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The effect of the spin polarization control of conduction electrons

through the deformation of a ferromagnet
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A model of the exchange interaction of collectivized conduction electrons with magnetization electrons in a

deformed ferromagnet with taking into account spin−orbit corrections is proposed. Under the conditions of

inhomogeneous torsion distortion, the conduction electron spin in the domain is oriented along the exchange

interaction vector. If the conduction current density vector is orthogonal to the torsion axis, then the average

conduction electron spin will be oriented predominantly along the current density vector.
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The state−of−the−art spintronics deals with studying

effects in which an essential role is played by spin degrees

of freedom. One of its directions is studying spin fluxes

in conductors and semiconductors in order to reveal the

ways of using them in various microelectronic devices [1].
Spin dynamics of collectivized conduction electrons in

the spintronics systems is conventionally simulated by the

Rashba and Drosselhaus Hamiltonians accounting for the

energy of the conduction electron spin−orbit interaction [2].
Estimates show that interaction of this kind can ensure the

spin polarization coherence at the distances of about 0.1µm;

however, it is insufficient for efficient macroscopic (about
1mm) polarization of spin currents in polycrystals. In

recent decades there has been formed such a new research

direction of the Condensed Matter Physics as straintronics

employing physical effects in matter caused by deforma-

tions induced in micro—, nano— and heterostructures by

external control fields that lead to variations in the material

electronic structure and electrical, magnetic, optical and

other properties [3]. The objective of one of the straintronics
branches is studying the effect of mechanical stresses on the

substance electronic properties.

In the framework of previously created authorial defor-

med−ferromagnet models, it was shown that the crystal

field efficiently interacts with spin moments of localized

electrons [4], and spin−orbit interaction leads to efficient

polarization of conduction electrons in the macroscopic

area [5].

The novelty of the proposed approach is that the model

Hamiltonian of the exchange interaction between collec-

tivized conduction electrons and magnetization electrons

in the deformed ferromagnet crystal field accounts for the

second−order relativistic spin−orbit corrections. Such an

interaction was not previously taken into account since it

does not create macroscopic coherent polarization of spin

currents in a strain−free crystal.

Let us consider the exchange interaction between two

electrons, a collectivized and a localized ones, in a domain

of a homogeneous and isotropic ferromagnet with taking

into account the spin−orbit interaction, i. e. relativistic

second−order corrections by 1/c , where c is the light

speed. In the framework of the self−consisted field method,

the energy of the Coulomb interaction of the considered

electrons with each other and also with other domain

electrons, both collectivized and localized in ions, namely,

with the crystal, is accounted for by substituting their mass

m with effective mass m∗.

Spin−orbit additions to the energy of two electrons

located at the points with radius−vectors r1 and r2 are

conventionally defined as follows [6]:

V̂ =
~e

2m∗2c2

(

[

E1(r) × p̂1

]

ŝ1 +

[

E2(r) × p̂2

]

ŝ2

)

, (1)

where ~ is the Diracś constant, pi and si are the i-th electron

momentum and spin operators. Field argument E is the

same as that of the wave function under the operator.

Considering sum (1) as a perturbation, find its mean

value V in the state

ψ(r1, σ1, r2, σ2) =
(

ψ1(r1, σ1)ψ2(r2, σ2)

− ψ1(r2, σ2)ψ2(r1, σ1)
)

/
√
2,

composed of single−particle spin−orbitals ψ(ri, σi), σi is

the i-th electron spin variable. Assume that the first electron

is a collectivized conduction electron of the i-th domain

lattice site, while the second electron is localized in the j-th
site, and write the collectivized electron wave function in

the form of the Wannier function:

ψ1(r) =
1√
N

N
∑

n=1

WC(r − ri − Rn) exp(ikRn),

ψ2(r) = WL(r− r j), (2)
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where WC(r) and WL(r) are the hydrogen−like functions

of the collectivized and localized electrons; Rn is the

translation vector; linear combination of lattice vectors a1,

a2, a3; ri and r j are coordinates of the i-th and j-th lattice

sites.

Assume that, due to the exchange interaction, all the spins

of electrons localized in the domain are oriented identically

(for instance, along the easiest magnetization axis) and,

hence, all s j = sL. Assuming the energy of exchange

interaction between a collectivized conduction electron and

all localized magnetization electrons to be a sum of those of

its binary interactions like (1), substitute into (1) relations

(2) ignoring the dependence of the hydrogen−like functions

on the spin−spin interaction. After summation over spin

variables, obtain

V =
(

JCsi
)(

si sL
)

+
(

JLsL
)(

si sL
)

. (3)

Formula (3) includes the following designations:

JL = −2DZ
~N

N
∑

j=1

N
∑

n=1

N
∑

m=1

eik(Rn−Rm)

×
〈

9∗

C

(

r− Rm + r j − ri
) l̂

r3
9L(r)

〉

× 〈9∗

L(r)9C(r− Rn + r j − ri)〉, (4)

JC = −2DZ
~N

N
∑

j=1

N
∑

n=1

N
∑

m=1

eik(Rm−Rn)

×
〈

9∗

L(r)
l̂

r3
9C(r− Rm + r j − ri)

〉

×
〈

9∗

C(r− Rn + r j − ri)9L(r)
〉

= J∗L. (5)

Here Z is the effective charge of the ion residue, l is the elec-

tron orbital moment operator. It may be estimated by setting

the coordinate of the maximum of the hydrogen−like wave

function radial component to the ion residue radius Me3+.
For iron and cobalt, the ion residue radius is 6.3 · 10−11 m

which corresponds to effective charge Z ≈ 5.2. Parameter D
is D = ~

2e2/(8πε0m∗2c2) ≈ 2 · 10−51 J ·m3 at m∗ ≈ 0.3m.

The crystal field orients the electron orbitals along the

crystal symmetry axes. Therefore, it is possible to assume

that coordinate axes within which integrals (4), (5) and next

ones are calculated are closely associated with the crystal

basis vectors aν .

The hydrogen−like functions have low values at

r > naB/Z, where aB = 5.3 · 10−11m is the Bohr radius,

n is the principal quantum number. This is why the

first integral in (4) and (5) is non−zero only at either

r j − ri − Rm = 0 or ±aν , while the second one is non−zero

at either r j − ri − Rn = 0 or ±aν . When r j − ri − Rn = 0

or r j − ri − Rm = 0, the relevant integrals in a strain−free

crystallite are zero since different atomic functions of one

and the same atom are orthogonal. In transition metals,

s - and p-zones are overlapped [7]. Therefore, conduction

electrons may be formed from p-orbitals. In the case of the

p−d-interaction, formula (4) takes the following form:

JL = −2DZ〈9P(r)9∗

D(r)〉
〈

9∗

P(r)
l̂

r3
9D(r)

〉

− 4DZi
3
∑

ν=1

sin(kaν)

×
{

〈9P(r + aν)9
∗

D(r)〉
〈

9∗

P(r)
l̂

r3
9D(r)

〉

+ 〈9P(r)9∗

D(r)〉
〈

9∗

P(r + aν)
l̂

r3
9D(r)

〉

}

. (6)

Here in the integrals containing functions 9P(r− aν), the
r → −r variable substitution was performed taking into

account the function 9P(r) oddity, and the term of the

second order of smallness with respect to exp(−|aν |/aB)
was omitted. In the strain−free crystallite, JL = 0.

In the ferromagnet, the energy of exchange interaction be-

tween the conduction electron and magnetization electrons

is approximately equal to the energy of exchange interaction

between neighboring localized electrons and significantly

exceeds the magnetic anisotropy energy. Thus, it is possible

to assume that in formula (3) si = sL and sLsi = 3/4. Then,

introducing designation J = ReJL obtain

V = 3Jsi/2. (7)

In the case of a non−uniform distortion, a point, e. g. a

lattice site with coordinate r, is displaced to a new position

with coordinate r′ by vector u [7]:

r ′α = rα + uα(r), dr ′α =

(

δαβ +
∂uα
∂rβ

)

drβ,

drβ =

(

δαβ +
∂uβ
∂rα

)

−1

dr ′α ≈
(

δαβ −
∂uβ
∂rα

)

dr ′α,

∂

∂r ′α
=
∂rβ
∂r ′α

∂

∂rβ
=

∂

∂rα
− ∂uβ
∂rα

∂

∂rβ
,

l̂′α = −iεαβγ r ′β
∂

∂r ′γ
= l̂α − iεαβγ

(

uβ
∂

∂rγ
− rβ

∂uδ
∂rγ

∂

∂r δ

)

,

9(r′) = 9(r) +
∂9

∂rα
uαβrβ ,

where εαβγ is the unit antisymmetric Levi−Civita tensor,

uαβ = ∂βuα is the distortion tensor, α, β, γ = x , y, z . Ori-
entations of the crystal axes and valence−electron orbitals

change accordingly. Consider the case of distortion of the

sample torsion along axis n defined as �(r) = n(rn)ω,
where ω is the linear torsion; restricting ourselves to the

first−order distortion, obtain

uβ = ωεβσ νnσ nµrν rµ,
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uγδ = ωεδσ νnσ nµ(rνδµγ + rµδνγ)

= ωεδσ νnσ nγrν + ωεδσ γnσ nµrµ,

l̂′ = l̂ + ω(nr)
[

n× l̂
]

+ ω
(

nl̂
)

[n× r],

l̂′α = l̂α + ωεαβγnβnδ
(

r δ l̂γ + rγ l̂δ
)

,

9(r′) = 9(r) + i�(r)l̂9(r) = 9(r) + iωnβnδr δ l̂β9(r).
(8)

Taking into account the moment operator hermiticity and

commutation relations
[

l̂α, l̂β
]

= iεαβγ l̂γ ,
[

l̂α, rβ
]

= iεαβγ rγ ,
obtain from relations (8) in the approximation linear in ω:

〈9′

C |9′

L〉 − 〈9C |9L〉 = ωnβnδ
{

i〈9C |r δ l̂β9L〉

− i〈r δ l̂β9C |9L〉
}

= ωεβδγnβnδ〈9C |rγ |9L〉 = 0,

〈9′

C |l̂′α|9′

L〉 − 〈9C |l̂α|9L〉 = ωnβnδ
{

i〈9C |l̂α|r δ l̂β9L〉

− i〈r δ l̂β9C |l̂α|9L〉 + εαβγ 〈9C |r δ l̂γ + rγ l̂δ |9L〉
}

= 2ωεαβγnβnδ〈9C |rγ l̂δ|9L〉.
Substitute these relations into (6); then, in the

first−smallness−order approximation in ω and kaν , obtain:

Jα′ = εα′β′γ′nβ′nδ′kσ ′aνσ ′Bνγ′δ′,

Bνγ′δ′ =4ZDωIm

{

〈9P(r+aν)9
∗

D(r)〉
〈

9∗

P(r)
rγ′ l̂δ′

r3
9D(r)

〉

}

.

(9)

Relation (9) is written in the frame of reference associ-

ated with the domain axes. From equation (7) it follows

that the mean conduction electron spin in the domain is

oriented along vector J. Consider a macroscopic region

of a multi−domain ferromagnet that is homogeneous and

isotropic in the absence of deformations. Introduce a

laboratory frame of reference bound to the instruments

setting strains and measuring spin components. Let us

designate the vector and tensor components by indices

without primes in the laboratory frame of reference and

by indices with primes in the frame of reference associated

with the domain crystal axes. In the laboratory system, let

us prescribe the torsion by angle �(r).
Now let us transform the torsion vector and wave vector

from the laboratory system to the crystal axes system:

nβ′ = pβ′βnβ , kσ ′ = pσ ′σ kσ , where pβ′β is the unitary

rotation matrix. Substituting this transformation into (9),
convert components of vectors J and lL from the crystal

axis system to the laboratory system:

Jα = m∗p−1
αα′ pβ′β pδ′δ pσ ′σ jσ εα′β′γ′nβnδaνσ ′Bνγ′δ′/(ne~),

(10)
where j is the conduction current density, n is the

conduction electron concentration.

Let us average vector J (10) in the macroscopic region

over random crystallite orientations. It is convenient to

express the rotation matrix via Euler angles. The analytical

averaging provides the expression for the averaged vector J

in the following form:

J̄ =
2m∗ZDω
3ne~

Im

{

〈

9P(r + aν)9
∗

D(r)
〉

×
〈

9∗

P(r)
aν [r× l̂]

r3
9D(r)

〉

}

[

n× [n× j]
]

. (11)

The scalar in curly brackets in formula (11), where sum-

mation over ν is implied, depends only on the strain−free

crystal properties. It may be calculated in the crystal

symmetry axes. The triple vector product in (11) consists of
vectors that are preset in the laboratory frame of reference

and describe the impact on the polycrystalline sample. Its

modulus is maximal when the vector of the conduction

current density is orthogonal to the torsion axis. In this

case, the average conduction electron spin will be oriented

predominantly along the current density vector.

During recent years there were published a number of

experimental studies where the revealed spintronics and

spin−caloritronics effects have not yet been explained:

strain−induced switching of the heat flux direction due

to magneto−thermoelectric effect in a magnetic metal [8],
extension of the heat pump temperature range due to the

elastocaloric effect [9], and anomalous Righi-Leduc effect in

ferromagnetic materials [10]. The model presented in this

paper may be used as a basis for theoretical description of

those new effects.
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