume-surface IDE for the function

F(r). Relations (20) and (19) are linked paired equations.

They define the electric field in terms of the introduced

potentials F(r) and ∇8(r). These equations must be

solved simultaneously. The equations are linked via the

surface integral in (20), since Ev depends on both potentials.

Equations (20) and (21) for potentials have weakly singular

kernels G0(r − r′).
Surface integrals in (15) appear if the body has a sharp

boundary, i.e., the function ε̂(r) on S is discontinuous

and abruptly decreases to unity. If ε̂(r) is smooth and

gradually decreases to unity in some inner surface layer,

then E+
v (r) = E−

v (r) and the surface integral does not

arise, but there is a volume charge density in the indicated

layer. It is easy to show that, in the limit, as the thickness

of such a layer decreases to zero, the volume integral

over it is equivalent to the surface integral of the resulting

jump of the normal field component. In diffraction

problems, the equations should be supplemented with

extraneous fields. Another approach to the transformation

of equations is based on the singular IE [8,52–54]
obtained from (1), (2) by selecting a singularity in

the GF G(k, r) = G(0, r) + 1G(k, (r)) and selection of

the non-integral terms corresponding to it. They are

distinguished by integrating over an infinitesimal ball

surrounding the observation point using Ostrogradsky’s

theorem [54]. Such an IE does not contain surface

integrals [8]. We will again carry out the transformation

using the example of VIE (7) with a vacuum GF. Note that

G0(k0, r− r′) = G0(0, r− r′) + 1G0(k0, r− r′), where

1G0(k0, r− r′) = (4πR)−1(exp(−ik0R) − 1), R = |r− r′|,
or 1G0 = (4πR)−1⌊−ik0R − (k0R)2/2 + . . .⌋. The use of

an approximate kernel is possible at low frequencies, when

the discarded terms are small. The method of reduction to a

singular VIE is based on integrating the second derivatives

of the ∂2ααG0(0, r − r′) type over the solid sphere in

the vicinity of the source point. As a result of applying

the Ostrogradsky?s theorem, the term −χ̂′ε(r′)E(r′)/3 is

extracted, and the equation becomes the form

E(r)
(

Î + χ̂′ε(r)E(r)/3
)

= p.v.
∫

V

(∇⊗∇ + k2
0Î)

× G0(k0, r− r′)χ̂′ε(r′)E(r′)d3r ′. (22)

Optics and Spectroscopy, 2022, Vol. 130, No. 10



Volumetric integro-differential equations in diffraction problems... 1257

The integral is understood as the limit under conditions

when infinitesimal neighborhood is removed of source

point. Note that it is expedient to carry out this operation

only for the diagonal terms of the operator ∇⊗∇.

Note one more possibility of transforming the equations

in order to reduce the singularity of their kernels. For

equations with respect to both fields, one can construct

quadratic functionals by scalar multiplication by the bivector

(E,H), or bilinear functionals by scalar multiplication by

the bivector (Ẽ, ˜b f H). If the bivector (E,H) is to be

found, then the vector functions Ẽ and H̃ and can be

taken arbitrary. The degree of smoothness and boundary

conditions for these weight functions ∇⊗∇ can be spec-

ified. In the case of twice differentiable such functions in

the scalar product, the derivatives of the operator can be

transferred both to the required fields under the integral

and to weight-fields. In this case, it is possible to transfer

the differential operator partially once or completely twice

to weight-functions with tildes. In the latter case, the kernel

G0 appears. The same applies to equations for only electric

or only magnetic fields. In this case, surface integrals

arise. If the weight-functions still satisfy zero boundary

conditions on the surfaces, this nullifies the surface integrals,

simplifying the equations. Such trigonometric functions can

be introduced, for example, to stimulate rectangular DRs.

3. Simulation of dielectric resonators

The complex resonant frequencies of an arbitrary DR in

free space can be calculated based on any of the equa-

tions (15), (16), (22). Consider, for example, equation (15)
for an isotropic and inhomogeneous DR:

E(r) =

∫

V

E(r′)
{

k2
0G0(r− r′)(ε(r′) − 1)

+ ε−1(r′)∇′ε(r′)
}

d3r ′+

+

∮

S

Ev(r
′)(ε(r′) − 1)∇′G0(r− r′)d2r ′. (23)

Multiplying scalarly by E∗(r) and integrating, we get

k2
0 =

=

∫

V
|E(r)|2d3r −

∫

V

∫

V
E∗(r)E(r′)ε−1(r′)∇′ε(r′)d3r ′d3r

+
∫

V

∮

S
E0(r′)(ε(r′) − 1)E∗(r)∇′G0(r− r′)d2r ′d2r

∫

V

∫

V
E∗(r)E(r′)G0(r − r′)(ε(r′) − 1)d3r ′d3r

.

This is a quadratic functional whose stationary value gives

the square of the complex wave number, and its finding

determines the field. It can be found iteratively together

with the solution of VIE (23). A number of such

functionals, as well as iterative algorithms for them, are

given in the monograph [9]. The reduced functional and the

VIE contain surface integrals, which is inconvenient. Let us

consider the initial hypersingular VIE for such a DR:

E(r) = (∇⊗∇ + k2
0)

∫

V

G0(r− r′)(ε(r′) − 1)E(r′)d3r ′.

(24)
Let’s choose a function Ẽ(r) such that its normal component

vanishes on the DR surface. Then scalar multiplication gives

the functional

k2
0 =

∫

V
Ẽ∗(r)E(r)d3r+

∫

V

∫

V
Ẽ∗(r)∇G0(r−r′)(ε(r′)−1)E(r′)d3r ′

∫

V

∫

V
Ẽ∗(r)E(r′)G0(r− r′)(ε(r′) − 1)d3r ′

.

(25)
Its extremum can be found using basis functions and weight

functions En(r). In this case, the system of linear equations

should be solved together with iterations in (25). Before

each iteration, the electric field should be normalized [9].
Let’s consider cylindrical DRs, for which we use the rep-

resentation of the GF in a cylindrical coordinate system [28].
One way to do this is to replace the variables x = ρ cos(ϕ),
y = ρ sin(ϕ) in the corresponding Cartesian representations,

for example,

G(ρ, ϕ, z |ρ′, ϕ′, z ′) = (4πR)−1 exp(− jkR),

R =
(

ρ2 + ρ′2 − 2ρρ′ cos(ϕ − ϕ′) + (z − z ′)2
)

. (26)

It is possible to perform the above replacement in other GF

representations given by the relations given in [28], for ex-
ample, formulas 2.8 and 2.14, or use the representation 2.15

(hereinafter, all similar references will correspond to the

indicated work). However, it is often more convenient to

use direct representations of the GF in a cylindrical system

(formulas 2.17, 2.18, 2.20, 2.21 and 2.22). The presence

of several types of GF representations creates convenience

when calculating integrals in matrix elements, since it is

possible to choose the most appropriate formula for which

they are calculated most simply, and also allows you to solve

the problem with several algorithms. Upon transition to a

cylindrical coordinate system, the vector-potential A and the

vector E are transformed according to formulas 2.63, while

the VIE becomes

Eρ(ρ, ϕ, z ) = k2

∫

V

G(r− r′)[ε(r′) − 1]

×
{

Eρ(r
′) cos(ϕ − ϕ′) + Eϕ(r

′) sin(ϕ − ϕ′)
}

d3r ′

−
∫

V

{

ε−1(r′)[E(r′)∇′ε(r′)]
∂G(r − r′)

∂ρ′

}

d3r ′

+

∮

[ε(r′) − 1](v(r′)E(r′))
∂G(r − r′)

∂ρ′
d2r ′, (27)
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Eρ(ρ, ϕ, z ) = k2

∫

V

G(r − r′)[ε(r′) − 1]

×
{

Eϕ(r′) cos(ϕ − ϕ′) − Eρ(r
′) sin(ϕ − ϕ′)

}

d3r ′

−
∫

V

{

ε−1(r′)[E(r′)∇′ε(r′)]
∂G(r − r′)

ρ∂ϕ′

}

d3r ′

+

∮

[ε(r − r′) − 1](v(r − r′)E(r − r′))
∂G(r − r′)

ρ∂ϕ′
d2r ′,

(28)

Ez (ρ, ϕ, z ) = k2

∫

V

G(r− r′)[ε(r′) − 1]Ez (r
′)d3r ′

−
∫

V

{

ε−1(r′)[E(r′)∇′ε(r′)]
∂G(r′)

∂z ′

}

d3r ′

+

∮

[ε(r′) − 1](v(r′)E(r′))
∂G(r′)

∂z ′
d2r ′. (29)

In the coupled IE (27)−(29), for compactness of notation,

the coordinates r and r′ are used, which should be

considered in a cylindrical system. The volume element has

the form d3r ′ = ρ′dρ′dϕ′dz ′, and the form of the surface

element d2r ′ depends on the coordinate of the point on the

cylinder.

In the case when the field does not depend on the

coordinate ϕ, these GFs can be simplified by integrating

over the angle. Let, for example, azimuthally symmetric H-

oscillations of an isotropic cylindrical DR of radius r0 and

height h be considered. Then only the Eϕ-component is

nonzero, and IE (5)−(7) takes the form [4]

Eϕ(ρ, z ) = k2

∫

SM

(ε(ρ′, z ′) − 1)Ḡ(ρ, z |ρ′, z ′)ρ′dρ′dz ′,

(30)

where SM –is the meridian section 0 ≤ ρ ≤ r0, |z | ≤ h/2,
and the kernel has the representation

Ḡ(ρ, z |ρ′z ′) =

2π
∫

0

cos(ϕ − ϕ′)G(ρ, ϕ, z |ρ′, ϕ′, z ′)dϕ′.

(31)

GF (31) does not depend on ϕ and is also represented by

a double integral of type (31) over (0, π). Indeed, let?s

make a change of variables ϑ = ϕ′ − ϕ in (31). Since R
and G are periodic in ϑ with period 2π, the value of

the integral (31) over the domain (−ϕ, 2π − ϕ) does not

depend on values ϕ. In [4] it is proposed to calculate

GF (9) by expanding the exponent in (4) into a series and

expressing recursively obtained integrals in terms of elliptic

integrals of the first and second kind. But for GF (31)

there are other representations, for example, it follows from

formula 2.18

Ḡ(ρ, z |ρ′, z ′) =
1

2

∞
∫

0

× J1(χρ)J1(χρ
′) exp(−

√

χ2 − k2|z − z ′|)
√

χ2 − k2
χdχ, (32)

and from 2.22, respectively, we obtain

Ḡ(ρ, z |ρ′, z ′) =

=
− j
4

∞
∫

0

{

H(2)
1 (

√

k2 − γ2ρ′)J1(
√

k2 − γ2ρ)

J1(
√

k2 − γ2ρ′)H(2)
1 (

√

k2 − γ2ρ)

}

× exp(− jγ(z − z ′))dγ. (33)

In (33) the upper value in curly bracket should be taken

at ρ < ρ′, and the lower should be taken at ρ > ρ′

The GF (31)−(33) representations are convenient for the

analysis of azimuthally symmetric H0nδ and E0nδ vibration

types. For hybrid HEmnδ and EHmnδ types, the GFs have

the form 2.18 and 2.22, in the sums of which it is necessary

to leave only one azimuthal term exp(− jm(ϕ − ϕ′)).
A large number of works have been devoted to methods

of DR analysis (see, for example, monographs [55,56] and
the list of references there), and various methods have been

used: approximate heuristic methods (for example, the mag-

netic wall method), perturbation theory (decomposition by

a small parameter), the method of partial domains (MPO),
or matching, with obtaining surface integral equations, the

method of VIE [4]. Of these, the last two methods are

rigorous, the latter being the most universal, since it allows

one to analyze inhomogeneous DRs of arbitrary shape.

However, it has not been adequately considered in the

literature. In the publication [4] it is formulated for the

H01δ mode of a homogeneous cylindrical DR, and the per-

turbation theory is ultimately used. Due to the complexity

of determining the expansion coefficients, the MPO for a

cylindrical DR has not been rigorously implemented, but

has been replaced by an approximate approach [55], which

does not allow one to determine the radiative quality factors

of oscillations. Works [56–63] on DR simulation should

be noted. The VIE method for the analysis of DR has

been used in a number of works [4,5,9,59,63–66]. In [65]
the results for a rectangular DR are given, where the sines

and cosines of the arguments kx x , ky y and kz z are used

as basis functions, satisfying the Helmholtz equation inside

the dielectric, i.e., for k2
x + k2

y + k2
z = k2

0 varepsilon. In

addition, the condition of solenoidality of the electric field

inside the rectangle was used, which made it possible to

significantly reduce the number of basis functions used, that

is, the algebraic dimensionality of the problem. In [66] the
VEI method for a rectangular DR is also used, and the H01δ

and H011 modes of a homogeneous and inhomogeneous

cylindrical DR are also simulated. Fig. 1, 2 show the
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Figure 1. Dependences of Re(Eϕ) (solid curves) and Im(Eϕ)
(dashed curves) on coordinate ρ for cylindrical DR ε = 100,

r0 = h = 5mm: 1 is mode H01δ at z = 0.09; 2 is mode H011

at z = 2.41; 3 is mode H011 at z = 0.09.

Table 1. Dependence of the resonant frequency of modes and

on the shape of a homogeneous cylindrical DR with ε = 50,

h = 5mm

Mode Radius to height ratio r0/h

0.4 0.6 0.8 1.0 1.2 1.4

Frequencies in GHz

H01δ 9.01 6.22 5.23 4.41 3.96 3.57

H011 11.65 9.15 7.97 7.53 7.10 6.72

field distributions at resonance for the H01δ mode of a

homogeneous cylindrical DR. The method of direct iteration

in the form of the method of successive approximations

(MSA) and the method of minimum residuals with freezing

the values of the GF from the spectral parameter at

the previous step were used, applied to the IE and the

strict characteristic equation. One-dimensional piecewise-

constant and differentiable (in the form of second-order

polynomials) FEs, given by three nodes, were used. Both

methods converge to the same results in several iterations

with respect to the complex parameter k0. Resonance

frequencies and quality factors are given in Tables 1 and 2.

The study of the convergence of the algorithm is shown

in Fig. 3. In the considered example, the MSA converges

quickly, but for complex configurations, iterations may not

converge for all initial values. The simple iteration method

for finding the root of the equation f (x) = 0 can be written

as xn = xn−1 − τn f (xn−1), while for its iteration parameter

τn = τ is the same all the time. In the work [67] an
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E
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Figure 2. Re(Eϕ) (solid curves) and Im(Eϕ) (dashed curves) on

coordinate z for a cylindrical DR ε = 100, r0 = h =mm: 1, 2 is

mode H01δ at ρ = 3.4 and ρ = 1.66mm; 2 is mode H011 at

ρ = 4.46mm.
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Figure 3. Convergence of the results for eigenfrequencies f of the

cylindrical DR on the number of basis functions N for piecewise-

constant (1, 2) and polynomial quadratic (3) approximations for

ε = 38, r0 = 5mm: h = 7mm (1); h = 4mm (2, 3).

iteration method is developed with a correction at each

step of the complex iteration parameter τn, which ensures

unconditional convergence. An alternative to the algorithm

can be projection methods for VIE, which lead to the need

to search for complex roots of determinants of large orders.
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Table 2. Dependence of the radiative quality factor of the H01δ

and H011 modes of a homogeneous cylindrical DP oat the dielectric

permittivity for r0 = 5mm, h = 7mm

Mode Dielectric permeability ε

10.0 20.0 40.0 80.0 160.0 320.0

Quality factor Q

H01δ 4.2 12.4 66.1 125.3 251.0 505.7

H011 45.1 382.1 1250.3 2802.5 5621.2 12250.7

The VIE approach for azimuthally symmetric modes of

cylindrical DRs was also used in [59]. The problems of DR

with ideal flat screens are solved on the basis of the VIE

by constructing the GF by the image method. To analyze

spherical DRs, one should use the expansion in terms of

spherical harmonics ([28,68–71]). The distribution of fields

in a cylindrical DR shows that it does not correspond to

the distribution with magnetic walls in both coordinates ρ

and z , i.e. e. in the H0mn mode classification. Such a

classification corresponds to a screened DR with the number

of half-waves m in the radial coordinate and n in the

coordinate z . Open resonator with radius a and height b,
from the Helmholtz equation implies k2

ρm + k2
z n = ω2

mnε/c2,

so the indices in the relations kρm = mπ/a , kz n = nπ/b
cannot be integer: the conditions of the magnetic wall

are not satisfied, and the field goes beyond the boundaries

of the DR. Moreover, since the indices are related to the

complex resonant frequency, they must be complex. These

parameters are included in the complex Bessel functions

describing the modes. Usually in the literature a very

conditional classification H0mδ is used, in which 0 < δ < 1

is considered. This classification corresponds well to the

case of a large DP, when the field almost does not go

beyond the DR, and the frequencies are almost real. The

complex frequencies ωn = ω′
n + jω′′

n define time-damped

free oscillations En with number n, while ω′′
n > 0. Then

for the eigen(resonance) mode in the far zone we have

En(r) =
ω2

n exp(− jωnr/c)

4πrc2
F(θ, ϕ). (34)

The vector directional pattern F depends on the distribution

of the electric field in the volume V and determines the

distribution of the DR radiation in the far zone for the

indicated mode [72]:

F(θ, ϕ) =

=

∫

V

e jωnr ′ cos(ψ)/c⌊ε̂(r′) − Î⌋En(r
′)r ′2 sin(θ′)dr ′dθ′dϕ′.

Here

cos(ψ) = cos(θ) cos(θ′) + sin(θ) sin(θ′) cos(ϕ − ϕ′′).

As can be seen, the eigenmode fields (34) increase at

infinity [73], which is due to their exponential decrease

in time. As shown in [73], the energy conservation law

holds as follows: longer distances correspond to earlier

emission times (determined by r/c being delayed). At

these early moments, the energy of oscillations in volume V
was exponentially greater [73] due to exponential damping.

The modulus of the function (34) has a minimum at the

point rn = c/ω′′
n . If this point corresponds to the far zone,

then the field can have an oscillatory character in a given

direction inside V , then, as it moves away from the DR,

its modulus decreases to the specified radius, and then

begins to increase. For high-quality oscillations rn ≫ a ,
which justifies the approximate method of calculating the

real natural frequencies [56] by replacing the fields (34)
with decreasing ones. Spherical DRs are considered in

the works [4,57,58]/ B Approximate solution is obtained

as an expansion in a 1/ε small parameter. It works well

with a large DP. Rigorous dispersion equation was obtained

in [58]. For a given frequency, it has two solutions in the

form of a converging and diverging wave. In [58] one

of its two solutions is erroneously taken as the solution

decreasing at infinity. In fact, it is a converging spherical

wave. The problem of free oscillations of a spherical DR

is related to the solution of the inhomogeneous Maxwell

equations of the Mie problem of diffraction by a dielectric

solid sphere. In the work [4] the VIE method is used for

the numerical determination of the resonant frequencies and

Q-factors of the H01δ mode. DRs are often used as radiators

in antennas. Stationary excitation of such emitters at a given

frequency leads to decreasing fields in the far field zone.

Non-stationary radiation over a finite time also leads to fields

decreasing at infinity.

Let us also present the VIE with respect to the magnetic

field. We proceed from equation (24). We take the curl of

this equation, introduce this operator under the integral and

use the curl theorem:

∇× E(r) = k2
0

∫

V

G0(r− r′)∇′ × [(ε(r′) − 1)E(r)]d3r ′

− k2
0

∮

S

G0(r− r′)v(r′) × [(ε(r′) − 1)E(r′)]d2r ′.

We have

∇×[(ε(r) − 1)E(r)] = ∇ε(r)×E(r) + (ε(r) − 1)∇× E(r).

Using Maxwell’s equations, we substitute

∇× E(r) = −iωµ0H(r) and E(r) = −i∇×H(r)/(ωε0ε).
As a result, we obtain the IDE with respect to the magnetic

field

H(r) =

∫

V

G0(r− r′)

×
[

∇×H(r)ε−1∇′ε(r′) + k2
0(ε(r

′) − 1)H(r′)
]

d3r ′

− k2
0

ωµ0

∮

S

G0(r − r′)v(r′) × [(ε(r′) − 1)∇′H(r′)]d2r ′.
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Figure 4. The band structure of a PC of the type inverted opal

with DP base of ε̃ = 3.9 and a filling factor of f = 0.35. Hollow

spheres were discretized by inscribed cubic finite elements. The

bandgap zone is shown in grey.

If, on the basis of this equation, a DK with uniform filling

is analyzed, then the equation is simplified:

Fig. 4 shows an example of calculating the dispersive band

structure of a PC of the inverted opal type in the form of

loosely packed spherical cavities (metaatoms) in a base with

ε̃ = 4 DP. It should be noted that the VIE method has good

convergence compared to other methods, for example, plane

waves with respect to the number of basis functions. The

calculation of GF (12) can be significantly accelerated by

applying fast summation methods The periodic GF can be

calculated differently based on the periodic translation to the

vector nx axx0 + ny ayy0 + nz a zz0 and the summation of the

FG of the free space G(k, r − r′) with the corresponding

phase factors exp(−i(kx ax nx + ky ay ny + kz a z nz )). By

applying the Poisson summation formula, we can prove the

equivalence of both approaches to calculating the GF.

4. Waves in dielectric
and photonic-crystal waveguides

Waveguide structures (waveguides) regular along the z
axis are invariant with respect to translations; therefore, they

support modes with the dependence exp(iωt − iγ(ω)z ).
Differentiation with respect to z in Maxwell’s equations

reduces to multiplication by −iγ , i.e. the boundary

value problem becomes two-dimensional in cross section.

Accordingly, the goal is to determine the dispersion of γ(ω)
modes, of which there are infinitely many. The problem

for a dielectric waveguide (DW) is reduced to a two-

dimensional VIE with respect to the cross section S. For

open DWs, the cross section S is usually bounded, and

the scalar GF, up to a factor of −i/4, is proportional to

the Hankel function of the second kind in the argument

κ|rτ − r′τ |, i.e. e. has a logarithmic feature. The index τ

corresponds to the transverse coordinates x , y . With a

real transverse wavenumber κ and with the chosen time

dependence exp(iωt), this Hankel function in the far

field zone is a diverging cylindrical wave. The index τ

corresponds to the transverse coordinates x , y . For shielded
DWs, ideally conducting screens are usually considered.

In this case, the GF is constructed by the image method.

Thus, for a rectangular screen, a two-dimensional infinite

system of images arises, given by a two-dimensional series,

an example of which can be found in [31]. In the case of

ideal magnetic walls, the image method can also be used,

as in the case of a magnetic dipole with respect to both

types of walls. Below, we will consider only open DWs. It

is convenient to use a two-dimensional GF [28]

Gτ (ω, γ, rτ ) =
1

4π2

∞
∫

−∞

exp
(

−ikx x − iky y
)

k2
x + k2

y − (k2
0 − γ2(ω))

dkxdky .

(35)
Here, the source is at the origin of coordinates. Bringing it

to the form

Gτ (ω, γ, rτ ) =
1

4π

∞
∫

−∞

×
exp

(

−ikxx −
√

γ2(ω) + k2
x − k2

0|y − y ′|
)

√

γ2(ω) + k2
x − k2

0

dkx dky ,

(36)
we obtain the well-known representation GF [28] for the

DW in terms of the Hankel function of the second kind.

Gτ (ω, γ, r − r′τ ) = − i
4

H(2)
0 (κRτ ). (37)

In it κ =
√

k2
0 − γ2(ω) is spectral parameter or transverse

wave number, Rτ = |rτ − r′τ | =
√

(x − x ′)2 + (y − y ′)2.
The form (37) is convenient for fast leaky waves

k0 > Re(γ(ω)). Even if dissipation in the dielec-

tric is neglected, in this case we obtain complex

γ(ω). For slow surface waves k2
0 < γ2(ω) and the

GF is expressed in terms of the MacDonald func-

tion: Gτ (ω, γ, rτ − r′τ ) = (2π)−1K0(qRτ ). It is con-

venient to take the spectral parameter in the form

q =
√

γ2(ω) − k2
0 > 0. In a neighborhood of a singular

point, we have

Gτ (ω, γ, rτ − r′τ ) ≈ −i
(

1− 2i(C + ln(κRτ /2))/π
)

/4

≈ − ln(Rτ )/(2π).

Here we use the representation of the Macdonald function

with a small argument. he second derivative of the loga-

rithmic potential 8 = ln(Rτ ) is not an integrable function
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in the usual sense. Let?s calculate the second derivative of

the potential from some continuously differentiable charge

density ρ(rτ ) in a two-dimensional region S in the case

when the observation point belongs to this region, i.e. value

∂2x

∫

S

ln
(

√

(x − x ′)2 + (y − y ′)2
)

ρ(x ′, y ′)dx ′dy ′.

Further, the derivation of formulas is similar to the derivation

considered in paragraph 5 of Chapter 4 of the work [54].
Let’s decompose the integral into two. We take the first one

along a circle of radius δ, in the center of which there is a

point of interest to us (we denote it by r0τ ) = (x0, y0)), and
the second integral we take along the remaining region S̃:

I = I1 + I1 =

∫

Sδ

ln(Rτ )ρ(r ′τ )dx ′dy ′ +

∫

S̃

ln(Rτ )ρ(r ′τ )dx ′dy ′.

The second derivative of the second integral is calculated in

the usual sense. Since ∂x Rτ = −∂x ′Rτ , we transform the

first derivative of the first integral

∂x I1 = −
∫

Sδ

ρ(r ′τ )∂x ′ ln(Rτ )dx ′dy ′ =

−
∮

Lδ

ρ(r ′τ ) ln(Rτ ) cos(ϕ)dl +

∫

Sδ

ln(Rτ )∂x ′ρ(r ′τ )dx ′dy ′.

Here gl = δdϕ, cos(ϕ) = (x − x ′)/Rτ . It is a differentiable

function. Calculating the second derivative

∂2x I1 = −
∮

Lδ

ρ(r ′τ )∂x ln(Rτ ) cos(ϕ)dl

+

∫

Sδ

∂x ln(Rτ )∂x ′ρ(r ′τ )dx ′dy ′

and estimating the integrals, in the limit of δ → 0 we obtain

the result ∂2x I1 = πρ(r0τ ). Indeed, the second integral

has an upper bound 2πδmax(∂x ′ρ), while the first one

is calculated from mean value theorem. Thus, in a two-

dimensional singular VIE with respect to the electric field

E(rτ ) under the action of the operator ∇τ ⊗∇τ with the

definition of the integral in the sense of principal value

indicated above, the non-integral term −E(r0τ )/2 arises

(recall that for a three-dimensional VIE it is equal to

−E(r0)/3). Then we can put r0τ = rτ , i.e. consider

any point on S. For a lossy dielectric, both the Hankel

function and the MacDonald function are complex. The

modes of such a DW are classified as inflow ones and

leaky ones [9,30]. The leaky mode is characterized by

the value Re(κ) = Re

√

k2
0 − γ2(ω). Determining Re(γ),

we get the leaky-mode-angle ϑ = arctan(Re(κ)/Re(γ)). If

it is negative, the wave is leaky, i.e., energy fluence goes

at an angle from vacuum to the dielectric. The boundary
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Figure 5. The depth of penetration into silver normalized to the

wavelength (+) and its reciprocal (−) depending on the reciprocal

wavelength λ−1.

between fast and slow waves is determined by the condition

γ = k0, which plays the same role for DE as the critical

frequencies in hollow waveguides. The wave under the

condition γ = k0 travels at the speed of light, it is not

transversely limited, and all its energy is transferred in

vacuum. The boundary between inflow- and leaky mode

is determined by the condition ϑ = 0. In particular, fast

inflowing waves are surface waves of the Sommerfeld-

Zenneck type in dissipative waveguide structures [9,30].
Slow inflowing waves are surface plasmons along strongly

dissipative structures. Metals are described as dissipative

dielectrics, and the depth of penetration of the field into

the metal strongly depends on the type of skin effect and

frequency. The calculation of the wavelength-normalized

penetration depth for silver is given in Fig. 5 [29]. In

the entire range, it does not fall below 200 nm, and has

a wide minimum in the wavelength range from 5µm to

1mm. Therefore, thin metal films and nanostructures, the

transverse dimensions of which are less than 200 nm, can

be described by VIE. In this case, for very thin films, the

field in the transverse direction remains almost unchanged.

Such films can even be described by surface conductivity.

The transition from slow to fast plasmons takes place in

the −1 < ε′ < 0 region, which corresponds to the optical

or IR range for metals. Thus, the VIE method is also

applicable to dielectric structures with thin metal films

or nanosized inclusions. In particular, it can be used

to simulate localized plasmons in small metal particles or

plasmonic electromagnetic crystals (PCs with small metal

inclusions). It should be noted here that equation (22) for

isotropic homogeneous metal particles in vacuum takes the
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form

E(r)(2 + ε)/3 = (ε − 1)p.v.
∫

V

(∇⊗∇ + k2
0Î)

× G0(k0, r− r′)E(r′)d3r ′.

It cannot be solved for ε = −2 because of the appearance

of a pole. In reality, the DP of a metal is complex, but

if the dissipation is small, the point ε′ = Re(ε) = −2 is

the point of condensation of the oscillation spectrum of

localized plasmons [74]. In this region, with low losses,

other VIEs should be used.

Since now the polarization current has the form

Jp(x , y) = iωε0[ε(x , y) − 1]E(x , y), then the two-

dimensional VIE are formulated according to the type

of the above equations in the region of the cross section S.
Although we use fields in the equations that depend on

transverse coordinates, in reality all fields also have the

dependence exp(−iγz ). This means that you should use

the operator ∇⊗∇ = (∇τ + z0γ) ⊗ (∇τ + z0γ), where

∇τ = x0∂x + y0∂y . By separating out the part ∇τ ⊗∇τ

in this operator, one can transform the hypersingular VIE

with the integral term distinguished outside the integral in

the sense of the principal value. Other possible types of

VIE are obtained by transformations by transferring the

operator ∇τ to integrands. Such VIEs become loaded

with contour integrals containing derivatives. Therefore,

they should be interpreted as IDE. Thus, the equations

directly include the parameter γ, k0, and the spectral

parameter κ =
√

k2
0 − γ2(ω) or q =

√

γ2(ω) − k2
0. In

two-dimensional PCs in the form of a set of dielectric

cylinders periodically located in the cross section, one can

use the reduced GF (35) transformed using the periodicity:

G̃τ (ω, γ, rτ − r′τ ) =
1

ab

∞
∑

m,n=−∞

× exp(−i k̃xm(x − x ′) − i k̃yn(y − y ′))

k̃2
x + k̃2

y − (k2
0 − γ2(ω))

. (38)

Here, for simplicity, we have given the GF for a rectan-

gular cell with periods a and b, so k̃xm = kx + 2mπ/a ,
k̃yn = ky + 2nπ/b. A wave in such a PC goes in all three

directions: in the longitudinal direction it is an ordinary

wave, and in the transverse direction it is a Bloch wave

defined by kx and ky . To reveal the waveguide properties

in the longitudinal direction, a two-dimensional PC must

have a defect. As defect may be a cylindrical cavity. Such

DWs are known as photonic-crystal waveguides (PCW) of

the hollow channel type in a periodic shell. If the working

region falls within the band gap of a regular two-dimensional

PC, such a waveguide channels the mode along the z axis.

The defect can also be in the form of an optically denser

inclusion. The defect can be taken into account by adding

the terms corresponding to its polarization current to the

two-dimensional VIE. In this case, in the case of a defect in

the form of a hollow channel
”
, the addition of “ reduces

to the subtraction of the contribution from the polarization

current of remote elements of the PC, and in the case of a

defect in the form of an optically denser inclusion, to the

addition of a contribution from the additional polarization

current. This approach is algorithmically much simpler than

the commonly used methods of PCW analysis [75,76]..
By analogy, we do not present the types of IDEs obtained

by transferring the action of the operator ∇τ from the kernel

to the integrand. Due to the presence of a longitudinal term

associated with the parameter γ , they have somewhat more

cumbersome forms. Instead of integrals over the surface,

they are loaded with contour integrals over the contour of

the cross section. Using these equations, one can obtain

functionals whose stationary values determine either the

spectral parameter (transverse wave number) or the desired

longitudinal wave number γ . For DW and PCW from

dielectric elements, one can also formulate the IDE.with

respect to only the magnetic field. Since the magnetic field

does not tolerate steps at the interfaces, it is convenient,

since the vector basis functions do not have to be subject

to the discontinuity conditions of the normal components on

the surfaces. In the work [76] the VIE for the finite cladding

of a photonic-crystal waveguide was used to calculate its

modes. In the paper [77] the VIE method was used to

analyze the modes of a 2D PC from nanowires. VIEs

for the analysis of the modes of a rectangular DW were

used in the works [9,78]. Although an open rectangular

DW is a simple structure, the analysis of its modes based

on field decomposition in domains and stitching is quite

complicated [79–89]. Mods are hybrid, having all six

components. Regarding the classification of modes, there

is also no uniformity. They can be classified as HEmn and

EHmn, where m and n determine the approximate number of

component variations Hz or Ez along x and y in the cross

section in the case of a propagating surface mode. The

oscillating field goes beyond the dielectric, so these indices

are not integer (approximately integer). It is clear that the

mode fields will be symmetric/antisymmetric with respect to

the x = 0, y = 0 planes. In the case of ω → ∞ or ε → ∞,

the field does not go beyond the rectangular region, the

variance tends to γ(ω) = k0

√
ε, and the HEmn mode goes

to Emn, and the EHmn goes to Emn. In the work [79] the

main two modes are classified as HE⊥ and H‖ or as even

and odd with respect to the transverse electric field. In the

first case, the electric field is perpendicular to the maximum

side of the DW, and in the second case, it is parallel to it.

The classification scheme adopted in the works [79,80] is

based on the fact that with a large aspect ratio and a small

difference in refractive indices in the short wavelength limit,

the transverse electric field is mainly parallel to one of the

transverse axes. The modes are denoted as Ey
mn if their

electric field is parallel to the y axis in the limit, and as Ex
mn

if their electric field is parallel to the limit axes x . The

indices m and n are used to denote the number of maxima in

the x and y directions, respectively. Usually, the transverse

components of waveguide modes are expressed in terms of
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Figure 6. Dispersion of the first few HEmn modes of a square

DW for ε = 2.25 and ε = 9.0 DPs. The dashed line 1 denotes the

low-frequency cutoff γ = k0, the dashed line 2 — γ = k0

√
2.25,

the line it3 — γ = 3k0 . The curves for ε = 2.25 lie between the

lines 1 and 2, the curves for ε = 9.0 lie between the lines 1 and 3.

Mods without cutoff are HE11 . Square finite elements are used.

the longitudinal components Ez and Hz or in terms of the

Hertz vectors. In the case of a rectangular DW, transverse

components can be chosen instead, and this choice is not

unique. The boundary conditions require consideration of

all six components, i.e. modes are hybrid. In this regard,

the VIE method using finite elements is convenient in that

it does not require the fulfillment of boundary conditions

(they are automatically satisfied when solving), which is

especially convenient for complex boundaries. Comparative

analysis of a number of methods for calculating the DW is

given in [89].

Fig. 6 shows the results of calculating the dispersion

in a square DW. The solution was obtained using square

piecewise constant two-dimensional FEs. An VIE with an

integrable kernel and an iterative method for determining

the spectral parameter are used. γ = k0 was assumed at

the cutoff point, and for each of the frequencies above the

critical one, the dispersion equation was solved by the iter-

ation method. The iterative method is convenient because if

a convergent solution is obtained at a certain frequency ω,

for example, γ(ω), then changing the frequency by a small

amount 1ω and using the previous solution, we obtain the

value of γ(ω + 1ω) quite accurately and quickly for the

same mode at a close frequency. Thus, dispersion curves

can be obtained in the region where they do not intersect.

The iteration method also makes it possible to determine

fast complex leaky modes.

5. Plasmon waveguides and localized
plasmons

Taking the DW in the form of a rectangular region of

section a × b and determining the DP by the Drude-Lorentz

model, we obtain a model of a plasmonic waveguide. In the

frequency region where the real part of the DP is negative,

plasmon polaritons (PP) propagate in such a waveguide.

Slow PPs exist in the region ε′m(ω) = Re(ε′m) < −1 where

the dissipation ε′′m(ω) is not too large. This is the region of

plasmon resonance. Usually, PP is considered in a layer of

thickness a at b → ∞ or in a structure of several layers

using the matching method. Such PPs have three field

components Ex , Ez and Hy . The VIE method makes it

possible to consider the PP in a finite plate when all six field

components are present. At low frequencies, the PP speed is

close to the speed of light c , and they are weakly inflowing

waves. The PP deceleration in the plasmon resonance

region is the greater, the smaller the thickness a , while both

forward and backward surface waves are supported [90].
Strong deceleration is obtained at thicknesses of the order

of nm. The increase in deceleration is due to the interaction

of surface waves on the two sides. For thin finite structures,

VIEs are very convenient, since the number of FEs is small.

Figure 7 shows an example of quasi-E-PP simulation for

the aspect ratio b/a = 100 and b/a = 10. The algorithm

was constructed as follows. The dispersion γ = kz for

E-PP was calculated on the basis of a strict dispersion

equation obtained by the matching method. This result

was used as an initial approximation in the functional with

respect to γ = kz , which was obtained on the basis of

the VIE, which was solved iteratively together with the

calculation γ . 300 FEs were used. A similar approach to

PP modeling can be applied to layered and inhomogeneous

plasmonic waveguides, as well as in the case of arbitrary

cross sections. At high frequencies, the metal acquires

the properties of a lossy dielectric, and the considered

algorithms can describe DW modes. This applies to a

greater extent to semiconductor waveguides, whose plasma

frequencies are much lower than those of metals. Materials

for plasmonics and plasmonic waveguides are considered in

the the work [91].
Methods of the VIE type are widely applied to the

analysis of localized plasmons. Here, the approach is the

same as for DP, but taking into account the DP of metals.

Gold nanoparticles embedded in tissues and excited by a

laser affect the area around them. Such methods are widely

used in medicine. A significant enhancement of the field

is possible with dipole, quadrupole, and other multipole

excitation of several particles. A number of works are

devoted to the analysis of localized plasmons by the VIE

method, for example, the work [92]. Some of its results are

presented in Fig. 8, 9.
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Figure 7. Plasma wavenumber normalized k p = ωp/c deceler-

ation k′

z (along the abscissa) as a function of the normalized

wavenumber (y-axis) for slow PP along the silver layer thick-

nesses 2 nm (curve 1) and 10 nm (curve 2). Curve 1 is con-

structed for b/a = 100, curve 2 is constructed for b/a = 10 nm.

ωp = 1.57 · 1016, ωc = 3.6 · 1013 Hz.

6. Numerical algorithms for diffraction
problems

The problems of diffraction correspond to inhomoge-

neous VIEs. If they are formulated with respect to

electric and magnetic fields, then we introduce the bivector

Fp = (E,H), as well as the bivector F0 = (E0,H0). The

latter consists of third-party fields. They are also incident

fields and can be the field of a plane wave, or, for example,

the field of a dipole. The complete field is F = F0 + Fp. It

is it that acts on the body, causing polarization, which is

equivalent to the relation Fp(r) = K̂(r, F), where K̂(r, F) is

one of the integro-differential operators defined above. Thus,

the diffraction problem is defined as follows:

F(r) = F
0(r) + Fp(r) = F0(r) + K̂(r, F). (39)

If we use only the VIE with respect to the electric field, then

all quantities F are replaced by E. An approximate solution

to equation (39) is F(r) = F0(r) + K̂(r, F0). However,

further use of successive approximations may not lead to

a convergent result if the parameter ε − 1 (or a parameter

similar to it) is large. This limits the method to DP

close to unity. At least it should be 0 < ε < 2 If a

singular RI with singularity extraction is used, then we

get ε < 2.5. Therefore, equations of the type (39) are

solved by numerical methods by inverting systems of linear

equations of high order. Different approaches are possible

here: projection-type methods of moments and Galerkin?s

methods on various basis and weight functions, collocation

methods, variational approaches with the construction of

functionals. All of them follow from the minimization of

the generalized weighted residuals [93] We have considered

a body of finite volume, therefore, when using a dipole as

a third-party field, the problem of excitation of such a body

arises. A similar problem arises when a body is excited

by a plane wave. Analytical solutions are known for the

problems of excitation of an ideal dielectric sphere [68–70].
Any problem of excitation by electric and magnetic dipoles

is the problem of finding the components of a tensor GF

structure. For such a complete GF, all dipole orientations

should be considered. In the far field zone, the field of such

a delayed GF represents divergent spherical waves [28]. For
a dielectric body of a complex shape, one can use the VIE

with respect to the magnetic field, and as the basis functions,

take its expansion in terms of spherical harmonics in the

sphere describing the body, and integrate over the volume

of the body. This requires numerical integration. Solving the

problem of excitation by point dipoles, in principle, allows

solving the problem of excitation by arbitrary sources.

The above equations are easily transformed to the form

when the problem or structure is infinite in one of the

coordinates. The solvability of such two-dimensional VIEs

formulated with respect to electric or magnetic fields is

considered in [19]. In the works [8,20,21] the solvability of

singular VIEs is proved. The excitation of such structures by

plane waves is usually considered. Numerical approaches to

solving VIEs are studied in [10,13]. As the problems solved

by the matching method, we note diffraction by round

dielectric or elliptical cylinders [70]. The expansion in terms

of cylindrical harmonics can be used to solve problems

of diffraction on cylinders of complex cross section. Let

us separately consider the problem of cylindrical structures

periodically located in one of the transverse directions. This

is the problem of diffraction by a PC element that is finite

in one of the directions. It is also possible to consider

the semi-infinite in this direction region of the FC. Such a

problem can also be set for a semi-infinite 3D FC. It cannot

be solved within the framework of the given VIE, since

it contains infinite domains of integration. Its solution is

possible taking into account a finite but large number of

periods.

Diffraction by two-dimensional structures is described on

the basis of a 2D scalar GF G(rτ − r′τ ) = −(i/4)H(2)
0 (k0R),

R =
√

(x − x ′)2 + (y − y ′)2. In this case, the plane

wave diffraction problem E = y0E0y exp(−ik0x),
H = z0η

−1E0y exp(−ik0x) TE polarizations

or waves E = z0E0z exp(−ik0x), H =
−y0η

−1
0 E0z exp(−ik0z ) TH-polarization on a dielectric

cylinder of arbitrary cross section located at the

origin along the z axis (see, for example, [94]).
Figure 10 shows the directional pattern F(ϕ/π) =
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Figure 8. Scattering cross section (according to the work [92]) at angles of incidence 180◦ (a) and 90◦ (b) depending on the wavelength

for cylinders of various shapes calculated by the VIE method (solid lines) and the boundary element method (square symbols). For both
elliptical and rectangular cylinders, their surface plasmon resonances are redshifted, and their full widths at half maximum increase as the

light incidence angle changes from 180◦ to 90◦.
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Figure 9. Normalized near field distribution of round (a), elliptical (b), rectangular (c), square (d) nanoparticles (according to [92]) at

their respective resonant wavelengths when irradiated with light at an incidence angle of 180◦, as shown in the insert in Fig. 8, ,a.

|Ez (ϕ/(ϕ/π))/Ez (0)|2 of diffraction by an isotropic square

dielectric cylinder with sides 2a .
VIE-based algorithms can be built on the basis of

projection or variational approaches with the same or

different basis and weight functions. In the first case, we

obtain methods of the Galerkin’s (Bubnov-Galerkin) types

and moment types, respectively, and in the second, we

obtain quadratic or bilinear functionals. All of them lead

to systems of linear algebraic equations, which should be

solved iteratively. Direct methods are possible for bodies

of small electrical dimensions. Otherwise bad conditioning

occurs. It is often possible to obtain functionals for some

parameters of the problem: squared resonant frequencies of

the DR, reflection coefficients, input impedances, directional

patterns, etc. They should be found iteratively together with

the iterative solution of VIE [9,65]. In the case of bodies

of small electrical size and low dielectric susceptibility

χ = ε − 1 < 1, when the perturbation of the field E0 is

small, one can use perturbation theory (MSA) for the

equations Lippmann-Schwinger type. This requires the

calculation of multiple volume integrals, and the formulated

smallness conditions for real problems are almost never

satisfied. In the case of a formulation in the form of a

bilinear functional with differentiable weight functions, it

is convenient to transfer the action of the operator D̂ to

weight functions. In this case, to obtain matrix elements, it

is necessary to integrate G(r− r′) with a weakly singular

kernel.

Recently, methods related to VIE have received a lot of

attention and are being used more and more widely. It

should be noted the monographs [95–97], in which the main

attention is paid to the mathematical problems of proving

the Fredholm property of operators and the solvability

of problems, as well as two monographs [98,99], which

are directly related to the issues under consideration and

are devoted to the transformation and solution equations

of electrodynamics, including variational approaches. In

the works [100–111], algorithms for solving problems for

Optics and Spectroscopy, 2022, Vol. 130, No. 10



Volumetric integro-differential equations in diffraction problems... 1267

1.0

0.2

0.4

0.6

0.8

0

F

0 0.2 0.4 0.6 0.8 1.0
ϕ/π

1

2

3

4

5

6

Figure 10. Directional patternF(ϕ/π) = |Ez (ϕ/π)/Ez (0)|2 of

scattering of a plane wave polarized along the axis of a square

dielectric cylinder for different values k0a : 1 — 0.1, 2 — 1.0,

3, 6 — 2.0, it 4 — 4.0, 5 — 8.0. Curves 1−5 are constructed for

ε = 2.25, curve 6 is constructed for ε = 4.

specific structures by the VIE method with the justification

of various approximations of solutions are studied. In

particular, iterative approaches to obtaining solutions are

being developed [109–112].
If the spectral problem is solved, i.e., fields are found as a

function of frequency, then a time-dependent non-stationary

solution can be obtained by Fourier inversion. This,

however, is a mathematically difficult problem, especially

if one uses the numerical methods for determining spectral

integrals, which are necessary for most of these problems. In

a number of works, spatiotemporal VIEs [14,15,23,31,112–
118] have been formulated and used. It is convenient

to base them on the scalar GF g(t − t′, r− r′), which is

given by the inverse Fourier transform of G(r− r′) and

has the form g(t, r) = (4π)−1δ(t − |r|/c). For dielectric

bodies, the polarization P(t, r) = D(t, r) − ε0E(t, r), polar-
ization current J(t, r) = ∂tP(t, r) and determine the electric

induction D through the integral connection with the

field. The equations are most simply obtained in the

absence of spatial dispersion. when D is related to E

by an integral operator with kernel ε0ε(t − t′, r), where

ε(t, r) is the inverse transformation from ε(ω, r), and the

integration is over t′ . The kernel satisfies the principle

of causality: ε(t, r) = 0 for t > 0, which means that the

contribution to the polarization is only from electric fields

at previous times. Accounting for spatial dispersion leads

to the fact that the connection becomes nonlocal with the

kernel ε0ε(t − t′, r− r′) and is determined by space and

time integrals. In the spatial integral, one should take into

account only those points in the neighborhood of the point r

for which |r− r′| < c(t − t′), i.e. for which the perturbation

has time to reach the point of observation. In the resulting

VIEs, the Heaviside function χ(t − t′ − |r− r′|/c) appears,

indicating that the contribution to the field at some point at a

given moment χ(t − t′ − |r− r′|/c) are introduced only by

those points of the body, at the moment t′, the perturbation

from which manages to reach the speed of light c . The

simplest non-stationary equations arise under bonds local

in time and space D(r, t) = ε0ε(r)E(r, t). However, such

connections are possible when the DP dispersion can be

neglected, which is usually the case for a very low-frequency

spectrum of the wave packet.

As noted, a metallic body can be described by a DP. But

when in the main part of the spectrum the penetration depth

is negligibly small compared to the dimensions of the body,

it is convenient to describe it by the surface current density j.

It should also be introduced in the case of graphene

and similar two-dimensional structures in the presence of

dielectric bodies. In this case, surface integrals additionally

appear, and the equations become combined volume-surface

equations. The introduction and use of such equations has

recently been the subject of many works, for example [118–
120]. Equations are considered both with respect to fields

and with respect to potentials. Since the potentials can

be introduced in different ways, there can also be many

possible equations. Various approximations are considered

both in volume and on the surface. Each equation can

be associated with several algorithms. They are more

complicated for the combined volume-surface equations,

since they also require the definition of the surface current j.

The latter satisfies the continuity equation, therefore, when

transforming the surface integral with the transfer of the

divergence operator to it, it is necessary to determine the

surface charge density σ (ω, rs) = iω−1∇s · j(ω, rs ). The

index s here means the radius vector tangent to the surface

and the surface divergence. The impedance boundary

condition E(ω, rs) = Zs(rs )j(ω, rs), which is an additional

condition for determining j. Let?s emphasize once again

that the solution of the VIE inside the body automatically

implies the boundary conditions for the field E at the

boundary of the body and the radiation conditions at infinity.

In the English-language literature, the following classifica-

tions of equations are used: IEs relative to electric field

(EFIE),magnetic field (MFIE),relative to mixed potentials

(MPIE),volume-surface IEs (VSIE), hybrid IEs, etc. The

combination of surface and volumetric IEs makes it possible

to analyze all possible structures encountered in problems

of electrodynamics and optics.

7. Calculation of matrix elements

Matrix elements for simple configurations (cubes, etc.)
can be constructed using Fourier bases such as sines and

cosines. However, a more general approach applicable to

bodies of complex shape is based on FEs. This requires

discretization of the volume of bodies. For VIEs, apparently,
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the most convenient is cubic discretization with a cube

size of 1. The simplest finite elements are piecewise

constant. They are built on a single cube and require the

integrability of the kernels. Smooth FEs usually require

3 or 5 digitalization points for each of their variables,

i.e. 27 or 125 such cubes per volumetric FE that is tied

to the central node. Various approximations of FE by

polynomials are also possible. Smooth (differentiable)

FEs lead to complex algorithms, especially for complex

interfaces. Quadrature formulas for calculating integrals are

more convenient. Since the integrals in the matrix element

are sixfold in two space variables r and r′, it is convenient

to shift the points of nodes r j, r
′
j , for example, by 1/2

for each of the variables. For kernels in the coordinate

representation, it is convenient to assume that the integration

elements are constant. In this case, the matrix elements

are calculated as simply as possible, and the diagonal

elements are finite. In the case of VIE with a distinguished

non-integral term, the diagonal elements should be set to

zero. For kernels in the spatial-spectral representation,

the dependence on coordinates has the form exp(−i(r′)).
Integration with this function on biased FEs leads to

f j j′(k) = f (kx , x j − x ′
j′′) f (ky , y j − y ′

j′′) f (kz , z j − z ′
j′′),

where f (k, x) = 1 exp(−ikx) sin c(k1), where the function

sin c(x) = sin(x)/x is denoted. Therefore, matrix elements

are defined as integrals in k-space of Ŵαβ(k) f j j′(k),

where Ŵαβ(k) are spectral parts of tensor GFs. These

integrals usually converge slowly, so significant efforts in

obtaining algorithms can be expended on improving the

convergence of the integrals. For weakly singular kernels

with singularities |r − r′|−α , α = 1, 2, when calculating

the diagonal matrix elements, it is convenient to replace

the cubic cell with a solid sphere of equivalent volume:

13 = 4πr30/3. Then the integration in the approximation of

the constancy of the functions taken in the cell is performed

analytically:

∫

|r−r′|2≤r 2
0

|r− r′|−αd3rd3r ′ = 4π13r2−αdr

= 4π16−α(3/(4π))3−α/3/(3− α).

Other approximations can also be used to calculate matrix

elements. In the DR problem in Fig. 1−3, due to azimuthal

symmetry, the kernel has a weak singularity, and quadrature

formulas are used. Note that here the VIE for Eϕ is the

same as for the vector-potential component. In the DW

problem, we used an VIE with an integrable kernel and

shifted FEs. the problem of variance in a FC, an VIE with a

distinguished non-integral term and a periodically translated

GF G(k, r− r′) is used. In the problem of the directional

pattern, the Hankel function [28] and discretization on

shifted grids were used as a scalar GF.

8. Conclusion

The review considers 3D and 2D VIEs in the fre-

quency domain and presents their types, which describe

free oscillations and waves in DR, DW, and in fibers

of arbitrary shape and anisotropy, including taking into

account inhomogeneous and nonlinear properties, as well

as diffraction by dielectric and magnetic bodies. Based

on such equations, plasmonic waveguides and localized

plasmons can be analyzed. A review of publications where

the VIE method is used, is given. The review does not

claim to be complete coverage of the material. As for

the analysis of DRs with nonlinear properties, in a strong

field this is a purely non-stationary problem: as the field

is emitted from the DR volume, the intensity decreases and

the resonant frequency changes. The nonstationary approach

should also be used for a DW with a nonlinear dielectric,

since the nonlinearity changes the spectral composition of

the wave packet, and it is very difficult to propagate along

the DW, especially if there is a strong frequency dispersion

and inhomogeneous (selective) absorption. This problem is

associated with the excitation of DWs and fiber waveguides

by high-power laser beams when waves are multiplied

and a supercontinuum is generated. Accordingly, one

should consider the finite spectrum of waves in the wave

packet and the non-stationary problem. If, nevertheless,

the spectrum is narrow, a single-frequency approximation

is possible. In this review, we brushed over the problem

of non-stationary problems. It is possible to formulate non-

stationary equations for waveguide structures as well. The

review did not cover numerical methods and justifications

for solving hypersingular integral equations. For 1D

equations, this term was introduced by J. Hadamard, and for

the first time he considered surface IEs for electrodynamics

in 1949 A. Maue [121]. These equations have not been

directly used for numerical solution for a long time, and only

relatively recently have algorithms been applied to them. In

the 1D case, the equations describe thin dipole antennas.

For surface hypersingular IEs, the methods are based on

the representation of fields as a finite part of the integral in

the sense of the Hadamard value as the observation point

tends to the surface. Theoretical approaches are closely

related to the theory of pseudodifferential operators [33–
35,122]. The reader who is interested in these questions

can be recommended literature [122–125].
The numerical results presented in the review for a

cylindrical DR, rectangular DW, dispersion in a PC and

in a plasmonic waveguide, and diffraction by a dielectric

structure were obtained by the author. As regards the

efficiency and accuracy of the VIE method, it can be es-

timated based on the calculation of the resonant frequencies

of the DR, which can be quite accurately measured. In

particular, Fig. 3 demonstrates the convergence depending

on the number of partitions (nodes) along each of the

two coordinates. The number of test functions (matrix

order) here is N2. When smooth FEs are used, the

dimension of the problem is reduced by about 4 times, i.e.,
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to achieve the same accuracy, 4 times fewer basis functions

are needed. However, such FEs lead to the complexity of

the algorithm. The calculated results for eigenfrequencies

are about 1−1.5% lower than the data from the paper [4],
where the experimental results are also presented. The

experimental results are 1−2% higher than the calculations

in [4]. For curves (2, 3) in Fig. 3 refinement by Aitken’s

method gives the frequency f = 5.23752∠GHz, while

in [4] the frequency f = 5.289GHz. On the other hand, the

solution of a self-adjoint problem with a linear occurrence of

the eigenvalue k−2
0 (i.e., for FG at k0 = 0) by the considered

methods gives the values , almost identical to [4]. From

this we can conclude that the results [4] were obtained

with a defect. The frequencies H011 of oscillations for

the considered form of DR are approximately one and

a half times, and the quality factors are more than an

order of magnitude higher than for the lowest type H01δ

oscillations, since in the first case the quality factor is

associated with magnetic dipole radiation, in the second

is associated with magnetic quadrupole. Calculations show

that the achievement of high quality factors at the lowest

modes requires the use of ε > 40 values at a negligibly

small loss tangent. Qualitatively, the total quality factor can

be estimated through the radiative one from the relation

Q−1 = Q1

R + ε′′/ε′, however, the method allows it to be

calculated using the complex DP. If there is a strong

frequency dispersion of the DP, then the resulting equations

always need an iterative solution. Indeed, the parameter

k0 = ω/c enters the equations non-linearly (directly and

through the GF), just like the frequency. It is necessary

to freeze the frequency in the DP, obtain the resonant

frequency, correct the DP, and continue the process until

convergence.

The VIE method as a research tool occupies a certain

place in computational electrodynamics. However, in our

opinion, it is underestimated in terms of its capabilities,

although the number of publications using it is growing. It

can be applied in integrated optics, photonics, plasmonics,

for the analysis and homogenization of PCs (see, for

example, [16–18]), as well as for 1D, 2D, and 3D stationary

and non-stationary problems of quantum mechanics [15].
In addition to stationary and non-stationary problems of

electrodynamics, it was also applied to problems of mag-

netostatics with nonlinear magnetic structures [126–129], to
problems of mechanics, acoustics [118] and to a number of

other problems.
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