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A quasi-classical model for calculating DC (direct current) electrical conductivity in crystalline semiconductors

with hydrogen-like impurities is developed at the transition from band conduction to impurity hopping conduction

with decreasing temperature. This transition from the minimum band conductivity to the maximum hopping

conductivity via impurities has the form of a characteristic
”
kink“ in the temperature dependence of the electrical

resistivity. The idea of the calculation is to preliminarily determine the transition temperature Tj using the standard

approach within the framework of the two-band model. The shift of the top of the v-band (the bottom of the

c-band) into the depth of the band gap due to the formation of a quasi-continuous band of allowed energy values

from the excited states of acceptors (donors) is taken into account. This leads to a decrease in the value of a thermal

ionization energy of the majority shallow impurities due to a decrease in the maximum localization radius of a

hole on an acceptor (an electron on a donor) with increasing impurity concentration. The values of the observed

maximum hopping conductivity and drift hopping mobility corresponding to the temperature Tj are calculated.

The numerical calculation within the framework of the proposed model is consistent with the known experimental

data on the electrical conductivity and Hall coefficient of moderately compensated p-Ge crystals doped by neutron

transmutation and non-intentionally compensated metallurgically doped n-Ge, as well as n- and p-Si crystals on the

insulator side of the Mott insulator–metal concentration phase transition.

Keywords: bulk crystals of germanium and silicon, hydrogen-like acceptors and donors, holes and electrons, band

and hopping motion of charge carriers.
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1. Introduction

When using lightly doped and moderately compensated

semiconductor materials as working substances of various

low-temperature conversion devices, it is important to

know the characteristic temperature Tj , below which the

dependence of their DC resistivity ρ sharply
”
hits a plateau“

(see Fig. 1, a). This feature of ρ(T ) is taken into account

in the development of cryothermal resistances and photode-

tectors (from infrared to terahertz wavelengths) based on

crystalline semiconductors (see, for example, [1–3]).
The dependences ln ρ vs. 1/T for lightly doped and

moderately compensated semiconductors, for certainty of

the p-type, as well as their energy band diagram are

illustrated in Fig. 1.

In homogeneous three-dimensional semiconductors, on

the insulator side of the insulator–metal concentration phase

transition there are (see, for example, [4–7]) two regimes

(mechanisms) of DC extrinsic conductivity σ = 1/ρ

(see Fig. 1): band-like conduction (or BC) and hopping

conduction (or HC). Let us introduce, following the data

of papers [8,9], the temperature Tj at which the electrical

conductivity σb j with thermal activation energy εb in the

BC regime is equal to the electrical conductivity σh j with

thermal activation energy εh ≪ εb in the HC regime.

The BC regime is realized at temperatures (T > Tj),
when the average v-band hole most of the time moves

”
freely“ between scattering events on impurity ions and

phonons in the crystal matrix. In the HC regime (at
T < Tj) the hole most of the time is localized on the

acceptor. Hopping electrical conductivity σh is carried

out by holes tunneling via the nearest acceptors in the

charge states (0) and (−1) assisted by phonons, so that σh

decreases with temperature decreasing (NNH regime). At

the lowest temperatures, electrical conductivity is carried

out by hole hops via acceptors in the charge states (0)
and (−1), which are no longer the nearest ones, but with

an optimized ratio of the length and activation energy of

the hop (the so-called regime with a variable hop length, or

VRH regime). In the VRH regime, the thermal activation

energy of hole hops via acceptors εh ∝ T 1/2 in the presence

of the Coulomb gap at the Fermi level [10] and εh ∝ T 3/4

in its absence [11]. Identification of the experimentally

observed behavior εh(T ) for the VRH regime is a separate

task (see, for example, [12]).

Previously, the dependence of the concentration of

delocalized v-band holes on the concentration of impurities

at the temperature Tj was calculated for p-Ge : Ga [9] and
p-Dia : B [13] crystals. Here we are mainly interested
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Figure 1. a — dependence of the natural logarithm of DC

resistivity ln ρ of a lightly doped crystalline semiconductor on

the reciprocal temperature 1/T ; at T = Tj , the band σb j = 1/ρb j

and hopping σh j = 1/ρh j conductivities are equal. b — scheme

of hole (h+) transitions along the coordinate axis x at their band

(BC; activation energy εb) and hopping (HC) migration in p-type
semiconductor; NNH stands for the phonon-assisted tunnel hops

of holes via the nearest acceptors in the charge states (0) and (−1)
with activation energy εh ≪ εb ; VRH denotes the hole hops

optimized by activation energy and length; Ep is the hole energy,

E(v)
m < 0 is the mobility edge for v-band holes, Ev = 0 is the top

of the v-band of an undoped semiconductor, Ia is the ionization

energy of a single acceptor, Wa is the width of the acceptor band,

Wp is the rms fluctuation of the potential energy of v-band holes.

in the DC resistivity ρ = ρ j and the Hall coefficient RH

at T ≈ Tj .

The quantitative calculation of the hopping electrical

conductivity via hydrogen-like impurities is still an urgent

problem (see, for example, [14,15]). However, if we are

talking about the maximum hopping conductivity observed

near the break point (
”
kink“) of the ln ρ(1/T ) temperature

dependence, then within the framework of the standard

two-band model it is possible to estimate the value of the

maximum hopping conductivity, knowing the value of the

minimum band conductivity. The main obstacle on this

path — the calculation of the temperature Tj vs. the dopant

concentration and its compensation ratio — was overcome

earlier [8,9].

The purpose of the paper is to obtain a relation for

calculating the DC conductivity and the Hall coefficient in

covalent semiconductors of p- and n-type at a transition

temperature from v-band holes (or c-band electrons) domi-

nance in conductivity to the dominance of hopping conduc-

tivity via hydrogen-like impurities, as well as comparison

of calculation results with experimental data for germanium

and silicon crystals.

2. General relationships

As an example, let us consider a lightly doped p-type
crystalline semiconductor on the insulator side far from the

Mott insulator−metal concentration phase transition [16,17].
Let the concentration of hydrogen-like acceptors is equal

to Na = N0 + N−1 in the charge states (0) and (−1), and
the concentration of donors being completely in the charge

states (+1) is equal to Nd = N+1 < Na ; the charge states

of impurities are expressed in units of elementary charge.

The charge states of the acceptors migrate over the crystal,

i.e., they are mobile, while the charge states of the donors

are strictly localized. Further, crystals of p- and n-types are
considered, in which the concentration of doping (majority)
impurities is up to 0.25NM for K < 0.1 and up to 0.45NM

for 0.25 < K < 0.5, where NM is the critical concentration

corresponding to the Mott transition.

The electrical neutrality equation for p-type crystalline

semiconductor relates, among other things, at a temperature

T ≈ Tj the concentration of v-band holes p(Tj) = p j to the

concentration of impurity ions [8]:

p j = N−1 − N+1 = N−1 − KNa , (1)

where K = Nd/Na = N+1/Na is the compensation ratio for

compensation of acceptors by donors (0 < K < 1).
Based on the virial theorem, in the papers [8,9] an ana-

lytic expression for the temperature Tj at p j ≪ K(1−K)Na

was obtained in the form

Tj ≈
0.728

kB

e2

4πεrε0
(KNa)

1/3, (2)

where kB is the Boltzmann constant, e is the elementary

charge, εr is the relative permittivity (determined by v-band

electrons against the background of ion cores of the crystal

matrix), ε0 is the electric constant.

To calculate the concentration of v-band holes at T = Tj ,

it is necessary to find the value of their drift mobility

edge E(v)
m = −δEv and the position of the Fermi level E(v)

F

(see Fig. 1, b).
Let us calculate the shift of the top of the v-band

δEv > 0 into the depth of the band gap (energy gap) of the
semiconductor due to the formation of a quasi-continuous

energy spectrum due to the overlap of the excited states

of acceptors with their concentration increasing. Drift

mobility edge for v-band holes E(v)
m = −δEv = Eper + Eres,

where Eper < 0 is the threshold of diffusion percolation

of v-band holes, Eres < 0 is the decrease in the thermal

ionization energy of the acceptor due to the confinement

of the maximum radius of the hole orbit on the acceptor

due to the presence of both acceptors and donors in

the crystal (see Fig. 1, b). Note that in a lightly doped

p-type semiconductor, the contribution of the exchange

energy of v-band holes to E(v)
m can be neglected (see, for

example, [18]).

To find E(v)
m , we estimate Eper and Eres separately and

compare their values at T = Tj .
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The energy level (threshold) of the diffusion percola-

tion of v-band holes in a three-dimensional crystalline

sample in the quasi-classical approximation is (see, for

example, [14,19])

Eper ≈ −0.955Wp < 0, (3)

where Wp is the amplitude of Gaussian fluctuations of the

potential energy of the v-band hole.

When taking into account the Coulomb interaction of only

nearest point charges (impurity ions and v-band holes) and

”
smoothing“ of the potential relief in a crystal by an average

hole at its de Broglie wavelength at T = Tj , according to the

data of papers [9,18], the quantity Wp is

Wp ≈ 0.77
e2

4πεrε0

(

p j

Nch

)1/2

N1/3
ch , (4)

where Nch = N−1 + KNa + p j = 2N−1 ≈ 2KNa is the con-

centration of all point charges (Poisson-distributed [20] in

the crystal) satisfying the electrical neutrality condition (1)
when the concentration of holes in v-band is limited to

p j ≪ K(1−K)Na . It follows from relations (2)−(4) that at

temperature Tj the inequality Wp/kBTj ≪ 1 is satisfied.

The decrease in the thermal ionization energy of the

hydrogen-like acceptor due to the confinement of the

maximum Bohr radius of the hole orbit on the acceptor

is given by the formula [21,22]

Eres = −Iaa p/Rim < 0, (5)

where a p = e2/8πεr ε0Ia is the radius of the Bohr orbit

of hole on a single acceptor with the thermal ionization

energy Ia from the ground (unexcited) state to v-band

(to the energy level Ev = 0) due to thermal fluctuations;

Rim = [4π(1 + K)Na/3]
−1/3 = 0.62[(1 + K)Na ]

−1/3 is the

average radius of the spherical region per one impurity atom

(including acceptors and donors) in the crystal matrix.

At the temperature Tj , when p(Tj) = p j ≪ K(1−K)Na ,

the estimate Eper and Eres according to (3) and (5) gives

|Eper| ≪ |Eres|, so E(v)
m = −δEv ≈ Eres. Then from (5) we

have

E(v)
m ≈ Eres = −Ia

a p

Rim

< 0, (6)

where Ia is the thermal ionization energy of a sin-

gle acceptor in the charge state (0); 2Rim = dim

= 1.24[(1 + K)Na ]−1/3 is the average diameter of the

spherical region inside a semiconductor sample, all points

of which are closer to the same impurity than to any other.

Note that the value dim is by ≈ 3% less than the average

distance between the nearest impurities in the crystal matrix

dVD = 1.28[(1 + K)Na ]
−1/3 (determined in paper [23] by

the method of Voronoi−Dirichlet polyhedra).
The first ideas about the

”
shift“ of the bottom of the

c-band into the depth of the band gap due to the formation

of quasi-continuous band of allowed energy values for

c-band electrons from the excited states of donors in

the charge state (0) are contained in paper [24] and, in

particular, were used in papers [25,26]. However, these

papers did not take into account the influence of donor

compensation by acceptors on the value of the donor

ionization energy (see δEv value for acceptors in Fig. 1, b).
Also note the analogy between the decrease in the thermal

ionization energy of donors with their concentration in

semiconductors and the decrease in the energy of
”
cold

ionization“ of metal vapors with the concentration of metal

atoms, when the incipience of the c-band appears [27]
(see also [28,29]).
The concentration of v-band holes p(Tj) for the case

p(Tj) ≪ K(1−K)Na , taking into account (6), can be

represented (see Fig. 1, b) as a standard relation from the

theory of nondegenerate semiconductors [30,31]:

p(Tj) ≡ p j = pv(Tj) exp

(

E(v)
F (Tj) − E(v)

m

kBTj

)

, (7)

where

pv(Tj) = 2(2πmpd kBTj)
3/2/(2π~)3,

mpd is the density of states effective mass for v-band holes,

~ = h/2π is the reduced Planck’s constant, |E(v)
F −E(v)

m | > 0

is the energy gap between the Fermi level E(v)
F < 0

and the mobility edge E(v)
m < 0 for v-band holes,

E(v)
m = −δEv ≈ Eres = −Iaa p/Rim for Wp ≪ kBTj ; δEv > 0

is the shift of the v-band top into the band gap; δEv = 0

for an undoped crystalline semiconductor. The position

of the Fermi level E(v)
F (Tj) < 0 with respect to Ev = 0

is determined from the electrical neutrality condition

N−1(E
(v)
F ) = KNa under the condition p(Tj) ≪ K(1−K)Na

taking into account the finite width of the acceptor band

Wa ≫ Wp.

The concentration of negatively charged acceptors taking

into account the Gaussian distribution Ga of energy levels

in the acceptor band Ea (relative to Ia) with an effective

width Wa , according to the data of paper [13], is equal to

N−1 = Na

+∞
∫

−∞

f −1Ga d(Ea − Ia)

≡ Na

Wa

√
2π

+∞
∫

−∞

f −1 exp

[

− (Ea − Ia)
2

2W 2
a

]

d(Ea − Ia),

(8)

where f −1 = {1 + βa exp[(E
(v)
F + Ea)/kBT ]}−1 is the pro-

bability of filling the acceptor state with energy level Ea

by a hole, βa = 4 is the degeneracy factor of the energy

level of a single hydrogen-like acceptor in the crystalline

semiconductor with degenerate v-band extremum (the top

of the valence band) at the center of the Brillouin zone,

Ia = e2/8πεrε0a p is the thermal ionization energy of a

single acceptor relative to Ev = 0.

The effective width of the acceptor band Wa , taking

into account the interaction of only nearest ions at

Semiconductors, 2022, Vol. 56, No. 11
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p(Tj) ≪ K(1−K)Na , when N−1 = KNa , is equal to [9,18]

Wa = 2.64
e2

4πεr ε0
(2KNa )1/3. (9)

Comparison of formulas (4) and (9) gives Wa ≫ Wp for

p(Tj) ≪ K(1−K)Na .

Note that, according to (9) and (2), the ratio of the

acceptor band width Wa to the thermal energy kBT at

temperature T = Tj is equal to Wa/kBTj ≈ 4.57 and does

not depend on the concentration of acceptors and their

compensation ratio. As a consequence, the acceptor band

cannot be considered narrow for temperature Tj .

So, the concentration of v-band holes at the temperature

T = Tj is determined from (7) taking into account the

mobility edge E(v)
m by (6) and the Fermi level E(v)

F (Tj), cal-
culated from the electrical neutrality equation N−1 = KNa

taking into account (8).
To calculate the electrical conductivity σ (Tj) ≡ σ j

= σb j + σh j = 2σb j at temperature T ≈ Tj along with the

hole concentration p j by (7) it is necessary to know their

drift mobility µp j . In the quasi-classical approximation of

quantum mechanics the drift mobility of the nondegenerate

gas of v-band holes, limited by their elastic scattering

by impurity ions, at temperature Tj is described by the

expression [32,33]

µp(Tj) ≡ µp j

=
5

2

(

4π

3

)1/3
~(4πεrε0)

2kBTj

e3mpσ N2/3
i

1

ln(1 + γ)
, (10)

where Ni ≡ Nch is the concentration of ions of hydrogen-

like impurities (acceptors and donors); Ni = 2KNa at hole

concentration p ≪ K(1−K)Na ; dimensionless parameter

γ = (3/4πNi )
2/3(20πεr ε0kBTj/e2)2.

Note that formula (10) takes into account the mini-

mum possible scattering angle, according to Conwell–
Weiskopf [34], as well as the finite time of interaction

between hole and one impurity ion (see also [35]). When

calculating the drift mobility of holes (and electrons) for

temperature Tj we can neglect the decrease in their mobility

due to scattering on vibrations of atoms of the crystal

matrix (see, for example, [36–38]) of the studied samples

of germanium and silicon (see Figs. 2−7).
Electrical conductivity of v-band holes at temperature Tj ,

when σb j = σh j , is

σb(Tj) ≡ σb j = ep jµp j = 1/ρb(Tj), (11)

where p j is determined by formula (7), and µp j — by (10).
According to the definition of temperature Tj

(see Fig. 1, a), the electrical resistivity ρ j = 1/σ j at T = Tj

is equal to

ρ j =
1

σb j + σh j
=

1

2σb j
=

1

1/ρb j + 1/ρh j
=

ρb j

2
, (12)

where the maximum value of DC hopping conductivity

σh j = ep jµp j = 1/2ρ j at temperature Tj is determined by

the concentration of v-band holes p j and by their drift

mobility µp j .

Along with the electrical conductivity at temperature Tj ,

the Hall effect is also often studied, the difficulties of its

measuring in the case of a low doping level occur at

lower temperatures. The relation that takes into account

the contribution of the band (σb j) and hopping (σh j )
electrical conductivities to the experimental value of the Hall

coefficient RH(Tj) at temperature Tj has the usual form for

two-band model [30,39]:

RH(Tj) =
Rb jσ

2
b j + Rh jσ

2
h j

(σb j + σh j )2
≈

Rb jσ
2
b j

(σb j + σh j)2
=

rb

4ep j
, (13)

where Rb j = rb/ep j > 0 is the Hall coefficient for v-band

holes, p j is the concentration of v-band holes by (7), rb is

the Hall factor (rb ≈ 1 at low temperatures in a sufficiently

strong magnetic field [40]), Rh j is the Hall coefficient for

holes hopping via acceptors (|Rh j | ≪ Rb j).
According to the data of papers [9,18], the high-

temperature (at T = Tj) concentration of holes hopping via

acceptors is equal to Nh j = K(1−K)Na . Then, from the

equality of the maximum hopping σh j = eNh j Mh j and the

minimum band conductivities σb j = ep jµp j , one can find

the maximum drift hopping mobility of holes migrating via

acceptors in the charge states (0) and (−1) at T = Tj :

Mh(Tj) ≡ Mh j =
p jµp j

K(1− K)Na
. (14)

Let us calculate the maximum drift hopping mobility

of holes Mh j using formula (14) for p-Ge : Ga crystals

(see Table 1) for K = 0.4 on the insulator side of the

Mott transition (Na < NM = 1.85 · 1017 cm−3). For the

concentration of gallium atoms Na = 3 · 1015 cm−3 we have

Mh j = 0.14 cm2/(V · s); for Na = 3 · 1016 cm−3 we have

Mh j = 93 cm2/(V · s).
Note that both the measurements of the Hall effect

and their interpretation in the region of hopping elec-

trical conductivity are still unsolved problem (see, for

example, [41,42]). Therefore, to clarify the approaches

to this problem, the dependence of the high-temperature

(maximum) drift hopping mobility on the doping impurity

concentration and its compensation ratio according to (14)
is of interest.

Note that for n-type semiconductors with hydrogen-like

donors in all formulas the index
”
a“ [acceptors in the

charge states (0) and (−1)] should be replaced by the

index
”

d “ [donors in the charge states (0) and (+1)], and
symbols

”
p“ and

”
v “ (for p-type) — by symbols

”
n“

and
”

c “ (for n-type).

3. Comparison of calculation results
with experimental data

To plot the theoretical (calculated from (12) and (13))
dependences of the electrical resistivity ρ(Tj) ≡ ρ j

Semiconductors, 2022, Vol. 56, No. 11
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Figure 2. Decimal logarithm of DC resistivity ρ at temperature

Tj vs. Mott parameter νa for neutron-transmutation gallium-doped

p-type germanium crystals. Points are the experiment [43−50],
lines are the calculation by formula (12) for the compensa-

tion ratio K = 0.4. The insert shows the dependence ρ j on

the compensation ratio K at constant gallium concentration

Na = 2.66 · 1015 cm−3: points are the experiment [44], lines are

the calculation by formula (12). Solid lines 1 are the calculation

for E(v)
m by (6), dashed lines 2 — for E(v)

m = 0.

and the Hall coefficient RH(Tj) for temperature Tj

on the Mott parameter generalized for the case of

nonzero compensation νa = a p[(1 + K)Na ]1/3 for acceptors

and νd = an[(1 + K)Nd ]
1/3 for donors, the following rela-

tions were used:

a p(n)

Rim

= 1.612νa(d);
kBTj

Ia(d)
= 1.456

(

K
1 + K

)1/3

νa(d),

obtained from formulas (2) and (6).
To plot the calculated dependences of ρ(Tj) and RH(Tj)

on νa = a p[(1 + K)Na ]
1/3 and νd = an[(1 + K)Nd ]

1/3

in Figs. 2−7 the parameters of germanium of

p-type [43–50], n-type [51,52] and silicon of n-type [53–55]
and p-type [54,55], specified in Tables 1 and 2 were used

(see also [36–38,56,57]). The parameter νa(d) takes into

account both the concentration of the doping (majority)
hydrogen-like impurity (Na or Nd) and its compensation

ratio 0 < K < 1 by minority (compensating) impurity.

Experimental data and calculations are presented for

semiconductors with acceptor concentrations Na < 0.45NM

(for p-Ge :Ga), Na < 0.25NM (for p-Si : B) and donors

Nd < 0.25NM (for n-Ge and n-Si), where NM is the

concentration of the majority impurity corresponding

to the Mott transition (see paper [17] and references

therein). For compensated germanium crystals of

p- and n-type NM = 1.85 · 1017 cm−3 (p-Ge : Ga,
K ≈ 0.4); NM ≈ 1.68 · 1017 cm−3 (n-Ge : Sb, K < 0.1);
for weakly compensated silicon crystals of p- and

n-type (K ≈ 0.1): NM = 3.81 · 1018 cm−3 (n-Si : P);
NM = 7.8 · 1018 cm−3 (n-Si : As); NM = 3 · 1018 cm−3

(n-Si : Sb); NM = 4.1 · 1018 cm−3 (p-Si : B).

Figs. 2−7 show calculations for such degrees of doping

and compensations of semiconductors, in which the energy

gap between the Fermi level and the mobility edge for

the majority charge carriers exceeds 3kBTj/2; for p-type

semiconductors |E(v)
F −E(v)

m | > 3kBTj/2 or for n-type semi-

conductors |E(c)
F −E(c)

m | > 3kBTj/2 (see also Fig. 1, b).
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m by (6), dashed

line 2 — for E(v)
m = 0.

0.06 0.08 0.10 0.12

3

5

7

9

11

nd n d= [(1 + ) ]a K N 1/3

lg
[

(
),

·c
m

]
r

T
j

W

0.04

2

1

n-Ge :Sb

Figure 4. Logarithm of DC resistivity ρ at temperature Tj

vs. Mott parameter νd for antimony-doped n-type germanium

crystals. Points are the experiment [51,52], lines are the calculation

by formula (12) for the compensation ratios: K = 0.05 (1) and
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Table 1. Parameters of p- and n-type germanium crystals

Semiconductor
Ia , a p,

βa εr mpd/m0 mpσ /m0 K References
meV nm

p-Ge : Ga 11.32 4.13 4 15.4 0.35 0.26 0.4 [43,44]
0.35 [45]
0.3 [46]
0.35 [47,48]
0.4 [49,50]

Semiconductor
Id , an,

βd εr mnd/m0 mnσ /m0 K References
meV nm

n-Ge : Sb 10.32 4.53 2 15.4 0.553 0.119 0.02−0.06 [51,52]

Table 2. Parameters of p- and n-type silicon crystals

Semiconductor
Id , an,

βd εr mnd/m0 mnσ /m0 K References
meV nm

n-Si : P 45.58 1.38 2 11.47 1.062 0.259 0.01−0.02 [53]
∼ 0.1 [54]

n-Si : As 53.76 1.17 ∼ 0.01 [54]
0.04, 0.06 [55]

n-Si : Sb 42.74 1.47 ∼ 0.1 [54]
0.02−0.05 [55]

Semiconductor
Ia , a p,

βa εr mpd/m0 mpσ /m0 K References
meV nm

p-Si : B 44.39 1.41 4 11.47 0.584 0.397 ∼ 0.01 [54]
0.1−0.3 [55]
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Figure 5. Reciprocal value of Hall coefficient |RH| at temper-

ature Tj vs. Mott parameter νd for n-type germanium crystals

doped with antimony. Points are the experiment [51], lines

are the calculation for the Hall factor rb = 1 by formula (13)
taking into account (7) for the compensation ratios: K = 0.05 (1)
and 0.01 (2).

Experimental dependences ρ(Tj) and RH(Tj) for moder-

ately compensated p-Ge samples (Figs. 2 and 3) and non-

intentionally compensated samples of n-Ge (Figs. 4 and 5)

and n-Si and p-Si (Figs. 6 and 7) qualitatively coincide

with the calculated values. For neutron-transmutation doped

p-type germanium crystals, where the compensation ratio

of the doping impurity (acceptors, gallium atoms) in the
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Figure 6. Logarithm of DC resistivity ρ at temperature Tj vs.

Mott parameters νd and νa for n-type silicon crystals doped with

donors (P, As and Sb) and p-type silicon crystals doped with

acceptors (B). Points are the experiment [53−55], lines are the

calculation by formula (12) with the compensation ratios: K = 0.1

(1 — n-type, 1′ — p-type) and 0.01 (2 — n-type, 2′ — p-type).
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Figure 7. Reciprocal value of the Hall coefficient |RH| at

temperature Tj vs. Mott parameters νd and νa for n-type silicon

crystals doped with donors (P, As and Sb) and p-type doped with

acceptors (B). Points are the experiment [53−55], lines are the

calculation for the Hall factor rb = 1 by formula (13) taking into

account (7) for the compensation ratios: K = 0.1 (1 — n-type,
1′ — p-type) and 0.01 (2 — n-type, 2′ — p-type).

entire range of their concentration varied only within the

range from 0.3 to 0.4 and depended on the hardness of

the neutron spectrum [58], there is a good agreement with

our calculation. On the contrary, in crystals of n-type
germanium and n- and p-type silicon obtained by metal-

lurgical doping with hydrogen-like donors, as comparison

with calculation shows, the compensation ratio expectedly

decreases from ≈ 5 to 1% (for germanium) and from ≈ 10

to 1% (for silicon) with increasing of the doping impurity

concentration. Note that at νd > 0.12 and K < 0.1, along

with the D0-band of donors formed by the charge states (0)
and (+1), a D−-band formed by the the charge states (−1)
and (0) of donors is also possible (see, for example, [59]).

It can be seen from Figs. 2 and 3 (on the example

of p-type germanium crystals with the compensation ratio

≈ 40%) that taking into account according to (6) the

shift δEv = −E(v)
m of the top of the v-band into the

band gap is fundamentally important for describing the

dependence of the electrical resistance ρ(Tj) and the

Hall coefficient RH(Tj) on the concentration of acceptors:

at δEv = −E(v)
m = 0 the calculated values differ noticeably

from the experimental ones. The same remark applies to

n-Ge crystals, as well as to p- and n-Si.

4. Conclusion

A quantitative description of the DC conductivity and Hall

coefficient is given in the framework of a two-band model

that takes into account the band of allowed energy values for

the majority charge carriers and the band of hydrogen-like

doping (majority) impurities separated from it in the energy

gap of crystalline semiconductors. Formulas are derived

that describe the electrical conductivity 1/ρ(Tj) and the

Hall coefficient RH(Tj) of semiconductors with hydrogen-

like impurities at temperatures Tj , when the contributions

to the electrical conductivity from the band and hopping

electrical migration of holes (for p-type semiconductor) and
electrons (for n-type semiconductor) are equalized. It is

taken into account that the confinement of the maximum

localization radius of the hole on an acceptor (electron
on donor) on the impurity ion core with increase in the

concentration of impurity atoms leads to a shift of the

edge of the allowed energy band into the depth of the

energy gap of the semiconductor. The high-temperature

(at T = Tj) concentration of holes hopping via acceptors

is equal to K(1−K)Na , where K is the compensation ratio

for compensation of acceptors with concentration Na by

donors; the concentration of electrons hopping via donors is

equal to K(1−K)Nd , where K is the compensation ratio for

compensation of donors with concentration Nd by acceptors.

The obtained formulas allow to plot the dependences ρ(Tj)
and RH(Tj) on the concentration of doping impurity atoms

for the given compensation ratio K < 0.5 on the insulator

side of the phase electronic (or hole) insulator−metal

transition (Mott transition).
Comparison of ρ(Tj) and RH(Tj) calculations with exper-

imental data at the Hall factor equal to 1 for p-Ge crystals

with fixed compensation ratio K = 0.3−0.4 shows their

good agreement in a wide range of acceptor (gallium atoms)
concentrations. Estimates are made of the maximum drift

hopping mobility of holes as a function of the concentration

of gallium atoms Na at a concentration of hopping holes

K(1−K)Na . For non-intentionally compensated n-Ge, n-Si,
and p-Si crystals the procedure of fitting the calculated curve

to the experimental data allows to estimate the unknown

compensation ratio of material and, in particular, it shows

the expected decrease in the compensation ratio (in the

range from 10 to 1%) with doping level increasing.
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