06

Влияние скорости направленной кристаллизации и содержания кремния на структуру и прочность Al—Si—Cu-сплава

© С.П. Никаноров, В.Н. Осипов, Р.Б. Тимашов, А.В. Чикиряка

Физико-технический институт им. А.Ф. Иоффе РАН,

194021 Санкт-Петербург, Россия

E-mail: osvn@mail.ioffe.ru

Поступило в Редакцию 12 августа 2022 г. В окончательной редакции 19 декабря 2022 г. Принято к публикации 28 декабря 2022 г.

Исследованы структура и прочность сплавов Al-xSi-2 wt.% Cu ($x=15,\ 17$ и 20 wt.%), полученных при направленном затвердевании со скоростью 0.1 и 0.8 mm/s. Показано, что прочность растет при увеличении скорости затвердевания вследствие уменьшения размеров эвтектического кремния и превращения его чешуйчатой формы в тонковолокнистую. Кроме того, наблюдался рост прочности вследствие увеличения доли интерметаллической фазы, превышающего падение прочности из-за увеличения количества α -Al. Увеличение содержания кремния в образцах при затвердевании со скоростью 0.1 mm/s не вызывает изменения структуры и прочности. При большей скорости уменьшается доля эвтектики и снижается прочность.

Ключевые слова: алюминиевые сплавы, эвтектика, структура, прочность.

DOI: 10.21883/JTF.2023.04.55044.202-22

Введение

Силумины являются сплавами алюминия с кремнием как основным вторым компонентом. Литые сплавы имеют ряд преимуществ: высокая прочность при низком удельном весе, высокая текучесть, высокое сопротивление коррозии и износу, относительно низкая стоимость. Особый интерес вызывают заэвтектические силумины, в которых содержание кремния составляет от 14 до 25 wt.% [1]. Такие сплавы имеют повышенную жаропрочность и сопротивляемость износу. Однако увеличение содержания кремния в сплаве Al-Si выше эвтектического (12.5 wt.%) вызывает падение величины предельной прочности из-за увеличения локальных напряжений на первичных кристаллах кремния. Поэтому в настоящее время ведутся широкие исследования по изменению формы и уменьшению размера первичных объемных и эвтектических игольчатых кристаллов кремния. Эти исследования направлены также на поиск возможности дальнейшего снижения коэффициента теплового расширения (наиболее низкого из всех силуминов), что необходимо при применении заэвтектических сплавов в двигателях внутреннего сгорания [2,3].

Модифицирование структуры можно осуществлять различными способами [4]. Распространенный вариант — введение дополнительных химических элементов, преимущественно фосфора и стронция [5–10]. Широко применяется термодеформационное модифицирование [11]. Исследуется возможность применения физических методов модифицирования расплавов [12]. Но нам кажется, что экономичным может быть модифицирование структуры путем изменения скорости затвердевания. Известно, что при увеличении скорости затвердевания

происходит уменьшение размеров и изменение формы зерна, приводящие к увеличению прочности Al—Si-сплава. Однако при этом увеличивается и пористость сплава, особенно при скорости выше $10^4\,\mu\text{m/s}$ [13]. Вероятно, поэтому модифицирование структуры изменением скорости затвердевания используется редко, если не считать закалки сплава.

Известно, что при увеличении скорости затвердевания Al—Si-сплава происходит смещение эвтектической точки на диаграмме состояния Al-Si в сторону большего содержания кремния [14]. В работах [15,16] показано, что для сплава с составом, равным составу в смещенной эвтектической точке при высокой скорости кристаллизации, наблюдается максимум предельной прочности при растяжении (UTS) и резкое увеличение удлинения при разрушении. Величина этого максимума больше, чем максимума при малой скорости в квазиравновесных условиях. Сплав, полученный в смещенной эвтектической точке, имеет эвтектическую микроструктуру без дендритов α-А1 и без кристаллов первичного кремния и, следовательно, появляется возможность получения заэвтектических сплавов с эвтектической микроструктурой, с повышенной прочностью и пластичностью. В работе [15] были получены с использованием метода направленной кристаллизации при скорости затвердевания 1 mm/s двухкомпонентные Al-15 wt.% Si-сплавы с тонковолокнистой, супермодифицированной структурой, с повышенной прочностью и высокой пластичностью.

В промышленности широкое распространение получили трехкомпонентные сплавы Al—Si—Cu с дополнительным легированием. Поэтому представляет интерес исследование возможности получения трехкомпонентного силумина заэвтектического состава с повышенной проч-

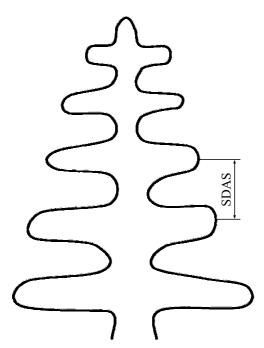


Рис. 1. Определение SDAS дендрита.

ностью и пластичностью вблизи эвтектической точки, смещенной вследствие повышения скорости охлаждения, по аналогии с двухкомпонентным сплавом.

Влияние добавки меди к бинарному сплаву Al-12 wt.% Si изучено В [17].Al-12 wt.% Si-4.5 wt.% Cu имел UTS выше, чем UTS у бинарной основы на 37.3%. В работе [18] исследуется влияние термообработки сплавов Al-Si-Cu-Mg на структуру и механические свойства. Структуру дендритов фазы α-Al характеризуют общепринятой величиной SDAS (secondary dendrite arm space), расстоянием между плечами дендритов (рис. 1).

Отмечается, что величину SDAS можно использовать как характерный индикатор структуры и свойств сплавов. Увеличение SDAS снижает прочность и уменьшает удлинение при растяжении. Однако свойства индустриальных сплавов со SDAS вплоть до $30\,\mu\mathrm{m}$ можно улучшить при термообработке расплава.

Структура и свойства Al—Si—Cu-сплава изучались ранее в работе [19]. Образцы состава Al—9.60 wt.% Si -2.86 wt.% Cu—0.61 wt.% Fe—0.19 1 wt.% Мп получали направленным затвердеванием расплава в цилиндрическом тигле при охлаждении водой. Наблюдались четыре фазы: α , состоящая из Al, Si, Cu, Fe, Mg, и β , включающая Si, Al, Fe, Cu, а также эвтектику (Al, Si) и Al—Cu. С увеличением скорости охлаждения SDAS уменьшалась от 27 до $9\,\mu$ m, игольчатая структура эвтектического кремния превращалась в волокнистую, а предельная прочность на растяжение, UTS, возрастала с 225 до 272 MPa.

Влияние скорости затвердевания и других факторов на микроструктуру и механические свойства сплава

Al-10.6 wt.% Si-2.5 wt.% Cu-0.3 wt.% Mg при кристаллизации изучено разными способами [20]. Использовалось: 1) традиционное гравитационное литье, 2) литье под давлением, 3) двухвалковое непрерывное литье с охлаждением, 4) непрерывное горизонтальное литье с охлаждением водными каплями. Высокая скорость охлаждения V была использована в случае последних двух методов, 255 и 327 K/s соответственно. Она оценивалась на основе измерений SDAS-образцов по соотношению $V = 2 \cdot 10^4 \; ({\rm SDAS})^{-2.67}$. Величина UTS и предел текучести σ_{02} росли в перечисленном выше ряду методов, причем $\sigma_{02} = 6.09/(\text{SDAS})^{0.5} + 48.5$. Основными причинами роста являются уменьшение размера зерна α -АІ, превращение чешуйчатой (игольчатой) структуры эвтектического кремния в волокнистую и уменьшение размеров волокна. Однородная кристаллическая ориентация по всему слитку, высокие прочность и удлинение при растяжении сплава такого же состава, как в [20], наблюдались при высокой скорости охлаждения (201 К/s) в работе [21]. Были найдены оптимальные режимы термообработки для дальнейшего повышения прочности и пластичности сплава.

Исследования A1—Si—Cu-сплавов проводились за редким исключением на доэвтектических силуминах. Задача настоящей работы заключалась в исследовании влияния скорости направленного затвердевания и состава заэвтектического трехкомпонентного сплава на его структуру и прочностные свойства.

1. Материалы и методы исследования

Из промышленного Al-Si-Cu-сплава в шамотнографитовом тигле при температуре около 700°C были выращены исходные слитки в виде лент прямоугольного сечения методом направленной кристаллизации (способ Степанова) [16]. Расплав предварительно гомогенизировался при 800°C около 3 h с периодическим перемешиванием. Ленты длиной 0.5 m с поперечным сечением 15 × 3 mm вытягивались из расплава через формообразователь с прямоугольным отверстием при воздушном струйном охлаждении. Использовались две скорости вытягивания: 0.1 и 0.8 mm/s. Выращивались образцы сплава как с начальным исходным содержанием, так и с добавлением в расплав кремния. Из лент вырезались образцы для исследования структуры и испытаний на растяжение длиной 60 mm с рабочей частью длиной 20 mm и сечением 3×3 mm.

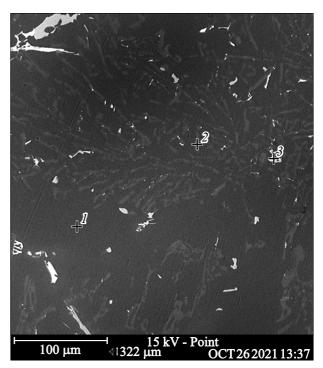
Состав материала выращенных лент был определен методом энергетической дифракционной спектроскопии (EDS) многократными измерениями на разных участках поверхностей вдоль направления вытягивания. Содержание кремния было дополнительно проверено методом оптико-эмиссионной спектроскопии как на продольном, так и поперечном сечении лент. Средняя погрешность определения содержания кремния в образцах, полученная разными методами измерения и на разных участках

Mg	Al	Si	Ti	Mn	Fe	Ni	Cu	Zn
0.80	74.6	14.6	0.3	0.5	1.2	1.1	2.5	0.6
0.9	74.5	17.4	0.1	0.4	0.7	1.08	2.3	0.4
0.5	71.8	20.1	0.2	0.5	1.3	0.8	1.9	0.3

Таблица 1. Состав исследованных сплавов (wt.%)

образцов, не превышала 3%. В табл. 1 приведены данные, полученные EDS-методом. Микроструктурный анализ исследуемых образцов проводился с помощью сканирующего электронного микроскопа Phenom Pro X с энергетическим дифракционным спектрометром.

Относительные доли площади, занимаемые отдельными фазами исследуемых сплавов на фотографиях микроструктуры, были определены по количеству пикселов изображения, занимаемой каждой фазой и имеющего определенную контрастность. Испытания на растяжение были выполнены на универсальной испытательной машине Инстрон 1342 при скорости движения зажимов $6\,\mu\mathrm{m}\cdot\mathrm{s}^{-1}$. Это соответствует скорости относительной деформации, равной $3\cdot10^{-4}\,\mathrm{s}^{-1}$.


2. Результаты

2.1. Микроструктура

Электронно-микроскопическое изображение микроструктуры образца сплава Al-15 wt.% Si-2 wt.% Cu, полученного при скорости затвердевания 0.1 mm/s, показано на рис. 2. Можно различить три структурные фазы: твердый раствор α -Al (отмечена точкой I), эвтектика (точка 2), интерметаллические соединения, образованные алюминием и кремнием с переходными металлами (точка 3). Элементный состав в указанных точками местах, определенный EDS-методом, приведен в табл. 2.

На рис. 3 показано электронно-микроскопическое изображение микроструктуры сплава Al-15 wt.% Si -2 wt.% Cu, полученного при скорости затвердевания 0.8 mm/s. Можно различить твердый раствор α -Al (темно-серый цвет), эвтектику светло-серого цвета, состоящую из эвтектического кремния и α -Al, и интерметаллиды белого цвета (точка 5), имеющие в своем составе по результатам EDS-анализа Al, Si, легирующие (Cu, Ni, Fe, Mn) металлы и щелочноземельный металл (Mg) (табл. 3).

Влияние скорости затвердевания и содержания кремния на структуру сплава было исследовано также с использованием оптической микроскопии. На рис. 4 представлена микроструктура сплава с 15 wt.% кремния, полученного при скорости затвердевания 0.1 и 0.8 mm/s при двух масштабах увеличениях (рис. 4, a, c и рис. 4, b, d соответственно). В обоих случаях наблюдаются три структурные фазы: дендриты α -Al (белый цвет), эвтектика (смесь эвтектического кремния черного цвета и α -Al)

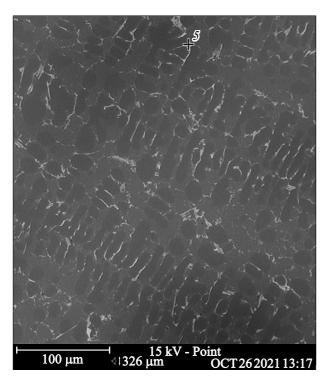


Рис. 2. Электронно-микроскопическое изображение сплава Al-15 wt.% Si-2 wt.% Cu, полученного направленной кристаллизацией способом Степанова при скорости затвердевания 0.1 mm/s (I — твердый раствор α -Al; 2 — эвтектика; 3 — интерметаллические соединения).

Таблица 2. Содержание элементов (wt.%) в точках микроструктуры фаз сплава Al-15 wt.% Si-2 wt.% Cu, полученного при скорости 0.1 mm/s

№ точки (рис. 1)	Al	Si	Cu	Ni	Fe	Mn
1	94.62	5.38	1	1	_	1
2	47.21	52.79	_	_	_	_
3	68.83	13.64	1.84	1.60	8.36	5.73

и интерметаллические соединения (хорошо наблюдающиеся на рис. 4, c, светло-серого цвета). Видно, что с увеличением скорости затвердевания дендриты утончаются. Эвтектика с кремнием в виде пучков игл (следы пересечения чешуйчатых пластин плоскостью среза) длиной до $100\,\mu{\rm m}$ при скорости затвердевания $0.1\,{\rm mm/s}$ становится при скорости 0.8 mm/s тонковолокнистой, оптически неразрешимой. Такой характер превращения чешуйчатой формы кремния эвтектики в тонковолокнистую как у двойных, так и тройных силуминов с увеличением скорости охлаждения наблюдался в ряде работ [15,20-23]. Следует отметить, что при меньшей скорости иглы эвтектического кремния образуют звездоподобную многолучевую структуру (рис. 4, c). Авторы работы [24] считают, что такие образования являются первичным кремнием.

Рис. 3. Электронно-микроскопическое изображение структуры сплава Al-15 wt.% Si-2 wt.% Cu, полученного при скорости затвердевания 0.8 mm/s (точка 5 — интерметаллиды).

Таблица 3. Содержание элементов (wt.%) в точке микроструктуры фазы сплава Al-15 wt.% Si-2 wt.% Cu, полученного при скорости 0.8 mm/s

№ точки (рис. 2)	Al	Si	Cu	Ni	Fe	Mn	Mg
5	75.5	7.6.3	5.90	6.20	2.1	1.33	1.25

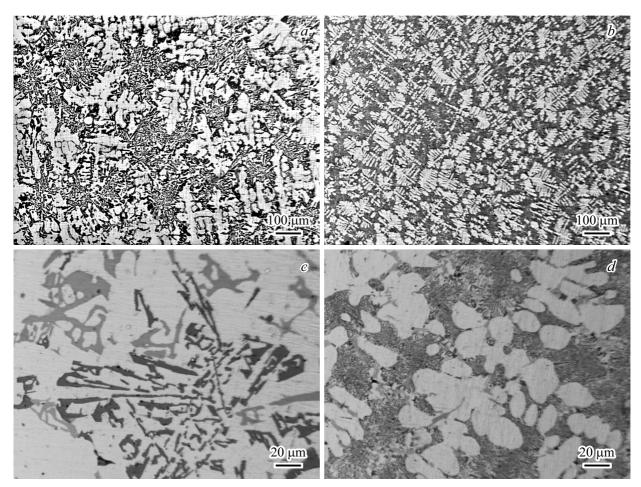
Относительные доли площадей, занимаемых каждой из фаз, при разных скоростях затвердевания приведены в табл. 4. Можно отметить увеличение доли α -Al и интерметаллидов с увеличением скорости затвердевания. В таблице также отражено уменьшение значения SDAS с ростом скорости затвердевания от 0.1 до 0.8 mm/s на 70%.

Влияние содержания кремния на структуру исследуемого сплава показано на рис. 5. Видно, что при скорости затвердевания 0.1 mm/s вид структуры фаз сплава Al-15 wt.% Si-2 wt.% Cu и Al-20 wt.% Si-2 wt.% Cu одинаков (рис. 5, a, c). В случае скорости 0.8 mm/s заметно изменение микроструктуры эвтектики. В эвтектике сплава Al-20 wt.% Si-2 wt.% Cu видно большое количество зерен α -Al в виде мелких включений разной формы (рис. 5, b, d).

В табл. 5 показаны величины долей площади и значения SDAS-фаз сплава с разным содержанием кремния, полученных при одной скорости затвердевания. Видно увеличение доли фазы α -Al и интерметаллидов при

соответствующем уменьшении доли эвтектики в микроструктуре. Величина SDAS не изменяется в пределах погрешности измерений (10%).

2.2. Прочность


На рис. 6 представлена диаграмма предельной прочности на растяжение (UTS), образцов с разным содержанием кремния, полученных при двух скоростях затвердевания. Приведены усредненные значения измерений по трем образцам для каждого состава, за исключением сплава с 20 wt.% Si. На образцах этого состава наблюдалось хрупкое разрушение. Из диаграмм на рис. 6 следует, что увеличение скорости затвердевания с 0.1 до 0.8 mm/s приводит к значительному увеличению UTS для образцов одного состава. В то же время увеличение содержания кремния от 15 до 20 wt.% вызывает заметное уменьшение предельной прочности при скорости затвердевания 0.8 mm/s, а при скорости 0.1 mm/s эти изменения незначительны.

Относительное удлинение образцов при разрушении составило 4%.

3. Обсуждение результатов

В отличие от заэвтектических бинарных сплавов Al-Si, в исследуемых здесь заэвтектических тройных сплавах A1-Si-Cu кристаллы первичного кремния не наблюдаются. Только при затвердевании с меньшей скоростью, 0.1 mm/s, образуются звездоподобные структуры, которые в [24] предположительно относят к первичным кристаллам кремния. В исследуемом материале имеется ряд примесей, которые могут являться центрами зарождения первичных дендритных кристаллов α -A1. Рост α -A1 как при наличии, так и в отсутствие первичного кремния в заэвтектических силуминах наблюдался в ряде работ. Образование дендритных кристаллов α -Al вместе с эвтектикой и первичным кремнием в заэвтектическом сплаве Al-20 wt.% Si с добавлением меди при скорости охлаждения 16.2 К/ѕ наблюдали в работе [17]. В [25] сплавы алюминия с содержанием кремния от 13 до 18 wt.% Si и содержанием Cu 1.0 wt.%, полученные при скорости охлаждения 1.0 K/s, имели структуру, состоящую из α -Al и эвтектики.

Во всей исследованной области содержания кремния в настоящей работе образцы состояли из α-Al дендритов, эвтектики и интерметаллических соединений. Затвердевание этих расплавов происходит при значительном переохлаждении, так как в них содержатся Мп, Fe, Cu, Zn, Mg, оказывающие сильное влияние на характер затвердевания [26]. Действительно, оценка средней температуры затвердевания эвтектики для сплавов с 15, 17 и 20 wt.% Si при указанном выше содержании меди и примесей согласно уравнению, предложенному Грузлецки в работе [26], дала величину, равную 564°С. Эвтектическая температура двухкомпонентного

Рис. 4. Влияние скорости вытягивания на структуру Al-15 wt.% Si-2 wt.% Cu при двух увеличениях изображения. Скорость затвердевания: a, c - 0.1; b, d - 0.8 mm/s.

Таблица 4. Параметры структуры сплава с 15 wt.% кремния при разных скоростях затвердевания

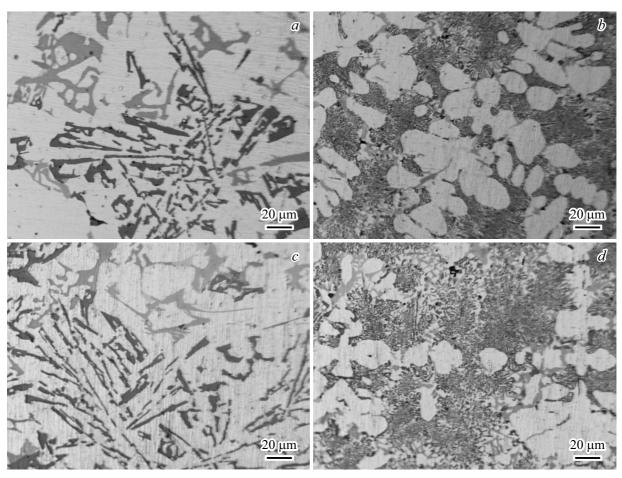

Сплав	Скорость затвердевания, mm/s	SDAS, µm	Площадь фазы в сечении образца, %			
CiDiab	скорость затвердевания, ппп/8	SDAS, μ III	α-Al	Интерметаллиды	Эвтектика	
Al-15 wt.%	0.1	57	37.7	3.5	58.8	
Si-2 wt.% Cu	0.8	18	49.24	5.4	45.4	

Таблица 5. Параметры структуры сплава при разном содержании кремния

Сплав	Скорость ратрарцарання тт/с	SDAS, µm	Площадь фазы в сечении образца, %			
СПЛАВ	Скорость затвердевания, mm/s	SDAS, μIII	α-Al	Интерметаллиды	Эвтектика	
Al-15 wt.% Si-2 wt.% Cu	0.8	18	49.24	5.4	45.4	
A1-20 wt.% Si-2 wt.%Cu	0.8	18	55.6	6.6	37.8	

сплава Al-12.5 wt.% Si равна 577° C. Кроме того, формирование одной эвтектики без первичных кристаллов в сплаве Al-15 wt.% Si происходит при скорости около 1 mm/s [16], что соответствует переохлаждению расплава около 12°C [27]. Сильное переохлаждение за

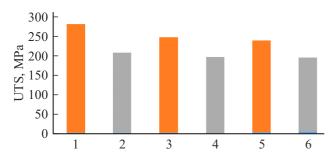
счет модифицирующего воздействия дополнительного элемента — меди и примесей, а также высокой скорости затвердевания, может вызвать смещение эвтектической точки в сторону большего содержания кремния. Величина предельной прочности при увеличении содержания

Рис. 5. Влияние содержания Si в сплаве Al-xSi-2.0 wt.% Cu на структуру: a, b - x = 15 wt.% Si; c, d - x = 20 wt.% Si при скорости затвердевания: a, c - 0.1; b, d - 0.8 mm/s.

кремния в бинарных силуминах растет до эвтектического состава. Снижение величины предельной прочности при увеличении содержания кремния в бинарных силуминах происходит только выше эвтектической точки. Из данных настоящей работы по прочности сплава можно предположить, что максимальное количество кремния в эвтектике исследуемого тройного сплава достигается при содержании кремния ниже или равном 15 wt.% Si. Такое содержание кремния в бинарном сплаве Al—15 wt.% Si наблюдается в смещенной эвтектической точке при скорости затвердевания 1 mm/s [28].

Рост UTS при большей скорости затвердевания сплава с 15 wt.% Si происходит за счет увеличения прочности эвтектики вследствие превращения грубой, игольчатой (в объеме чешуйчатой) структуры в более плотную, тонковолокнистую, оптически трудно разрешимую структуру и дополнительно за счет увеличения количества интерметаллической фазы (рис. 4, a, b или 4, c, d). Вклад в увеличение прочности сплава за счет измельчения эвтектики и возрастания объема интерметалической фазы с 3.5 до 5.4% при увеличении скорости затвердевания от 0.1 до 0.8 mm/s превышает вклад в падение прочности от уменьшения объема эвтектики с 58.8 до 45.4% и

соответствующего роста объема α -Al дендритной структуры с 37.7 до 49.2% (табл. 4). При этом наблюдается уменьшение величины SDAS, определяемой структурой, а не объемом фаз, с 57 до $18\,\mu\mathrm{m}$ (рис. 7).


При увеличении содержания кремния в сплаве с 15 до 20 wt.% для скорости затвердевания 0.1 mm/s (рис. 5, a, c) характер структуры не меняется, и прочность практически не изменяется. При скорости затвердевания $0.8 \, \mathrm{mm/s}$ увеличение содержания кремния не вызывает заметного изменения общей структуры сплава. Однако наблюдается увеличение количества микроскопических выделений фазы α -Al вне дендритов в массиве эвтектики. Это приводит к уменьшению доли эвтектики и увеличению количества фазы α -Al в микроструктуре. Величина SDAS не изменяется $(18 \, \mu \mathrm{m})$, так как не изменяется структура каждой фазы, изменяются только объемные доли. Предельная прочность возрастает на 47% за счет увеличения доли интерметаллидов.

Прочность полученных образцов превышает прочность близких по составу образцов сплавов, полученных традиционным литьем в металлический тигель без термообработки [29]. Традиционное литье может обеспечить полученную в работе прочность сплава Al—Si—Cu

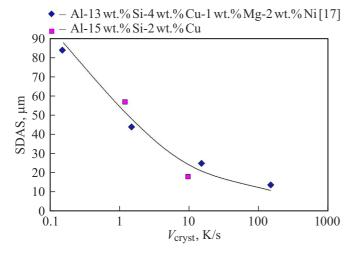

Сплав	UTS, MPa					
СШав	Немодифицирован	+0.04 wt.% Sr	+1.0 wt.% Ce			
LM30, отливка [10]*	155 ± 5	160 ± 5	190 ± 10			
LM30, термообработка [10]	245 ± 5	250 ± 10	285 ± 5			
Al-15 wt.% Si-2 wt.% Cu, направленная кристаллизация	279	_	_			

Таблица 6. Сравнение UTS сплавов, полученных разными методами

Примечание. * — состав LM30: Al-16 wt.% Si-3.5 wt.% Cu.

Рис. 6. Предельная прочность при растяжении UTS в зависимости от скорости затвердевания и содержания кремния (скорость затвердевания: столбец 1,3,5-0.8; 2,4,6-0.1 mm/s; содержание Si: столбец 1,2-15; 3,4-17; 5,6-20 wt.%).

Рис. 7. Зависимость SDAS от скорости затвердевания сплава.

только после модифицирования сплава церием и дополнительной термообработки (табл. 6). Можно ожидать, что дополнительное модифицирование сплава, полученного вблизи смещенной по кремнию эвтектической точки, приведет к более высокой прочности по сравнению со сплавом, полученным традиционным литьем.

Заключение

Увеличение скорости затвердевания сплава A1-xSi-2 wt.% Cu ($x=15,\ 20$ wt.%) с 0.1 до 0.8 mm/s

вызывает превращение грубой чешуйчатой структуры эвтектики в более прочную, тонковолокнистую, оптически не разрешимую структуру. Увеличение прочности сплава за счет структурного упрочнения эвтектики и увеличения объема интерметалической фазы с 3.5 до 5.4% превышает вклад в разупрочнение сплава вследствие уменьшения объема эвтектики и увеличения объема α -Al дендритной структуры на 43 MPa. При этом наблюдается уменьшение величины SDAS, определяемой структурой фаз, а не объемом, с 57 до $18\,\mu{\rm m}$.

При увеличении содержания кремния в сплаве A1-Si-Cu с 15 до 20 wt.% и сохранении скорости затвердевания 0.1 mm/s характер структуры не меняется и прочность не изменяется. При затвердевании сплава при скорости 0.8 mm/c увеличение содержания кремния не вызывает заметного изменения общего вида структуры образцов. Однако наблюдается возрастание доли микроскопических выделений фазы α -Al вне дендритов, в массиве эвтектики. Увеличение содержания кремния в сплаве вызывает уменьшение объемной доли, занимаемой эвтектикой, по площади сечения на 7.6%, увеличение площади, занимаемой интерметаллидами, на 22% и фазой α -Al — на 13%. Величина SDAS остается постоянной, равной $18\,\mu$ m/s. Величина UTS растет за счет увеличения доли интерметаллидов.

Содержание кремния в эвтектике вблизи смещенной эвтектической точки при скорости затвердевания 0.8 mm/s около 15 wt.%.

Предельная прочность на растяжение, 275 MPa, полученная методом направленной кристаллизации на образцах сплава Al—Si—Cu, превышает прочность сплавов, полученных традиционным литьем.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Г.Б. Строганов, В.А. Ротенберг, Г.Б. Гершман. Сплавы алюминия с кремнием (Металлургия, М., 1977)
- [2] М.В. Попова, В.В. Ушакова, З.А. Лузянина. Изв. вузов. Черная металлургия, **8**, 55 (1995).

- [3] М.В. Попова, В.В. Ушакова, З.А. Лузянина. Изв. вузов. Черная металлургия, **6**, 81 (1994).
- [4] V. Vijeesh, K. Narayan Prabhu. Trans. Indian Inst. Met., 67 (1), 1 (2014). DOI: 10.1007/s12666-013-0327-x
- [5] В.Н. Осипов. ЖТФ, **92** (9), 1365 (2022). DOI: 10.21883/JTF.2022.09.52928.42-22
- [6] Ю.Я. Зильберг, Н.М. Хрущева, Г.Б. Гершман. *Алюминиевые сплавы в тракторостроении* (Машиностроение, М., 1971)
- [7] Т.Н. Смирнова. Модифицирование заэвтектических силуминов. В сб.: Модифицирование силуминов. Под ред. Г. В. Самсонова. (Наук. думка, Киев, 1970), с. 25.
- [8] А.П. Гудченко, И.М. Заливанова. Литейное производство, 12, 30 (1972).
- [9] Л.П. Селезнев, Т.П. Боровицкая, Е.В. Кузнецова. Научные труды Института Гипроцветметобработка, **58**, 63 (1978).
- [10] Y.C. Lin, Shun-Cun Luo, Jian Huang, Liang-Xing Yin, Xing-You Jiang. Mat. Sci. Eng. A 725, 530 (2018). DOI: 10.1016/j.msea.2018.04.049
- [11] S. Hegde, K.N. Prabhu. J. Mater.Sci., 43 (9), 3009 (2008). DOI: 10.1007/s10853-008-2505-5
- [12] К.В. Никитин. *Модифицирование и комплексная обра- ботка силуминов* (Самарский государственный технический университет, Самара, 2016)
- [13] G.K. Sigworth. Int. J. Metalcast., 2 (2), 19 (2008). DOI: 10.1007/BF03355425
- [14] Л.Ф. Мондольфо. Структура и свойства алюминиевых сплавов (Металлургия, М., 1979) [Пер. с англ.: L.F. Mondolfo. Aluminum Alloys: Structure and Properties (London, Butterworth Ltd., 1976)]
- [15] А.И. Аверкин, Б.Н. Корчунов, С.П. Никаноров, В.Н. Осипов. Письма в ЖТФ, **42** (4), 67 (2016). [А.І. Averkin, В.N. Korchunov, S.P. Nikanorov, V.N. Osipov. Tech. Phys. Lett., **42** (2), 201 (2016). DOI: 10.1134/S106378501602019X]
- [16] С.П. Никаноров, Л.И. Деркаченко, Б.К. Кардашев, Б.Н. Корчунов, В.Н. Осипов, В.В. Шпейзман. ФТТ, 55 (6), 1119 (2013). [S.P. Nikanorov, L.I. Derkachenko, В.К. Kardashev, В.N. Korchunov, V.N. Osipov, V.V. Shpeizman. Phys. Solid State, 55 (6), 1207 (2013). DOI: 10.1134/S1063783413060255]
- [17] C.G. Shivarprasad, S. Narendranath, Vijay Desai, Sujeeth Swami, M.S. Ganesha Prasad. Proc. Mat. Sci., 5, 1368 (2014). DOI: 10.1016/j.mspro.2014.07.454
- [18] L. Aguilera Luna, H. Mancha Molinar, M.J. Castro Roman, J.C. Escobedo Bocardo, M. Herrera Trejo. Mater. Sci. Eng. A, 561, 1 (2013). DOI: 10.1016/j.msea.2012.10.064
- [19] H. Borkar, S. Seifeddine, A.E.W. Jarfors. Sol. St. Fen., 287, 18 (2019). DOI: 10.4028/www.scientific.net/SSP.287
- [20] M. Okayasu, Y. Ohkura, S. Takeuchi, H. Ohfuji, T. Shiraishi. Mat. Sci. Eng. A, 543, 185 (2012). DOI: 10.1016/j.msea.2012.02.073
- [21] M. Okayasu, S. Takeuchi, T. Ochi. Int. J. Cast Metal. Res., 30 (4), 217 (2017). DOI: 10.1080/13640461.2017.1286556
- [22] T. Hosch, L.G. England, R.E. Napolitano. J. Mater. Sci., 44 (18), 4892 (2009). DOI: 10.1007/s10853-009-3747-6
- [23] L. Tian, Y. Guo, J. Li, F. Xia, M. Liang, Y. Bai. Materials, **11** (7), 1230 (2018). DOI: 10.3390/ma11071230
- [24] O.A. Atasoy, F. Yilmaz, R. Elliott. J. Cryst. Growth, 66 (1), 137 (1984). DOI: 10.1016/0022-0248(84)90084-8
- [25] R. Wang, W. Lu. Int. J. Mater. Sci. Appl., 5 (6), 277 (2016). DOI: 10.11648/j.ijmsa.20160506.17

- [26] M.B. Djurdjevic. Vojnotechnički Glasnik/Military Technical Courier, 60 (1), 152 (2012). DOI: 10.5937/Vojnotehnicki-Glasnik
- [27] D.C. Jenkinson, L.M. Hogan. J. Cryst. Growth, 28 (2), 171 (1975). DOI: 10.1016/0022-0248(75)90233-X
- [28] S.P. Nikanorov, V.N. Osipov, L.I. Regel. J. Mater. Eng. Perform., 28, 7302 (2019). DOI: 10.1007/s11665-019-04414-3
- [29] V. Vijeesh, M. Ravi, K. Narayan Prabhu. Mater. Perform. Character., 2 (1), 296 (2013). DOI: 10.1520/MPC20120007