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High-frequency asymptotics of one integral in the theory of equilibrium

radiation of electron gas
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It is considered an improper integral that determines the high-frequency asymptotics of the spectral energy

distribution of equilibrium radiation in an ideal electron gas. It has been established that in the
”
high-frequency“

limit the asymptotics of this integral has a power-law character, and its value is proportional to the density of the

electron gas as a function of temperature and chemical potential for arbitrary degeneracy of electrons.
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In recent years, there has been an upsurge in interest in

warm dense matter (WDM) studies (see [1–4] for details).
This is attributable to the accumulation of experimental data

in the field of laboratory astrophysics, where the influence

of matter on the characteristics of equilibrium radiation in

WDM is a vital point [5,6]. The thing is that the spectral

energy distribution of equilibrium radiation established by

Planck corresponds to the idealized model of a blackbody in

a void filled with radiation and a confined absorbing material

medium, and radiation is thus in thermodynamic equilib-

rium with the surrounding matter (see [7] for details). The
effects of interaction of photons with matter at the boundary

of the void are often neglected, although this interaction

is the one that establishes the blackbody equilibrium [7].
In addition, the available experimental data [8,9] suggest

that matter affects the characteristics of intrinsic radiation

of a uniform and isotropic material medium. Various

aspects of determination of the characteristics of equilibrium

electromagnetic radiation in the presence of matter were

discussed in [10–13] and papers cited there. Specifically,

it was found in [10] that mean energy Eph of equilibrium

radiation in a material medium occupying macroscopic

volume V may be presented as

Eph =V
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Here and elsewhere, f (q, λ) is the exact equilibrium

distribution function of photons over momenta ~q and

polarization λ = 1, 2 for the studied system that is char-

acterized by thermodynamic temperature T (in energy

units). An equilibrium uniform and isotropic material

medium is regarded as an aggregate of an intrinsic quan-

tized electromagnetic field and charged particles. This

implies that spectral energy distribution of radiation in

matter εω(T, {µa}) depends not only on frequency ω and

temperature T (as in Planck formula ε
(0)
ω (T ) (1) for an

ideal photon gas), but also on the characteristics of matter:

the set of chemical potentials {µa} of charged particles

of various types a found in the system. The result is

that the difference between the spectral energy distribution

of radiation in matter and Planck formula ε
(0)
ω (T ) (1) is

defined completely by transverse permittivity εtrT (q, ω) for

the considered uniform and isotropic medium with its

linear electromagnetic properties specified unambiguously

by longitudinal εl
T (q, ω) and transverse εtrT (q, ω) permittiv-

ities [14]. Lower index T in this notation indicates that

the corresponding functions are considered in the thermo-

dynamic limit (V → ∞) : ε
l(tr)
T (q, ω) ≡ εl(tr)(q, ω; T, {µa}).

Further examination involves analyzing the convergence

of the improper integral at the right-hand part of relation

(2) [11,13] with account for the general properties of elec-

trodynamic response functions [15]. However, in contrast to

longitudinal permittivity εl
T (q, ω) (see [16] and references

therein), transverse permittivity εtrT (q, ω) has remained

underexamined. In fact, only an integral representation at

arbitrary degeneracy of electrons is available even for an

ideal electron gas (see [17] for details).

That said, the authors of [11] have determined the specific

features of function 1εω(T, {µa}) (2) for an ideal electron

gas at arbitrary degeneracy in the low-frequency region

(ω → 0). It was also demonstrated in [13] that the behavior

of function 1εω(T, µe) (2) for an ideal electron gas at
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arbitrary degeneracy in the high-frequency limit (ω → ∞)
is characterized by the following expressions:
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Here and elsewhere, me is the mass of an electron with

charge e and spin Se = 1/2. Thus, the problem reduces

to finding the asymptotics of function 8(β, µ), which is

expressed in terms of improper integral (3), in the region

of
”
high frequencies“ (β → ∞) . In order to solve this

problem, we present function 8(β, µ) in accordance with

(3) as 8(β, µ) = 8(−)(β, µ) − 8(+)(β, µ),

8(±)(β, µ)=2β3

∞
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Using relations (5)−(7), we find the
”
high-frequency“

asymptotics for functions 8(±)(β, µ) in the β → ∞ limit:
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The high-frequency asymptotics of the spectral energy

distribution of equilibrium radiation in an ideal electron gas

takes the form

1εω(T, µe)|ω→∞ → 24c2e2m3
eI(µe/T )/π3

~
3β3/2

ω ,

where function I(µe/T ) is defined by relation (8) at

arbitrary electron-gas degeneracy |µe | < ∞. Then, we take

into account that chemical potential of electrons µe at a

given temperature T is defined by electron number density

ne(T, µe) according to the condition
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∫

d3p f e(p)/(2π)3,
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,

and ǫe(p) = ~
2p2/2me is the energy of a free electron.

Integrating (8) by parts, one readily sees that

ne(T, µe) = 2I(µe/T )/33
e

√
π,

where 3e = (2π~
2/meT )1/2 is the thermal de

Broglie wavelength for electrons. Therefore,
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Relation (9) agrees with the results obtained for an ideal

electron gas in two limit cases of weak (ne3
3
e ≪ 1) and

strong (ne3
3
e ≫ 1) electron degeneracy (see [11,13] for

details). In turn, the high-frequency asymptotics of the

spectral energy distribution of equilibrium radiation in an

ideal electron gas is characterized by a power-law reduction

with increasing frequency at arbitrary degeneracy, and its

value is defined completely by electron-gas density ne(T, µe)
as a function of temperature T and chemical potential µe .

We note in conclusions that, in spite of the
”
slowness“

of reduction with increasing frequency (compared to the

Planck distribution), the mean energy of equilibrium ra-

diation per unit volume is a finite quantity. It should

be stressed that the obtained results may be regarded

as exact ones. The thing is that photon energy ~ω in

the considered high-frequency asymptotics is assumed to

be well above the typical energy values characterizing

matter (including the typical energy of Coulomb interaction

between charged particles in matter). This implies that
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the Wien law, which follows directly from the Planck

distribution for a blackbody, does not hold in the high-

frequency limit in the considered material medium. The

equilibrium radiation of a blackbody itself is the result of

interaction of charged particles that surround the void filled

with radiation. However, the material medium, which is

an aggregate of the void with radiation (and, presumably,

no particles) and the surrounding matter with radiation, is

an inhomogeneous system. Owing to the locality of the

Hamiltonian of interaction between the electromagnetic field

and charged particles, the mean energy of this interaction in

an inhomogeneous system of this kind is proportional to

interaction surface area S.
Following the transition to the thermodynamic limit

(V → ∞, S → ∞), the surface contribution to the mean

energy of the electromagnetic field becomes negligible

compared to the bulk contribution, and the Planck dis-

tribution for a blackbody is obtained as a result. In the

present study, we consider a uniform and isotropic material

medium with no isolated voids. Therefore, the inclusion

of interaction between particles and the field produces a

correction to the Planck distribution, which is regarded

as the
”
zeroth approximation“ with the surface effects

neglected. This analysis also yields a correct result only

in the thermodynamic limit.

At the same time, consistent models for WDM include

bound states of electrons localized in the vicinity of nuclei

producing WDM ions as compound particles. WDM is

commonly associated with a combination of strongly bound

ions and moderately degenerate electrons. In this light,

further development of the above results should involve the

construction of models that take the effects of interparticle

interaction into account when characterizing the transverse

permittivity. In contrast to the well-known methods used

to characterize the longitudinal permittivity [18,19], correct
approaches to the analysis of the transverse permittivity

should give consistent consideration to the electron intrinsic

magnetic moment (see [20] for details).

Funding

The study was supported by the Russian Science Foun-

dation (grant no. 22-29-00348, https://rscf.ru/project/22-

29-00348/). � 22-29-00348 (https://rscf.ru/project/22-29-
00348/).

Conflict of interest

The author declares that he has no conflict of interest.

References

[1] J.C. Valenzuela, C. Krauland, D. Mariscal, I. Krasheninnikov,

C. Niemann, T. Ma, P. Mabey, G. Gregori, P. Wiewior,

A.M. Covington, F.N. Beg, Sci. Rep., 8, 8432 (2018).
DOI: 10.1038/s41598-018-26608-w

[2] T. Dornheim, S. Groth, M. Bonitz, Phys. Rep., 744, 1 (2018).
DOI: 10.1016/j.physrep.2018.04.001

[3] L.V. Pourovskii, J. Mravlje, M. Pozzo, D. Alfé, Nature
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