02

Спектрально-люминесцентные свойства катионного водорастворимого комплекса Pd(II) с нильским красным

© В.А. Феоктистова 1 , Р.И. Байчурин 1 , Т.А. Новикова 1 , А.Ю. Плеханов 2 , М.В. Пузык 1

¹ РГПУ им. А.И. Герцена,

191186 Санкт-Петербург, Россия

² Научно-исследовательский институт гриппа им. А.А. Смородинцева,

197376 Санкт-Петербург, Россия

e-mail: puzyk@mail.ru

Поступила в редакцию 22.12.2022 г. В окончательной редакции 23.01.2023 г. Принята к публикации 01.02.2023 г.

Разработана методика синтеза катионного водорастворимого комплекса Pd(II) с 9-диэтиламино-5H-бензо[a]феноксазин-5-оном (нильский красный) [PdEnNR]OAc (En — этилендиамин, NR — депротонированный нильский красный, OAc — внешнесферный ацетат-ион) и установлен положительный сольватохромизм его люминесцентных свойств. Исследовано влияние ДНК на спектрально-люминесцентные свойства [PdEnNR]OAc, в воде обнаружена интеркаляция комплекса в ДНК.

Ключевые слова: циклометаллированный комплекс Pd(II), нильский красный, люминесценция, интеркаляция комплекса Pd(II) в ДНК.

DOI: 10.21883/OS.2023.02.55018.4480-22

Введение

Феноксазиновые красители эффективно поглощают свет в видимом диапазоне, интенсивно флуоресцируют в красной области спектра, а с начала 20-го века нашли применение в гистологии для обнаружения внутриклеточных липидов [1,2]. Нильский красный (HNR) — 9-диэтиламино-5H-бензо[a]феноксазин-5он (рис. 1), бензоконденсированная гетероциклическая система, имеющая плоскостное строение, реагирует с Pt(II) и Pd(II) как циклометаллирующий лиганд, образуя семейство комплексов, флуоресцирующих в красной области. Смешанно-лигандные комплексы платиновых металлов с нильским красным в настоящее время исследуют в нескольких направлениях: с β -дикетонатами [3,4] (далее [Me(NR)O^O]) для использования в светодиодах типа OLED; димерные комплексы — как сенсоры на эндогенный СО в живых организмах (эмбрионы рыбок, мыши); с полиалкилированными основаниями Шиффа как жидкокристаллические фотопроводники [5-7].

С 1960-х гг. идет поиск комплексов платиновых металлов, используемых как противораковые препараты, способные ковалентно связываться с ДНК. Розенбергом была открыта противоопухолевая активность *цис*дихлородиаммин Pt(II) (цисплатин) [8]. А с 1979 г. цисплатин стал важным компонентом химиотерапии для лечения некоторых онколологических заболеваний. К сожалению использование цисплатина ограничено серьезными побочными эффектами, сокращающими дозу, и врожденной или приобретенной лекарственной устойчивостью [9].

С середины 1970-х гг. Липпард с сотрудниками расширили область исследования противораковых препаратов в сторону нековалентного взаимодействия ДНК с интеркаляторами — платиновыми металлокомплексами с азотсодержащими лигандами (аммиак, этилендиамин, 2,2',2'-терпиридин, 1,10-фенантролин, 2,2'бипиридил) [10]. Согласно полученным ими данным катионные комплексы Pt(II) с дииминными лигандами (2,2',2''-терпиридин, 1,10-фенантролин, 2,2'-бипиридил) эффективно интеркалируются в ДНК по правилу исключения ближайшего соседа: один комплекс на каждые две пары азотистых оснований. В качестве интеркалирующего стандартного вещества для нашего эксперимента мы выбрали хлорид (2,2'-бипиридил)этилендиамин Pt(II) (далее [PtEnBipy]Cl₂, рис. 1), интеркаляция которого в настоящее время доказана множеством инструментальных методов: рентгено-дифракционными, дифракцией упругих нейтронов, гель-электрофорезом, изотермической титриметрической калориметрией, ИК линейным дихроизмом, двумерным ЯМР [11,12].

Актуальность работ по изучению взаимодействия интеркаляторов с ДНК имеет огромное значение как для развития теоретических моделей биологических процессов (репликация и транскрипция), так и для разработки новых противоопухолевых агентов. Однако известные комплексы [$Me(NR)O^O$] плохо растворимы в воде [3,4]. Поэтому с целью исследования интеркаляции нами был синтезирован новый катионный водорастворимый комплекс палладия (II) — [PdEnNR]OAc (En — этилендиамин, NR — депротонированный нильский красный, OAc — внешнесферный ацетат-ион) (puc. 1). Наличие положительного заряда, ароматического лиганда и

$$(a) CH_{3} (b) CH_{3}$$

$$H_{2}C CH_{3}$$

$$GH_{2}C CH_{3}$$

$$GH_{3}C CH_{3}$$

$$GH_{2}C CH_{3}$$

Рис. 1. Структурные формулы: (a) нильский красный, (b) [PdEnNR]⁺, (c) [PtEnBipy]²⁺.

плоскоквадратное строение комплекса согласно рекомендациям Липпарда [10] будет благоприятствовать взаимодействию [PdEnNR]OAc с отрицательно заряженной молекулой ДНК в растворе.

Экспериментальная часть

9-диэтиламино-5H-бензо[a]феноксазин-5-он (HNR), ацетат палладия (PdOAc), этилендиамин (En), 2,2'-бипиридил (Віру), тетрахлороплатинит калия (K_2 [PtCl₄]), ледяная уксусная кислота и ДНК тимуса телёнка (коммерческие вещества Sigma-Aldrich, "Невареактив") были использованы без дополнительной очистки. Все растворители очищали с использованием стандартных методик [13].

Циклометаллированный комплекс [PdEnNR]OAc получали в несколько стадий по методике, аналогичной синтезу комплексов Pd(II) [14,15]. Отличие, как правило, проявляется в цвете получаемых веществ. Вначале при слабом нагревании в ледяной уксусной кислоте (5 ml) растворяли ацетат палладия (21.6 mg, $9.6 \cdot 10^{-5}$ mol). Далее к полученному раствору добавляли нильский красный (HNR) (29.3 mg, 9.6 · 10⁻⁵ mol) и наблюдали образование фиолетовой окраски. Затем смесь кипятили 180 min до появления однородной темно-синей окраски, после чего упаривали досуха. Полученный осадок $[Pd(NR)(\mu\text{-OAc})]_2$ растворяли в метаноле (10 ml) и прибавляли водный раствор этилендиамина (0.1 ml, $9.2 \cdot 10^{-5} \, \text{mol}$), при этом наблюдали изменение окраски на светло-синюю. Смесь перемешивали 30 min при температуре 50°C. После испарения растворителя осадок просушивали при 100° С. Масса продукта составила 20.8 mg, выход — 88%. Комплекс [PtEnBipy]Cl₂ получали согласно методике [16].

9-диэтиламино-5H-бензо[a]- феноксазин-5-он (HNR)

Спектр ЯМР 1 Н, δ , ppm: $1.14\,\mathrm{T}$ (6H, CH $_3$, $^3J7.0\,\mathrm{Hz}$), $3.48\,\mathrm{K}$ (4H, CH $_2$, $^3J7.0\,\mathrm{Hz}$), $6.27\,\mathrm{c}$ (1H, H 6), $6.65\,\mathrm{g}$ (1H, H 8 , $^4J2.4\,\mathrm{Hz}$), $6.81\,\mathrm{g.g.}$ (1H, H 10 , $^3J9.1$, $^4J2.4\,\mathrm{Hz}$), $7.60\,\mathrm{g}$ (1H, H 11 , $^3J9.1\,\mathrm{Hz}$), $7.69\,\mathrm{g.g.}$ (1H, H 2 , $\langle ^3J \rangle = 7.4\,\mathrm{Hz}$), $7.78\,\mathrm{g.g.}$ (1H, H 3 , $\langle ^3J \rangle = 7.4$, $^4J1.0\,\mathrm{Hz}$), $8.10\,\mathrm{g.g.}$ (1H, H 1 , $^3J7.4\,\mathrm{Hz}$), $8.53\,\mathrm{g.g.}$ (1H, H 4 , $^3J8.0\,\mathrm{Hz}$). Данные спектроскопии ЯМР 1 H соответствуют литературным [17].

Спектр ЯМР 13 С{ 1 H}, δ , ppm: 12.99 (CH₃), 45.00 (CH₂), 96.55 (С⁸), 105.08 (С⁶), 110.84 (С¹⁰), 123.90 (С⁴), 124.77 (С^{11a}), 125.58 (С¹), 130.51 (С²), 131.50 (С¹¹), 131.60 (С^{12b}), 132.14 (С³, С^{4a}), 138.80 (С^{12a}), 146.98 (С^{7a}), 151.39 (С⁹), 152.40 (С^{6a}), 182.51 (С⁵).

Ацетат 9-диэтиламино-5H-бензо[a]-феноксазин-5-онатоэтилендиамин-палладия (II)[PdEnNR]OAc

Спектр ЯМР 1 Н, δ , ppm: $1.15\,\mathrm{T}$ (6H, CH₃, $^{3}J7.0\,\mathrm{Hz}$), $2.70\,\mathrm{ym.c}$ (4H, CH₂N), $3.50\,\mathrm{K}$ (4H, CH₂, $^{3}J7.0\,\mathrm{Hz}$), $4.64\,\mathrm{ym.c}$ (1H, NH), $5.57\,\mathrm{ym.c}$ (1H, NH), $6.27\,\mathrm{c}$ (1H, H⁶), $6.65-6.75\,\mathrm{m}$ (2H, H⁸, H¹⁰), $6.93\,\mathrm{ym.c}$ (1H, NH), $7.17\,\mathrm{g}$ (1H, H¹¹, $^{3}J8.8\,\mathrm{Hz}$), $7.32\,\mathrm{g}$ (1H, H²,

 ^{3}J 7.4 Hz), 7.39 т (1H, H³, $\langle {}^{3}J \rangle$ 7.6 Hz), 7.65 д (1H, H⁴, ^{3}J 7.5 Hz).

Спектр ЯМР 13 С{ 1 H}, δ , ppm: 13.01 (CH₃), 45.09 (CH₂), 44.60, 46.62 (NCH₂CH₂N), 97.65 (С⁸), 106.80 (С⁶), 110.27 (С¹⁰), 121.30 (С⁴), 122.84 (С^{11a}), 128.00 (С¹¹), 130.20 (С³), 131.26 (С^{4a}), 136.05 (С²), 144.18 (С^{12b}), 148.18 (С^{7a}), 150.48 (С^{12a}), 150.97 (С⁹), 152.06 (С^{6a}), 153.64 (С¹), 184.15 (С⁵).

Спектр ИК (KBr), ν , cm⁻¹: 3309 (N-H), 1580, 1407, 1348, 1290, (C=C, C=N), 1637 (C=O).

Спектр поглощения в этаноле, λ_{max} , nm, (коэффициент экстинкции, l·mol⁻¹cm⁻¹): 263 (13200), 299 (4050), 330 (4000), 443 (1800), 623 (13550).

Найдено, %: С 53.17; Н 5.13; N 10.37. $C_{24}H_{28}N_4O_4Pd$. Вычислено, %: С 53.89, Н 5.24; N 10.48.

Спектральные исследования выполнены с использованием оборудования Центра коллективного пользования "Физико-химические методы исследования нитросоединений, координационных, биологически активных веществ и наноструктурированных материалов" Междисциплинарного ресурсного центра коллективного пользования "Современные физико-химические методы формирования и исследования материалов для нужд промышленности, науки и образования" Российского государственного педагогического университета им. А.И. Герцена. Спектры ЯМР 1 H, 13 C{ 1 H}, 1 H- 1 H dqf-COSY, 1 H $^{-1}$ H NOESY, 1 H $^{-13}$ H HMQC и 1 H $^{-13}$ C HMBC регистрировали на спектрометре Jeol ECX400A с рабочими частотами 399.78 (¹H) и 100.53 (¹³C); растворитель — ДМСО- d_6 . В качестве внутреннего стандарта использовали остаточные сигналы растворителя. Сигналы протонов интерпретировались по характеру расщепления (константам спин-спинового взаимодействия). Спинспиновая связь между протонами обнаруживалась по соответствующим кросс-пикам в спектрах ${}^{1}\mathrm{H}{}-{}^{1}\mathrm{H}\,\mathrm{COSY}.$ Для надежного отнесения протонов H^8 , H^{10} использовались эксперименты ${}^{1}H - {}^{1}H$ NOESY, а именно наличие соответствующих кросс-пиков с протонами метиленовой группы NCH2, обусловленные ядерным эффектом Оверхаузера. Сигналы протонированных атомов углерода в спектрах ЯМР ¹³С надежно относились по соответствующим кросс-пикам в спектрах ${}^{1}H-{}^{13}CHMQC$, а сигналы четвертичных (непротонированных) атомов углерода по анализу кросс-пиков (гетероядерные КССВ через 2-3 связи) в спектрах ${}^{1}H-{}^{13}C$ HMBC.

Инфракрасные спектры получены фурьеспектрометре Shimadzu IRPrestige-21 в таблетках КВг. Элементный анализ проведен на анализаторе (CHN Электронные EuroVector EA3000 Dual). спектры поглощения на СФ-2000 Спектр", Санкт-Петербург, Россия). Люминесцентные исследования проводили при комнатной температуре на спектрофлуориметре Флюорат-02-Панорама (ГК "Люмэкс", Санкт-Петербург, Россия).

Методика титрования комплексов [PtEnBipy]Cl $_2$ и [PdEnNR]OAc водным раствором ДНК состояла в фиксировании спектров поглощения растворов комплексов

Таблица 1. Координационно индуцированные сдвиги (CIS, ppm) углерода

Углерод	C^1	C^2	C^3	C^4	C^{4a}	C^5	C^6	C^{6a}
CIS Углерод CIS	28.06 C ^{7a} 1.20	5.54 C ⁸ 1.10	-1.94 C ⁹ -0.42	-2.60 C^{10} -0.57	-0.88 C^{11} -3.50	1.64 C ^{11a} -1.93	1.72 C ^{12a} 11.68	-0.34 C^{12b} 12.58

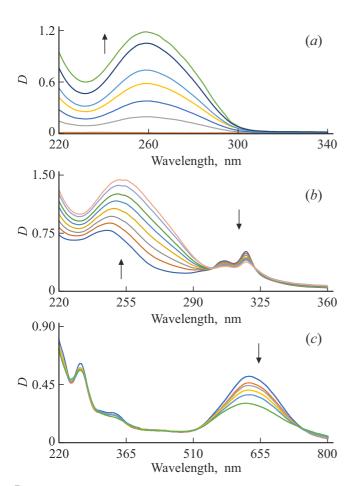
Pt(II) или Pd(II) (объем раствора комплекса — 2.5 ml, концентрация — $10^{-5}\,\mathrm{mol}\cdot l^{-1})$ при последовательном добавлении по $10\,\mu\mathrm{l}$ раствора ДНК (3.2 mg ДНК растворили в 5 ml воды).

Результаты и обсуждение

Комплекс [PdEnNR]OAc синтезирован согласно следующим уравнениям:

- 1) $PdOAc_2 + 2AcOH = H_2[PdOAc_4]$,
- 2) $2H_2[PdOAc_4] + 2HNR = [Pd(NR)(\mu-OAc)]_2 + 2AcOH$,
- 3) $[PdNR(\mu-OAc)]_2 + 2En = 2[PdEnNR]OAc$.

Состав и строение [PdEnNR]ОАс были подтверждены данными ИК, ЯМР 1 Н и 13 С{ 1 H} спектроскопии с привлечением гомоядерных (1 H $^-$ 1H COSY, 1 H $^-$ 1H NOESY) и гетероядерных (1 H $^-$ 13C HMQC, 1 H $^-$ 13C HMBC) экспериментов, а также в сравнении с данными некоординированного HNR.


В табл. 1 представлены значения координационно индуцированного сдвига (CIS = $\delta_{\text{комплекса}} - \delta_{\text{лиганда}}$), который рассчитывали как разность значений химических сдвигов ядер атомов углерода комплекса ($\delta_{\text{комплекса}}$) и некоординированного лиганда — HNR ($\delta_{\text{лиганда}}$). Из представленных данных видно, что расположенные ближе к атому палладия атомы углерода (C^1 , C^2 , C^{12a} , C^{12b}) имеют высокое значение CIS, указывающее на уменьшение электронной плотности на рассматриваемом атоме. Наибольшее значение CIS имеет атом углерода C^1 , подвергшийся депротонированию и образованию химической связи с палладием.

Электронные абсорбционные и эмиссионные свойства соединения HNR и комплекса рассмотрим в рамках теории локализованных молекулярных орбиталей [18]. Известно [19,20], что HNR обладает положительным сольватохромизмом, который проявляется в батохромном смещении максимумов поглощения и флуоресценции при переходе от неполярного растворителя к полярному (табл. 2). Увеличение дипольного момента молекулы HNR при поглощении кванта света и переходе в возбужденное состояние обусловлено внутримолекулярным переносом заряда от амино-диэтильной группы к карбонильной: возбуждение молекулы сопровождается поворотом амино-диэтильной группы и выходом из плоскости хромофора. Положительный сольватохромизм характерен и для [PdEnNR]OAc (табл. 2). Сравнивая спектрально-люминесцентные свойства некоорди-

Таблица 2. Максимумы люминесценции (nm) HNR и [PdEnNR]⁺ в некоторых растворителях (в скобках — полярность растворителя, kcal/mol [13], н/р — не растворим)

Комплекс	Бензол	ДСМ	Ацетон	ДМФА	ДМСО	Этанол	Метанол	Вода
	(54.0)	(64.2)	(65.7)	(68.5)	(71.1)	(81.2)	(83.6)	(94.6)
HNR	576	603	613	626	634	639	638	н/р
[PdEnNR] ⁺	н/р	675	680	687.5	697.5	700	703.5	719

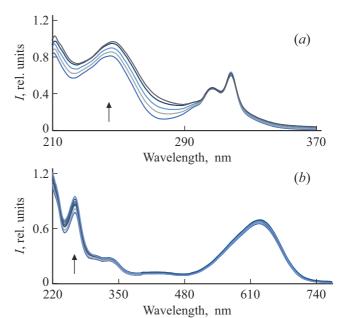

Примечание. ДСМ — дихлорметан, ДМФА — диметилформамид, ДМСО — диметилсульфоксид

Рис. 2. Изменения спектров поглощения водных растворов при возрастании концентрации ДНК: (a) вода, (b) [PtEnBipy]Cl₂, (c) [PdEnNR]OAc. Стрелки указывают направление изменения спектров при увеличении концентрации ДНК.

нированного лиганда (HNR) и известных комплексов $[Me(NR)O^{\wedge}O]$ [3,4] со свойствами нового комплекса $[PdEnNR]^{+}$, можно сделать вывод, что на них влияют как природа металла, так и донорно-акцепторные характеристики другого лиганда.

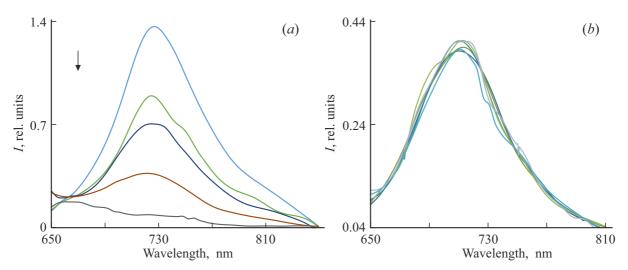

Спектры поглощения HNR характеризуются рядом спин-разрешённых внутрилигандных переходов различной интенсивности. Положение длинноволновой полосы зависит от полярности растворителя, а в комплексах —

Рис. 3. Изменения спектров поглощения водноэтанольных растворов при возрастании концентрации ДНК: (a) [PtEnBipy]Cl₂, (b) [PdEnNR]OAc. Стрелки указывают направление изменения спектров при увеличении концентрации ДНК.

от природы металла и другого лиганда. Это обусловлено перенос-зарядным характером этого перехода и частичным примешиванием электронной плотности металлакомплексообразователя (Pt(II) или Pd(II)) [3,4]. При исследовании интеркаляции комплекса [PdEnNR]ОАс в ДНК было установлено снижение оптической плотности именно длинноволновой части спектра, которая ответственна за внедрение этой части молекулы в спираль ДНК.

Сравнение изменений в спектрах поглощения (рис. 2) выбранного нами стандарта [PtEnBipy] Cl_2 и нового комплекса — [PdEnNR] OAc, вызванных титрованием раствором ДНК, позволяет выявить несколько схожих элементов. Первое: увеличение концентрации ДНК в растворе приводит к увеличению оптической плотности раствора в области поглощения азотистых оснований ДНК (260 nm). Второе: оптическая плотность длинноволнового перехода внутрилигандного типа, локализованного на Віру и NR, снижается. Третье: в спектрах

Рис. 4. Изменение спектров люминесценции комплекса [PdEnNR]OAc при возрастании концентрации ДНК: a- в воде, b- в 65%-растворе этанола.

поглощения комплексов появляются изосбестические точки, указывающие на один продукт реакции — интеркалят, состоящий из ДНК и внедрившихся в нее катионов комплекса Pt(II) или Pd(II). Однако после того, как все катионы комплексов из раствора внедрятся в ДНК, очередная добавка раствора ДНК приводит к нарушению изосбестических точек.

Замена воды на 65%-водный этанол (рис. 3) привела к частичному воспроизведению в спектрах поглощения ранее наблюдаемых эффектов: увеличению оптической плотности растворов лишь в области поглощения азотистых оснований ДНК ($\sim 260\,\mathrm{nm}$). Длинноволновые полосы поглощения (для [PtEnBipy]Cl $_2$ 305—318 nm, для [PdEnNR]OAc 622 nm) при увеличении концентрации ДНК не изменяли свою оптическую плотность. Это обусловлено тем, что в воде при интеркалировании комплексной частицы в ДНК происходит частичное экранирование ароматического гетероциклического лиганда (Віру или NR), а в растворе этанола этого не происходит.

При титровании водного раствора [PdEnNR]ОАс раствором ДНК в спектре флуоресценции (рис. 4) наблюдали снижение интенсивности флуоресценции, аналогичное спектру поглощения комплекса. Смена растворителя (воды на 65%-этанольный раствор) не привела к изменению спектров флуоресценции комплекса.

Таким образом, получение водорастворимого катионного комплекса [PdEnNR]ОАс позволило изучить его интеркаляцию (межмолекулярное взаимодействие с ДНК) спектрально-люминесцентными методами. Наличие плоского ароматического лиганда нильского красного в [PdEnNR]ОАс и бипиридила в [PtEnBipy]Cl2 способствует встраиванию комплексов между соседними парами азотистых оснований двойной спирали ДНК в воде, тем самым обусловливая стэкинг за счет $\pi-\pi$ -взаимодействия.

Финансирование работы

Работа выполнена в рамках государственного задания при финансовой поддержке Министерства просвещения России (проект № FSZN-2020-0026).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] J.F. Thorpe. J. Chem. Soc., 91, 324 (1907).DOI: 10.1039/CT9079100324
- [2] P. Greenspan, E.P. Mayer, S.D. Fowler. J. Cell Biology, 100 (3), 965 (1985). DOI: 10.1083/jcb.100.3.965
- [3] M. La Deda, M. Ghedini, I. Aiello, T. Pugliese, F. Barigelletti, G. Accorsi. J. Organomet. Chem., **690** (4), 857 (2005). DOI: 10.1016/j.jorganchem.2004.10.028
- [4] T. Pugliese, N. Godbert, I. Aiello, M. La Deda, M. Ghedini, M. Amati, S. Belviso, F. Lelj. Dalton Trans., 6563 (2008). DOI: 10.1039/b810561h
- [5] K. Liu, X. Kong, Y. Ma, W. Lin. Angew. Chem. Int. Ed., 56 (43), 13489 (2017). DOI: 10.1002/anie.201707518
- [6] D. Madea, M. Martínek, L. Muchová, J. Váňa, L. Vítek,
 P. Klán. J. Org. Chem., 85 (5), 3473 (2020).
 DOI: 10.1021/acs.joc.9b03217
- [7] A. Ionescu, N. Godbert, A. Crispini, R. Termine, A. Golemme, M. Ghedini. J. Mater. Chem., 22 (44), 23617 (2012). DOI: 10.1039/C2JM34946A
- [8] B. Rosenberg, L. VanCamp, J.E. Trosko, V.H. Mansour. Nature, 222, 385 (1969). DOI: 10.1038/222385a0
- [9] C.R. Brodie, J.G. Collins, J.R. Aldrich-Wright. Dalton Trans., 1145 (2004). DOI 10.1039/b316511f
- [10] S.J. Lippard. Accounts of Chem. Res., 11 (5), 211 (1978). DOI: 10.1021/ar50125a006
- [11] S.A. Lee, H. Grimm, W. Pohle, W. Scheiding, L. van Dam, Z. Song, M.H. Levitt, N. Korolev, A. Szabó, A. Rupprecht. Phys. Rev. E, 62 (5), 7044 (2000). DOI: 10.1103/physreve.62.7044

- [12] A. Szabo, S.A. Lee. J. Biomolec. Struct. Dynamics, 26 (1), 93 (2008). DOI: 10.1080/07391102.2008.10507227
- [13] А. Гордон, Р. Форд. *Спутник химика* (Мир, М., 1976), с. 438–444. [А.J. Gordon, R.A. Ford. The Chemist's Companion: A Handbook of Practical Data, Techniques, and References (1st Edition. 1976)].
- [14] Е.А. Катленок, М.В. Пузык, К.П. Балашев. ЖОХ, **81** (8), 1367 (2011). [Е.А. Katlenok, M.V. Puzyk, K.P. Balashev. Rus. J. Gen. Chem., **81** (8), 1711 (2011). DOI: 10.1134/S1070363211080214]
- [15] Р.И. Байчурин, И.Т. Дуланова, А.М. Пузык, М.В. Пузык. Опт. и спектр., 129 (11), 1387 (2021). DOI: 10.21883/OS.2021.11.51637.2253-21
- [16] М.В. Пузык, М.А. Иванов, К.П. Балашев. Опт. и спектр., **95** (4), 624 (2003). [М.V. Риzyk, М.А. Ivanov, К.Р. Balashev. Opt. Spectrosc., **95** (4), 581 (2003). DOI: 10.1134/1.1621442].
- [17] Ю.Е. Москаленко, А.Ю. Меньшикова, Н.Н. Шевченко, В.В. Фараонова, А.В. Грибанов. Хим. высоких энергий, **45** (3), 214 (2011). [Yu.E. Moskalenko, A.Yu. Men'shikova, N.N. Shevchenko, V.V. Faraonova, A.V. Gribanov. High Energy Chem., **45** (3), 183 (2011). DOI: 10.1134/S0018143911030118].
- [18] M. Ghedini, I. Aiello, A.Crispini, A. Golemme, M. La Deda, D. Pucci. Coord. Chem. Rev., 250 (11–12), 1373 (2006). DOI: 10.1016/j.ccr.2005.12.011
- [19] J.F. Deye, T.A. Berger, A.G. Anderson. Anal. Chem., 62 (6), 615 (1990). DOI: 10.1021/ac00205a015
- [20] N. Sarkar, K. Das, D.N. Nath, K. Bhattacharyya. Langmuir, 10 (1), 326 (1994). DOI: 10.1021/la00013a04