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Entropy change at viscous flow of dispersive systems with a phase

transition in their particles
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Based on the compensation effect, a method has been developed for the correct calculation of entropy changes

at viscous flow of liquid dispersed systems using the Eyring equation. At temperature range of 313± 10K in

dispersed systems with a liquid-like state of dispersed phase particles the presence of a specific phase transition is

substantiated, at which changes in enthalpy and entropy undergo a jump in these systems.
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There is no common view of the processes occurring

within liquid dispersed systems (DSs) at viscous flow, not

even in the case of DSs with solid dispersed phase parti-

cles [1]. Liquid DSs with a liquid-like state of particles, the

size of which may be changed by temperature, shear strain,

and phase transitions, are even less well understood. Oil

dispersed systems (ODSs) with dispersed phase particles

taking the form of nanoaggregates of asphaltene, resin, and

paraffin molecules [2–8] are the examples of such systems.

It has been demonstrated in [7,8] that liquid concentrated

micellar dispersed systems (MDSs) with dispersed phase

particles taking the form of micelles of surfactants and their

aggregates are similar to ODSs in their viscous properties.

Let us examine which details of viscous flow of ODSs

and MDSs may be revealed by the thermodynamic method

of their study. This method relies on the Eyring equation for

dynamic liquid viscosity µ = B exp(1G/RT ), where 1G is

the Gibbs energy activation, R is the universal constant, B is

the pre-exponential factor of the Eyring equation, and T is

temperature. Since this equation is similar to Arrhenius

and Frenkel equations µ = C exp(E/RT ), it is presumed

in certain studies that energies E = 1G of activation of

viscous flow are determined based on the experimental

dependences of ln µ on 1/T . However, the values of E
for ODSs and MDSs determined this way typically increase

with shear velocity due to the breakdown of their particles

induced by shear strain. This does not agree with a

reduction in their viscosity that is observed under these

conditions [6–8]. This contradiction is resolved only if

the influence of entropy on the DS viscosity is taken into

account by introducing the following expression into the

Eyring equation: 1G = 1H − T1S, where 1H and 1S are

the variations of enthalpy and entropy. Taking the logarithm

of the Eyring equation, one then obtains

ln µ = 1H/RT − (1S/R − lnB) = 1H/RT − A. (1)

It follows from (1) that, analyzing the experimental

dependence of ln µ on 1/T , one finds the values of 1H
and A rather than of 1G and B ; 1H is comparable to

E(1G = 1H = E only at 1S = 0), and the 1S 6= 0 values

for ODSs and MDSs may be determined based on the value

of A in (1):

A = 1S/R − lnB . (2)

The complexity of calculation of 1S stems from the

ambiguity of constant B in (2). The authors of [2,9,10]
and a number of other studies determined the values of B
using the Eyring relation

B = RT/( f VM) = hNa/VM, (3)

where f ≈ 6 · 1012 Hz is the frequency with which, accord-

ing to the Eyring hypothesis, liquid molecules shift to new

equilibrium positions; h is the Planck constant; Na is the

Avogadro number; and VM is the molar liquid volume.

However, it was demonstrated in [8], that the viscosity

of ODSs and MDSs is governed by relaxation processes

with their characteristic frequencies being 5–7 orders of

magnitude lower than those assumed by Eyring. Therefore,

one needs to find a way to calculate constant B in (1), (2)
in order to correctly use the thermodynamic method for DS

investigation.

In the present study, the method for independent deter-

mination of two terms in expression (2) for A is based on

examining the DS viscosity as a function of two factors:

temperature and shear velocity. This method consists in

calculating a set of 1H and A values for a given DS

based on linear approximations of the dependences of ln µ

on 1/T for several shear velocities. The obtained set is then

used to determine the A(1H) dependence graphically. The

examination of a large number of ODSs and MDSs (several
tens of samples) revealed that their A(1H) dependences are
linear (see Fig. 1).
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Figure 1. A(1H) dependences for MDS (98% neonol

AF 9-12) (1) and ODS (from the West Salym oil field, Russia) (2)
samples. The characteristics of these samples were detailed in [6].

Therefore, these dependences may be presented in the

form of equations

A = 1S/R − lnB = β1H − Ao. (4)

Equating the constant and variable quantities in (4), we find

that lnB = Ao and 1S takes the form

1S = βR1H = R(A + Ao). (5)

Since β and 1H assume positive values in the expression

for 1S = βR1H , the values of 1S for the ODSs and MDSs

studied here are strictly positive.

Taking (5) into account, one may present the Gibbs

potential variation in the form

1G = 1H − T1S = 1H(1− βRT ) = 1H(1− T/T∗∗),
(6)

where T ∗∗ = 1/βR is the temperature at which 1G = 0.

Inserting (6) into (1), we come to the conclusion that

the value of B is much higher than the values adopted in

literature, since it is numerically equal to the DS viscosity

at T ∗∗ rather than, as was assumed earlier, at T → ∞.

According to Fig. 2, temperature T ∗∗ is equal to

T ∗ ∼ 313K, which is the value corresponding to bends in

the DS dependence of lnµ on 1/T due to the jump-like

variation of 1H and 1S. Similar bends in the dependences

of lnµ on 1/T were found in several other studies. It

was assumed in [2–4] that they are induced in ODSs by a

phase transition driven by the melting of paraffins contained

in these ODSs. However, it was demonstrated in [5]
that the phase transition corresponding to the melting of

paraffins in ODSs induces bends in the dependences of ln µ

on 1/T at T < 273K, while bends in the dependences of

ln µ on 1/T for ODSs and MDSs were observed in [6,7]
at T ∗ ∼ 313 ± 5K regardless of the melting temperatures

of their components (systems with T ∗ ∼ 313± 10K have

been found by now).
The cause of this effect is found out by analyzing

the equality of DS temperatures T∗ and T∗∗ = 1/βR
demonstrated in Fig. 2, which suggests that the range of

variation of these temperatures should be governed by the

values of coefficient β in (4), (5). The results of calculations
confirmed that the values of β = (384 ± 12) · 10−6 mol/J

and the range of variation of T ∗ = T ∗∗ = 313± 10K for

the studied ODSs and MDSs agree well, thus effectively

confirming the validity of relations (5), (6) for 1S and 1G
determined in the present study.

The obtained data highlight the importance of com-

pensation effect for the viscosity of ODSs and MDSs.

The compensation effect is the only one that provides an

explanation for the reduction in viscosity at higher shear

velocities, which is typical of ODSs and MDSs in spite

of the accompanying increase in the values of 1H due

to the breakdown of dispersed phase particles into smaller

agglomerates [6–8]. It turned out that two thermodynamic

functions (enthalpy and entropy) governing the viscosity of

ODSs and MDSs are affected by shear strain in such a

way that the effect of an 1H increase on viscosity is offset

by a proportional 1S increase. This conclusion was drawn

in [6–8] for 1S values determined using formula (2) up

to an undefined constant. Expression (5) for 1S = βR1H
obtained in the present study allows one to establish that

1H at T = T ∗ = T ∗∗ is compensated fully by 1S; i.e.,

1G = 0. At T > T ∗, the values of 1G < 0. In classical

thermodynamics, this is indicative of a spontaneous DS

transition to a more stable equilibrium state with smaller

particles. Let us also take into account the fact that

either first-order derivatives (first-order phase transitions)
or second-order derivatives of the Gibbs potential (second-
order phase transitions) undergo jumps in phase transitions

at the macrolevel. Both derivatives of the Gibbs potential

with respect to temperature undergo jumps at temperature

T∗ of the phase transition identified in the present study

(external pressure p ≈ 105 Pa = const in all experiments).
The first-order derivative (∂G/∂T )p = −S jump is revealed

by the 1S jump at T∗, while the jump in 1H , which induces

the jump in heat capacity C p, provides evidence of the
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Figure 2. Typical temperature dependences of the viscosity of

ODSs and MDSs obtained at a shear velocity of 6.6 (1) and

26.6 s−1 (2) for the samples from Fig. 1. 1 — MDS (98% neonol

AF 9-12), 2 — ODS (oil from the West Salym oil field, Russia).
Vertical lines denote temperatures T∗∗ = 1/βR for these samples.
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second-order derivative jump:

(∂2G/∂T 2)p = −(∂S/∂T )p = −(∂H/∂T )p/T = −C p/T.

The 1S and 1H jumps (i.e., the presence of 1(1S) and

1(1H)) at temperature T ∗ are evidenced by a change in

the slopes of dependences of ln µ on 1/T at T < T ∗ and

T > T ∗ in Fig. 2.

The phase transition in ODSs and MDSs revealed by the

bend in temperature dependences of their viscosity plotted

in lnµ and 1/T variables is then a new specific phase

transition that has no counterpart at the macrolevel and

corresponds to a jump-like change in 1H and 1S = βR1H .

Its temperature T∗ is defined by coefficient β in expressions

(4) and (5) for the compensation effect. This phase

transition in ODSs and MDSs should be identified by the

bend in the dependence of lnµ on 1/T only at shear stress

τ < τ ∗ ≈ 10 Pa. These bends vanish at τ > τ ∗, since

strong shear strain has almost the same effect as heating

to T > T ∗ in terms of inducing the breakdown of labile

dispersed phase particles in ODSs and MDSs [6,7].
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