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Spectral variables selection in multivariate calibration of concentrations

of C, Mn, Si, Cr, Ni and Cu in low-allow steels by laser induced
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Multivariate calibrations of concentrations of C, Mn, Si, Cr, Ni and Cu have been developed by the partial

least squares method for 31 to 39 standard samples of low-alloy steels using low-resolution emission spectra

(190−440 nm, resolution 0.4 nm, step 0.1 nm). Three methods of spectral variables selection are considered: a

method of ranking spectral variables by their correlation coefficient with the value of the calibrated parameter,

a successive projection algorithm and an original modification of searching combination moving windows. The

partial least squares model with the spectral variables selection by the method of the searching combination moving

windows for C is quantitative: the root mean square error is 0.004%, the residual predictive deviation in the test

dataset is 23.4 in the concentration range 0.13 to 0.43%. Calibrations of Mn (0.04% and 5.2 in the range of

0.47−1.15%), Si (0.003% and 20.7 in the range of 0.15−0.33%), Cr (0.04% and 3.1 in the range of 0.09−0.43%)
and Ni (0.01% and 4.8 in the range of 0.05−0.25%) are also quantitative. For Cu in the concentration range of

0.06−0.26%, calibration is qualitative (0.04% and 1.4).
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Introduction

In recent years, the use of laser induced breakdown

spectroscopy (LIBS) has made it possible to achieve a

significant improvement in the characteristics of stationary

and portable instruments that perform qualitative or quan-

titative analysis of the samples under study [1–3]. With

the help of LIBS, an express analysis of the composition of

various objects is carried out with minimal or no sample

preparation, which is a significant advantage over reference

chemical methods. For example, in [1] LIBS was used to

quantitatively measure the chemical composition of stainless

steel welds with temporal and spatial resolution directly

during welding. In [2] the detection of various types

of adulteration of milk powder using LIBS and machine

learning methods is considered. Such falsification can cause

serious digestive disorders in consumers. The work [3] is

devoted to the search by LIBS for ways to reduce the carbon

calibration deviation caused by trace quantities of surface

contaminations for low-carbon steels.

Iron-based steels and alloys, which are used in almost all

areas of human activity, occupy a special place among the

objects of application of the LIBS method. The content

of technological impurities in steels, along with alloying

with chromium, manganese and other chemical elements,

determines their physical, chemical and technological prop-

erties. Quantitative analysis methods for determining the

concentration of alloying additives and process impurities

are important for the classification or sorting of steels.

Usually it performs by mass spectrometry [4], optical

emission spectroscopy using spark discharge [5], inductively
coupled plasma [6] and glow discharge [7]. The advantages

of the LIBS method are express multi-element analysis in

the open air and the relatively low cost of instrumental

implementation with an accuracy acceptable for qualitative

analysis. As a major disadvantage of LIBS, it is possible

to point out the lack of accuracy when making quantitative

measurements [8]. Nevertheless, a large number of works

are devoted not only to qualitative, but also to quantitative

applications of LIBS [9–15]. Due to differences in the

choice of implementation conditions (wavelength, pulse

duration, laser beam energy and focusing spectral range

and resolution of the spectrometer, time delay and spectrum

measurement interval, number of preliminary and measuring

laser pulses, number of accumulations, blowing the object

with gas), which significantly affect the measured spectra,

LIBS is considered a semi-quantitative method [16]. The

construction of one- or multivariate quantitative models

with various types of spectrum preprocessing also leads to

significantly different results in accuracy.

When implementing the LIBS method in portable and

mobile instruments, spectrometers with low spectral reso-

lution are usually used. Therefore, in view of the strong

overlap of the wings of the emission lines, the classical one-

variate approach to constructing a calibration dependence

from the intensity of isolated analytical line is of little use
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for such spectrometers. In this case, multivariate calibration

models [1,17] are widely used, which process the entire

recorded spectrum. According [18] calibration is the process

used to create a model that relates two types of measured

data. In the present work, we calibrate the concentration of

the main elements in low-alloy steels, i.e. a mathematical

model is created that relates the sought concentrations of

chemical elements in a set of known reference samples of

low alloy steels with spectral data obtained using the LIBS

method.

Experiment

Previously, we solved the problem of calibration over

the entire spectral range of measuring low-resolution

emission spectra (190−440 nm, resolution 0.4 nm, spectral

step 0.1 nm). The experimental setup and measurement

conditions are given in [19]. Reference samples of low-

alloy steels UG0d-UG7d, UG9d (Russia) and 51/1-58/1, 72-

76, 101-103, 110-125 (Poland) were studied, a total of 44

standards, of which from 31 to 39 samples were used for

calibration with non-recurring concentrations of C (in the

range of no more than 0.8%), Mn (2.0%), Si (1.2%), Cr
(1.0%), Ni (0.8%) and Cu (0.5%).

Methods and results

Approximately the same number of standards training

and test samplings were formed in accordance with the

standard Kennard-Stone algorithm [20]: the first sample in

the training sampling is selected with a concentration closest

to the center of the studied range, and each subsequent

one in concentration should be the most remote from those

already selected. In our case, this algorithm, in comparison

with the uniform or random distribution of the training

sampling, makes it possible to obtain more stable models

by narrowing the intervals for estimating the concentrations

of chemical elements in the test sampling. After the spectra

were normalized to the intensity at the characteristic iron

emission wavelength of 252.0609 nm, calibration models

were constructed using the partial least squares method with

standard deviations from the corresponding reference values

in the test sampling RMSEP = 0.06% for C, 0.12% for Mn,

0.09% for Si, 0.13% for Cr, 0.07% for Ni and 0.08% for Cu.

To improve the calibration accuracy in this work, when

forming the training and test samplins, we partially took

into account the requirements formulated in [18]. Since

the conditions for the minimum number of samples in the

training (24 samples) and test (20 samples) samplings are

not met in total, with the calibration under consideration,

approximately 60% of the samples form a training sampling,

and the remaining 40% form a test one. The proportion is

due to the requirement [18] to train multivariate models

by the number of samples, which is equal to the number

of used latent variables increased by 6 times. For the test

sampling, the corresponding ratio is 4. This problem was

solved at the first stage of work. Next, three methods for

selecting spectral variables were applied to the broadband

multivariate model: the RSV method (ranking of spectral

variables) [21], based on the ranking of spectral variables

by their correlation coefficient with the value of the desired

parameter; successive projections algorithm (SPA) [22]
and [23] original modification of scmwiPLS i.e. searching

combination moving window iPLS [24]. Let us characterize
each of the applied methods for choosing spectral variables

and the results obtained.

When using the RSV method, all spectral variables are

ranked in order of decreasing correlation coefficient with

the concentration being calibrated. Then, at each step,

one variable with minimal correlation is removed and

multivariate modeling is performed using the partial least

squares method [25] with the determination of the optimal

number of latent variables. Selected spectral variables are

determined by the minimum standard deviation of estimates

of the concentration of the sought element in the samples

of the test sampling from the reference values. With

the introduction of a restriction on the variables selection

by a given correlation coefficient, this modification of

the RSV method is called as method of filtering by the

correlation value, i. e. the SMC (significance multivariate

correlation) [26]. The application of the SMC method

is characterized by the arbitrariness of the researcher in

choosing the indicated restriction, from which the RSV

method is spared.

Comparison of the characteristics of the broadband model

PLS and PLS+RSV is presented in Table 1. It can be

seen that the regrouping of the training and test samplings

from the ratio of the number of samples in them equal

to 1 : 1 to 3 : 2 led to slight changes in the RMSEP
values only for the broadband calibration of Si and Ni

concentrations (by 0.02% and 0.01% respectively). This

confirms the robustness of PLS multivariate models to

changes in samplings. Comparison of the RMSEP values

of the PLS and PLS+RSV models shows that the use

of the correlation method for spectral variables selection is

not efficient enough in the cases under consideration. The

quality of the calibration models for Cr and Cu did not

change, since out of 3630 spectral variables 3629 and 3625

were selected, respectively. For the other four elements, the

quality of the calibration improved, but only slightly. Let us

illustrate the obtained results of the multivariate calibration

of the C concentration by the PLS+RSV method. Fig. 1

shows the dependence of RMSEP on the number of

spectral variables removed from the model, ranked by

the correlation coefficient with the C concentration in the

samples. The minimum RMSEP is achieved when 757

spectral variables are included in the model, which allow

using 4 latent variables in the PLS method to obtain the

calibration dependence shown in Fig. 2. The value of

RMSEP is 0.04%, and the residual deviation RPD in the

test sampling (ratio of performance to deviation is the ratio

of the standard deviation of the parameter in the sampling

and the standard deviation from the reference values) —

Optics and Spectroscopy, 2022, Vol. 130, No. 10



Spectral variables selection in multivariate calibration of concentrations of C, Mn, Si, Cr, Ni and Cu... 1341

Table 1. Characteristics of PLS and PLS+RSV multivariate models for calibration of the concentration of six chemical elements in

low-alloy steels by emission spectra

Element Number of samples
Number of RMSE in test Number of Number of RMSE in test

total in training in test latent in wideband selected latent % for

variables spectral variable PLS+RSV

in wideband variables variables for for

PLS PLS, % PLS+RSV PLS+RSV

C 33 18 15 3 0.06 757 4 0.04

Mn 39 24 15 4 0.12 3458 3 0.09

Si 34 22 12 3 0.07 426 6 0.05

Cr 33 18 15 2 0.13 3629 2 0.13

Ni 31 18 13 3 0.08 3486 2 0.05

Cu 38 22 16 4 0.08 3625 4 0.08
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Figure 1. The standard deviation of the C concentration estimate

from the reference values in the test sampling of low-alloy steel

samples, depending on the number of spectral variables ranked

by the correlation coefficient and removed from the partial least

squares model.

2.7. This is the best of the models constructed for the

6 considered elements by the PLS+RSV method, but it

is only semi-quantitative (2.5 < RPD < 3) [27]. Attention

is drawn to the location of the selected spectral variables

shown in Fig. 3 for the emission spectrum of the etalon 123.

It can be seen that only one spectral variable (252.06 nm)
lies in the region of intense emission lines, where we can

expect the presence of useful information for calibration.

The remaining selected spectral variables are at the edges

of the measured spectra, which, as expected, are of little

information.

The second method we used for selecting spectral

variables for multivariate calibration is SPA [22]. At the

first stage of the SPA implementation, for each of the

available 3630 spectral variables, an ordered sequence is

constructed from all other variables. In these sequences, the

second variable will be chosen according to the maximum

projection into the subspace perpendicular to the first one.

And so on until all the measured spectral variables are

included in the sequence. At the second stage of SPA,

PLS models are constructed for increasing sets of elements

of each sequence with the choice of the optimal number

of latent variables. In the considered case of limiting

the number of latent variables to 10, the number of such

models is 36302 · 10 ≈ 1.3 · 108 . At the third stage, the

best multivariate model and, accordingly, the desired set

of spectral variables, leading to the minimum calibration

deviation, are determined from the minimum RMSEP value.

Table 2 shows the parameters of the best multivariate

models for the PLS+ SPA method.

Comparison of the data in Tables 1 and 2 shows that

the quality of the PLS+SPA calibration models improved

compared to PLS+RSV for Mn, Si, Cr, and Cu, but

deteriorated for C. For Ni, RMSEP has not changed.

The third method we used for selecting spectral variables

is the scmwiPLS method. This method does not operate

with individual spectral variables, but with spectral intervals

of a certain width i.e. windows The original modification of
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Figure 2. Correlation between estimates of C concentration

and reference values in the construction of a multivariate partial

least squares model for 757 spectral variables with the maximum

correlation with the calibrated parameter.
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Table 2. Characteristics of PLS+ SPA multivariate models for

calibration of the concentration of six chemical elements in low-

alloy steels by emission spectra

Element Number of Number of RMSE
selected latent in test, %

spectral variables for

variables for PLS+ SPA

for PLS+ SPA

PLS+ SPA

C 1229 2 0.05

Mn 278 3 0.08

Si 11 10 0.03

Cr 2628 2 0.12

Ni 2696 2 0.05

Cu 11 8 0.07
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Figure 3. Emission spectrum of standard 123, which indicates

the spectral variables used to calibrate the C concentration by the

PLS+RSV method.

the scmwiPLS [23] method contains three stages. The first

one is the construction of a broadband multivariate PLS

model and the determination of the optimal number of n
latent variables from the minimum value of RMSEP . At the
second stage, the width of the spectral windows is fixed,

the number of spectral variables in which exceeds n per

unity. This condition minimizes the width of the window

while maintaining the ability to select latent variables even

in one window. Next, the first window is shifted by one

spectral variable per step, and at each step a multivariate

model is built by the PLS method, also characterized by

RMSEP . After the first window reaches the edge of

the measured spectral range, the optimal position of this

window is determined by the minimum value of RMSEP
and is fixed. The procedure is repeated with the second

spectral window. In this case, the simulation is performed

by combining the spectral variables belonging to the fixed

first and moving second spectral windows. Each subsequent

window adds n + 1 spectral variables to the model until

all the measured variables are taken into account in the
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Figure 4. Dependence of the root mean square of prediction

of Mn concentration in the test sampling of low alloy steels

from emission spectra using a partial least squares model with

the spectral variables selection by searching combination moving

windows.

calibration. For correct operation of scmwiPLS, it is first

necessary to reduce the total number of spectral variables

to a multiple of n + 1. The total number of multivariate

scmwiPLS models in the case under consideration for,

for example, four latent variables is 36302/10 ≈ 1.3 · 106,

which is two orders of magnitude less than for PLS+ SPA.

The third stage consists in selecting the spectral variables

corresponding to the combination of windows, constructing

on which the scmwiPLS model is characterized by the

minimum value of RMSEP .
Let’s consider in detail the application of scmwiPLS for

Mn concentration calibration. Broadband PLS shows a

minimum of RMSEP = 0.12% for four latent variables.

The corresponding training error is RMSEC = 0.14%. At

the same time, RPDC = 4.7 for the training sampling,

and RPDP = 1.8 for the test sampling, which shows the

deterioration of this calibration quality indicator due to the

narrowing of the considered range of Mn concentration in

the test sampling.

In the scmwiPLS method, windows with five variables are

used to select spectral variables in emission spectra when

calibrating with four latent variables. The initial number of

variables 3630 is a multiple of 5 and does not need to be

reduced. Fig. 4 shows the dependence of RMSEP on the

number of spectral windows taken into account in the PLS

model. The minimum root mean square error corresponds

to 19 windows or 95 variables. The position of the selected

spectral variables in the emission spectrum of reference 123

is shown in Fig. 5. It can be seen that, in contrast to the C

calibration, most of the selected spectral variables are in the

region of intense emission lines. The same dependence is

observed for the other chemical elements being calibrated,

except for C, for which the scmwiPLS method, like the

two previously applied methods, selects spectral variables

outside the region of observed intense emission lines.
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Figure 5. Emission spectrum of reference 123, which highlights

the spectral variables used to calibrate the Mn concentration using

the scmwiPLS method.

Table 3. Characteristics of multivariate scmwiPLS models for

calibration of the concentration of six chemical elements in low-

alloy steels by emission spectra

Element Number of RMSEC, RPDC RMSEP, RPDP
selected % %

spectral

variables in

scmwiPLS

C 208 0.03 10.7 0.004 23.4

Mn 95 0.15 4.4 0.04 5.2

Si 208 0.11 2.5 0.003 20.7

Cr 153 0.13 2.9 0.04 3.1

Ni 240 0.10 2.5 0.01 4.8

Cu 325 0.05 3.9 0.04 1.4

Mn concentration calibration by scmwiPLS method

is characterized by the following quality indicators:

RMSEC = 0.15%, RMSEP = 0.04%, RPDC = 4.4 and

RPDP = 5.2. Thus, the developed multivariate model is

quantitative for both samplings.

Table 3 shows the characteristics of the scmwiPLS

models for all six calibrated chemical elements.

Conclusion

It can be concluded that the use of methods for selecting

spectral variables has improved the quality of multivariate

models for calibrating the concentrations of the main

technological impurities and alloying additives in low-alloy

steels according to the data obtained using LIBS. Only for

Cu in the concentration range 0.06−0.26%, the calibration

created using the partial least squares method with the spec-

tral variables selection by searching combination moving

windows with a width that exceeds the number of latent

variables per unity is qualitative. Similar calibration models

for C in the concentration range from 0.13 to 0.43%, Mn

(0.47−1.15%), Si (0.15−0.33%), Cr (0.09−0.43%) and Ni

(0.05−0.25%) are quantitative.
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