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We solve the inverse problem for the complex Fermi resonance or its vibronic analogue, and to this end we use

the matrix XEX t , where E = diag({Ek}) is a diagonal matrix, Ek are the energies of the observed
”
conglomerate“ of

lines, and the intensities of these lines Ik determine the first row of the matrix X , (X1k)
2 = Ik k = 1, 2, . . . , n, n ≥ 3.

Hamiltonian matrix of the direct model, HDIR, whose parameters are the energies of pre-diagonalized
”
dark“ states,

Ai , and the matrix elements of their coupling to the
”
bright“ state, B i , (i = 1, 2, . . . , n− 1), is obtained after

the diagonalization of the XEX t block, which belongs to the
”
dark“ states. We show that Hamiltonian matrix

with the single doorway state (DW), HDW1, can be obtained from the matrices HDIR or XEX t by first step of the

Householder triangularization, i.e. by similarity transformation with a reflection matrix constructed by quantities B i

or Di = (XEX t)1,i+1 . For the energy of the first DW1 state, g1 , and the matrix element of its coupling to the
”
bright“

state, w1, the use of the Householder transformation gives: g1 = 6n−1
i=1 B2

i Ai/(6
n−1
j=1 B2

j) = 6n
k=1E3

k Ik/6
n
l=1E

2
l I l ,

|w1| = (6n−1
i=1 B2

i )
1/2 = (6n

k=1E2
k Ik)

1/2. In similar way, using the Householder transformation, the Hamiltonians for

the models with several doorway states, HDW2, HDW3, . . . , HDW(n−1), are successively obtained. The Hamiltonian

of the DW(n− 2) model is represented by a symmetric tridiagonal matrix HDW(n−1), its diagonal elements g i

determine the energies of the DW1-,DW2-, . . . ,DW(n− 1) states, and the off-diagonal elements w i determine the

corresponding coupling between them.
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Introduction

Complex vibronic analogue of the Fermi resonance

(a term introduced by Herzberg [1]) is characterized by

proximity of energies of ϕ1 electronic-vibrational state

(ϕ1 = ϕ′

elϕ
′

vib,1, ϕ′

el — the
”
upper“ electronic state)

and a number of ϕm electronic-vibrational (vibronic)
states (ϕm = ϕ′′

elϕ
′′

vib,m, ϕ′′

el — the
”
lower“ electronic

state). The effect of nonadiabatic electronic-vibrational

interaction results in splitting of quasi-degenerate levels and

redistribution of the intensity of transition from the ground

state, ϕ0 → ϕ1, to transitions to perturbed states, ϕ0 → 9k

(Fig. 1). For the Fermi resonance itself [1–4] there are

only two actual states: these are vibrational states of the

same electronic state, and their interaction is a result of

the anharmonic coupling of vibrations. Similar energy level

proximity of quasi-degenerate states, which are different

in their physical nature, is significant for such phenomena

as autoionization, predissociation, non-radiative transitions

in polyatomic molecules, photoionization dynamics,

intramolecular vibrational energy redistribution [1–3,5–7].

A typical example of manifestation of the complex

vibronic analogue of the Fermi resonance are the ab-

sorption (fluorescence excitation) spectra that correspond

to the 0−0-transition of S0 → S2 to the second singlet

state of molecule, when instead of the expected one

line a complicated
”
conglomerate“ is observed consisting

of narrow lines with large number of components and

irregularly distributed frequencies and intensities. This takes

place in low-temperature absorption spectra of naphthalene

molecule embeded as an impurity center into durene or

xylene crystals, where number of components is not less

than 50 [8]. In a similar way in fluorescence excitation

spectra of some porphyrinic compounds, in matrices of sat-

urated hydrocarbons at 4.2K the 0−0-transition of S0 → S2

is distributed over ∼ 30 components [9,10]. The coupling

between states can be more complicated as well, for

example, as a result of vibronic and spin-orbital interaction

between the first excited singlet state S1 and energy-close

vibrationally excited triplet states. This causes the observed

complex structure in high-resolution rotational fluorescence-

excitation spectra of pyrazine [11,12], methyl derivatives

of pyrimidine [13], acetylene [14]. The complex vibronic

analogue of the Fermi resonance manifests for a number of

other molecular systems (some references are given in [15]).
Calculations of the complex spectra resulted from the

vibronic coupling were made with the involvement of

quantum chemistry methods in [16–18]. However, in

solving this problem, the condition of resonance requires

electronic and vibrational states to be calculated with a

high accuracy. In this context an inverse problem (spectral
deconvolution) can be formulated, where matrix elements
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of the Hamiltonian of vibronic interaction in the resonance

conditions must be determined from experimental data. It is

essential that the inverse problem assumes that in the zero-

order approximation only one transition is allowed from

among all the considered transitions, i.e. the transition to

the
”
bright“ state, while other transitions, i.e. transitions to

”
dark“ states, are forbidden (Fig. 1).

The spectral deconvolution problem seems quite unusual,

and to solve it initially the trial-and-error method was

applied (for naphthalene [8,19], pyrazine [20]). In [21–24]
the inverse problem in question was solved using the

formalism of the Green’s function, and later, for the case

of discrete
”
dark“ states, the method of direct-coupling

model was formulated [25–27]. Within this model a set

of energies of (prediagonalized)
”
dark“ states and squared

matrix elements of their coupling with the
”
bright“ state

is determined. In [24,28], in relation to non-radiative transi-

tions and the intramolecular vibrational energy redistribution

(IVR) the spectral deconvolution was expanded to another

class of model Hamiltonians with accentuated importance

of characteristics of the dynamic process that takes place

after the excitation through a distinct, intermediate (door-
way, DW)

”
dark“ state. These doorway-coupling model

Hamiltonian take into account the interaction among
”
dark“

states. In [29,30] the direct-coupling model was applied to

massive spectral datasets for molecules of trifluoropropyne,

acetylene, as well as to model spectra, and the authors have

came to the conclusion that this model needs to be modified

by explicit consideration of the interaction in the block of

”
dark“ states. In [31] it is shown that the transition from

the direct-coupling Hamiltonian to the doorway-coupling

Hamiltonian can be achieved within the formalism of the

Green’s function, parameters of the first DW1-state were

calculated through spectral moments.

H = H + H(0) (1)^ ^ ^
H (0)^

j0

j1

{ }jm
{ }Yk

Figure 1. Diagram of the complex vibronic analogue of the Fermi

resonance. The action of Ĥ(1) perturbation results in redistribution

of intensity from the transition to the
”
bright“ state ϕ0 → ϕ1

towards the transitions to perturbed states ϕ0 → 9k . {ϕm} are

”
dark“ states.

In our studies [15,32] the inverse problem in the direct-

coupling model is solved on the basis of methods typical

for the algebraic eigenvalue problem [33], where first of

all the intensity redistribution at a resonance of Fermi

type was taken into account. They are used to recover

the Hamiltonian matrix, which actual elements define the

energies of pre-diagonalized
”
dark“ states and their direct

coupling with the
”
bright“ state. In this study we have

presented an algorithm to solve the inverse problem for the

complex Fermi resonance or its vibronic analogue for the

model with one or more intermediate doorway-states. For

these purposes we used the Householder transformation

that is applied in the algebraic matrix eigenvalue problem

when it is tridiagonalized [33].

General problem formulation

We shall consider resonance interactions of excited states

of a molecule due to perturbation Ĥ(1) within the linear

variation method where wave functions 9k are taken in the

following form:

9k = 6n
l=1C lkϕl = C1kϕ1 + 6n

m=2Cmkϕm,

where ϕ1 is the
”
bright“ state, ϕm (m = 2, 3, . . . , n) are

”
dark“ states. Functions ϕl are eigenfunctions of the zero-

order approximation Hamiltonian, Ĥ(0)ϕl = εlϕl ; for these

functions an exact or approximate degeneracy takes place.

The well-known direct problem consists in calculating H
matrix elements, 〈ϕl |Ĥ|ϕk〉 = 〈ϕl |Ĥ(0) + Ĥ(1)|ϕk〉, and solv-

ing the secular problem:

HC = CE, E = diag(E1, E2, . . . , En). (1)

We shall assume basis functions ϕl as real functions,

then H is a symmetric matrix and C matrix of coefficients

C lk is an orthogonal matrix, C−1 = Ct (here and elsewhere

t superscript denotes transposition).
The intensity of transitions from the ground state ϕ0 to the

perturbed excited states 9k is proportional to |〈9k |M|ϕ0〉|
2,

where M is operator of the dipole moment of the molecule.

The action of perturbation results only in redistribution

of ϕ0 → 9k transitions intensity as compared to ϕ0 → ϕl ,

while 6n
k=1|〈9k |M|ϕ0〉|

2 = 6n
l=1|〈ϕl |M|ϕ0〉|

2. In the case

when in the zero-order approximation only one transition is

allowed among all the transitions from the ground state to

the excited state, i.e. the ϕ0 → ϕ1 transition, and other

ϕ0 → ϕm transitions are forbidden (Fig. 1), the relative

intensity of ϕ0 → 9k transition is:

Ik = |〈9k |M|ϕ0〉|
2/|〈ϕ1|M|ϕ0〉|

2 = (C1k)
2.

In the inverse problem matrix elements of the Hamiltonian

〈ϕl |Ĥ|ϕk〉 must be determined from the observed data:

energies E ′

k and intensities I ′k of transitions. The total

number of E ′

k and I ′k items is 2n, but due to the condition

of 6n
k=1Ik = 1, where Ik = I ′k/6

n
l=1I ′l is the relative intensity,

their number becomes 2n− 1. The number of elements in
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the H matrix is n(n + 1)/2, and it means that restrictions

has to be imposed on its form at n ≥ 3. There are no

restrictions for the simple Fermi resonance or its vibronic

analogue with n = 2. If the
”
bright“ state is the only one

state, the calculated relative intensity (C1k)
2 should be equal

to the relative experimental intensity (C1k)
2 = Ik , while the

6n
k=1Ik = 1 normalizing corresponds to the 6n

k=1(C1k)
2 = 1

normalizing. Now we shall determine the
”
center of gravity“

of observed energies, G = 6n
k=1E ′

kIk , and then all energies

will be calculated from this center, Ek = E ′

k − G, then

6n
k=1EkIk = 0. The last equation for calculated values corre-

sponds to the equation of 6n
k=1Ek(C1k)

2 = H11 = 0, which

is a consequence of orthogonality of the C matrix. Thus, the

”
center of gravity“ G of the observed conglomerate should

coincide with the energy of the
”
bright“ state in relation to

the ground state.

The intensity of ϕ0 → 9k transitions is defined by

elements of the first row of C matrix only, which means

that the selection of basis functions of
”
dark“ states ϕm is

ambiguous. This circumstance is used to avoid the diffi-

culties related to the fact that the number of experimental

values is insufficient to determine matrix elements 〈ϕl |Ĥϕk〉
at n ≥ 3. Specifically, if we change over from functions ϕm

to functions 8m that diagonalized the
”
dark“ states block of

matrix H , the matrix can be represented in a form known

as canonical [19,21]:

H =

(

0 B t

B A

)

, (2)

where A = diag(A1, A2, . . . , An−1) is a (n − 1)× (n− 1)
diagonal matrix, Ai = 〈8i+1|Ĥ|8i+1〉, B is a column

vector of size n− 1, B t = (B1, B2, . . . , Bn−1),
B i = 〈8i+1|Ĥ|ϕ1〉 = 〈8i+1|Ĥ(1)|ϕ1〉, i = 1, 2, . . . , n− 1.

The number of values {Ai} and {B i} and the number of

experimental values {Ek} and {Ik} taking into account

two conditions of 6n
k=1EkIk = 0 and 6n

k=1Ik = 1 is equal

to 2n − 2, therefore the problem of Hamiltonian matrix

recovery in form (2) must have an unambiguous solution.

Representation of matrix H in form (2) defines the

direct-coupling model H ≡ HDIR.

In our studies [15,32] we have developed a method

to solve the spectral deconvolution problem, where at

the first step an orthogonal matrix X with its first row

meeting the condition of (X1k)
2 = Ik for intensities and

the XEX t matrix, E = diag({Ek}) are constructed; at the

second step, with taking into account the requirement of

absence of
”
interaction“ between

”
dark“ states, the direct-

coupling model matrix H (2) is derived from matrix XEX t

by similarity transformation. The goal of this study is to

apply the Householder method of real symmetric matrix

triangularization [33] to build up Hamiltonian matrices of

models with one or more doorway-states. We shall show

that the main step in getting on to the Hamiltonian matrix

with one doorway-state HDW1 from the matrix H (or from
XEX t) is implemented by similarity transformation of reflec-

tion matrix composed of B i values (or Di = (XEX t)1,i+1),

i = 1, . . . , n− 1. Then Hamiltonian matrices of models

with several doorway-states will be successively derived

using analogous similarity transformation.

Taking into account the redistribution of
intensity. Direct-coupling model
Hamiltonian matrix

In [32] it is noted that for the special case of matrix H
in form (2), that is at Ai = a = const, the first row of

eigenvectors has only two non-zero values. This corresponds

to a redistribution of intensity from the initial transition to

the
”
bright“ state ϕ0 → ϕ1 only to two transitions, but then

each of them can be considered as a source of redistribution

to another two transitions, and so on (Fig. 2). In [32]
it is shown how for each step of intensity

”
splitting“ the

parameters a , {B i} should be calculated from combinations

of observed values {Ek} and {Ik}; the procedure includes

diagonalization of intermediate matrices as well. Finally, an

orthogonal matrix X is obtained where square of the

first row elements is equal to the intensity of observed

lines, (X1k)
2 = Ik . Another streamlined algorithm to build

up the X matrix with the same condition (X1k)
2 = Ik

is proposed in [15], where this matrix is represented as

a product of elementary plane Jacobi rotation matrices,

which also corresponds to the successive redistribution of

intensities starting from
”
splitting“ for the initial transition

ϕ0 → ϕ1 (Fig. 2).

It is evident that orthogonal matrices X obtained by the

algorithms illustrated in Fig. 2, a and b are different from

each other, identical is only the relationship of (X1k)
2 = Ik .

Also, a sufficiently large set of orthogonal matrices X can

be obtained on the basis of combination of type 2a and

2b algorithms (however, there is no practical necessity in

it), which is related to the multiplicity of choice of linear

combinations of
”
dark“ state functions not affecting the

intensity of ϕ0 → 9k transitions.

Once the X matrix is defined, let us perform the XEX t

similarity transformation of the diagonal matrix E composed

of observed energies Ek , E = diag(E1, E2, . . . , En), which

results in that the XEX t takes the following block form:

XEX t =

(

0 Dt

D F

)

, (3)

where F is a (n− 1)× (n− 1) symmetric real matrix, D is

a column-vector of size n− 1. Then, an eigenproblem can

be formulated for the F matrix:

FZ = ZA, A = diag(A1, A2, . . . , An−1). (4)

Taking into account that F = ZAZt , Zt = Z−1, by multiply-

ing (3) from the left by Y and from the right by Y t , where

Y =

(

1 0

0 Zt

)

,
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Figure 2. Redistribution of transition intensities according to the algorithm of [32] (for n = 5) and the algorithm of [15] (X (i) is elementary

Jacobi rotations).

we get the H matrix with required structure (2):

H = (Y X)E(YX)t,

i.e. H is diagonalized by the C = YX matrix. In this

case the first row of matrix C coincides with the first

row of matrix X , C1k = X1k , and, hence, the requirement

for intensities is fulfilled, (C1k)
2 = (X1k)

2 = Ik . Vector B
is calculated from vector D, B = ZtD. Thus, energies

of
”
dark“ states are represented by eigenvalues of Ai of

problem (4), while matrix elements of coupling B i of

”
bright“ ϕ1 and

”
dark“ 8i+1 states are calculated by the

following formula: B i = 6n−1
j=1D j Z ji .

With neglecting the coupling between
”
dark“ states due

to the Ĥ(1) perturbation, i. e. with equating basis 8i+1 and

basis ϕi+1, diagonal elements Ai can be compared with

energies ϕi of unperturbed ”
dark“ states, for example, with

energies of composite vibrations (obertones).

DW1-model Hamiltonian matrix

The basis of
”
dark“ states can not be considered as

fixed, therefore a form of recovered Hamiltonian matrix

other than (2) is also possible. In particular, as mentioned

above, it is proposed [24,28] to select from
”
dark“ states

only one single state coupled with the
”
bright“ state. This

selected state is known as doorway-state1 (DW), and the

essence of its singling out consists in that the corresponding

dynamic problem assumes that after the
”
bright“ state ϕ1 is

excited, further transitions to
”
dark“ states are represented

not as a set of ϕ1 → 8m transitions (m = 2, 3, . . . , n) as

1 Doorway means an aperture of door, the main entrance into a room,

a portal.

in the direct-coupling model, but as a single transition

responsible for ϕ1 deactivation (without taking into account

the ϕ1 → ϕ0 reverse transition). This intermediate (the first)
|DW1〉-state, in turn becomes the initial state for transitions

to further
”
dark“ states. In the static problem, this model

assumes that the ϕ0 → |DW1〉 transition borrows a part of

intensity from the transition to
”
bright“ states, ϕ0 → ϕ1, and

then it itself becomes a source of intensity redistribution for

transitions to other
”
dark“ states; the latter are represented

again in the form of direct-coupling model, which is a

significant note. Below we shall show how we can get

on from the direct-coupling model to DW-models with one

state |DW1〉, and then to models with a sequence of |DW〉-
states.

The proposed algorithm is composed of two stages. At

the first stage an elementary step of Householder triangula-

tion of symmetric real metrices is used (see [33], P. 218–
219, 264–266), where similarity transformation P−1HP is

applied to matrix (2) using reflection matrix P . Matrix P is

represented in a block form:

P =

(

1 0

0 Q

)

, (5)

where (n− 1)× (n − 1) matrix Q is also a reflection

matrix and is constructed of vector V of size n− 1:

Q = I − 2V ·V t/(V tV ), I is unity matrix, V ·V t is dyad

matrix, V tV = 6n−1
i=1 V 2

i is a scalar product that yields

squared
”
length“ of vector V . Reflection matrices Q and

P are involutive,

Q2 = I, P2 =

(

1 0

0 I

)

,

saying that Q−1 = Q, P−1 = P, as well as Qt = Q, Pt = P .
Therefore P−1HP = PHP .
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Vector V is defined in such a way that it differs from

vector B only by the V1 component:

V1 = B1 − w1, Vi = B i , i = 2, 3, . . . , n− 1, (6)

where

w1 = −sgn(B1)(B
tB)1/2, B tB = 6n−1

i=1 B2
i . (7)

The similarity transformation PHP results in that

PHP =

(

0 (B −V )t

B −V QAQ

)

,

(PHP)11 = 0 as before, and (B −V )t = (w1, 0, . . . , 0), i. e.
all off-diagonal elements of the first column (as well as the
first row) of the PHP matrix are equal to zero, except for

one:

(PHP)21 = (PHP)12 = w1. (8)

Elements of the QAQ matrix ( A is a diagonal matrix) are
calculated by the following formula:

(QAQ)i j = δi jAi − 2Vi(Ai − T + A j − T )V j/(V
tV ), (9)

where T = 6n−1
i=1 V 2

i Ai = V tAV . It would seem that accord-

ing to (9) for an element of (QAQ)11 a distinguished con-

tribution from A1 takes place, however, after transformation

we get

(QAQ)11 = 6n−1
i=1 B2

i Ai/(B
tB) = B tAB/(B tB) ≡ g1, (10)

i. e. g1 is defined by equitable contribution of all values, Ai

and B i . Let us, in turn, represent the QAQ matrix in a block

form:

QAQ =

(

g1 dt

d f

)

, (11)

where vector d of size n− 2 and matrix f of

size (n− 2)× (n − 2) are defined by components

di−1 = (QAQ)1i and f i−1, j−1 = (QAQ)i j for

i, j = 2, 3, . . . , n− 1.

The second step of the algorithm is implemented using

direct-coupling model formulae, specifically, we shall for-

mulate an eigenproblem for the f matrix:

f z = z a, (12)

where a = diag(a1, a2, . . . , an−2), and form matrices

y =





1 0 0

0 1 0

0 0 z t





and c = yP . The latter is used to perform the similarity

transformation from the direct-coupling model Hamiltonian

matrix H to the required DW1-model Hamiltonian matrix

H ′ = cHc t , or HDW1 ≡ cHDIRc t . The H ′ matrix is diago-

nalized by matrix C′ = cC, H ′C′ = C′E . The final block

form of H ′ is:

H ′ =





0 w1 0

w1 g1 bt

0 b a



 , (13)

where components of vector b, as components of B before,

are calculated by the following formula:

bp = 6n−2
q=1dqz qp, p = 1, 2, . . . , n− 2. (14)

In accordance with the similarity transformation

H ′ = cHc t = (yP)H(yP)t , the transition is performed

from basis functions of
”
dark“ states 8m to their lin-

ear combinations: initially - to 8̄m = 6n
m′=2Qm′−1,m−18m′ ,

(m = 2, 3, . . . , n), then - to 8′

2 = 8̄2 ≡ |DW1〉 and

8̄m = 6n
m′=3z m−2,m′

−28̄m′ , (m = 3, 4, . . . , n). Energy of the

first DW1-state H ′

22 = g1 is calculated by formula (10) as

a weighed mean value of the energy of
”
dark“ states of

direct-coupling model Ai with weights B2
i /(B

tB), which is

similar to calculation of the center of gravity of the observed

conglomerate G with normalized intensities I ′k/6
n
l=1I ′l . Due

to the H ′

12 = H ′

21 = w1 matrix element, the |DW1〉 state

borrows intensity from the
”
bright“ state, and due to bp

matrix elements it, in turn, becomes a source of borrowing

for the rest of
”
dark“ states, which energies a p are defined

by the eigenproblem solution (12).
In the dynamic problem, in problems of non-radiative

transitions or IVR, by assuming that after the absorption

of a light quantum ϕ0 → ϕ1 the ϕ1 ”
bright“ state becomes

populated, the rate constant of subsequent direct transitions

ϕ1 → 8i+1 in the direct-coupling model will be proportional

to (B i)
2, and the sum constant will be 6n−1

i=1 (B i)
2. In the

DW1-model, there is only one transition of this kind,

ϕ1 → |DW1〉, and its rate constant is proportional to (w1)
2,

however (w1)
2 = 6n−1

i=1 (B i)
2.

Building up the Hamiltonian matrix of
DW1-model directly from equation (3) for
XEX t

From point of view of transformation of a matrix to the

tridiagonal form, its first step can be started not from the

H matrix in form (2), but from the XEX t matrix taking

into account its block structure (3), and taking vector D
instead of vector B as a basis in formulae (5)−(7). But

since DtD = DtZZt D = B tB , the relation of the
”
bright“

state with the DW1-state w̄1 will be the same, differing

from the w1, perhaps, by sgn(D1) as compared to sgn(B1),
and |w̄1| = |w1|. As for the energy of the |DW1〉 state, it
is calculated by the following formula: ḡ1 = DtFD/(DtD),
but DtFD = DtZAZtD = B tAB , and remains unchanged,

ḡ1 = g1. After the appropriate similarity transformation of

the block similar to the block f in (11), the XEX t matrix

takes the form of H ′ matrix (13).
Thus, the Householder triangularization yields main

parameters of the DW1-model: energy of the |DW1〉-state
g1 and matrix element of its coupling with the

”
bright“

state w1, that can be calculated directly from the XEX t

matrix taking into account formula (3) or through the direct-

coupling model:

g1 = DtFD/(DtD) = B tAB/(B tB),
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|w1| = (DtD)1/2 = (B tB)1/2. (15)

In addition, since the matrix

XEX t = Xdiag(E1, E2, . . . , En)X t is determined directly by

the experimental data of Ek and Ik , for (w1)
2 and g1 the

following can be easily derived

(w1)
2 = 6n

k=1E2
k Ik ,

g1 = 6n
k=1E3

k Ik/6
n
l=1E2

l I l = 6n
k=1E3

k Ik/(w1)
2, (16)

i. e. they are determined from the distribution of square

of E2
k and cube of E3

k of observed energies (relative to the

center of gravity G) with weights of Ik . Formulae (16)
coincide with the expressions obtained in [31].
It must be noted that square of the matrix element of the

”
bright“ state coupling with the |DW1〉-state, (w1)

2, remains

invariant under orthogonal transformations of
”
dark“ states.

This gives us the following equations:

(w1)
2 = |〈ϕ1|Ĥ

(1)|DW1〉|2 = 6n
m=2|〈ϕ1|Ĥ

(1)|8m〉|
2

= 6n
m=2|〈ϕ1|Ĥ

(1)|ϕm〉|
2. (17)

The latter indicates that the rate constant of
”
bright“ state

deactivation as a result of the ϕ1 → |DW1〉 transition, which

is proportional to (w1)
2, as expected, is defined by the

interaction of the
”
bright“ state with all zero-order

”
dark“

states ϕm, which are eigenfunctions of the Hamiltonian Ĥ(0).

Comparison with the method based on
the Green’s function

In the method developed in [25–27,31], that uses the

formalism of the Green’s function, solving the inverse

problem of deconvolution in the direct-coupling model

is reduced initially to determining roots of the following

function:

f DIR(x) = 6n
k=1Ik/(Ek − x). (18)

The f DIR(x) = 0 equation is solved numerically by the bi-

section method and yields values of Ai , i = 1, 2, . . . , n− 1.

At this, if we assume that the {Ek} sequence is increasing,

roots Ai of equation (18) fall into the interval of [Ei , Ei+1]
and again form an increasing sequence {Ai}. Then, the

square of matrix elements of coupling is calculated from the

following equation:

B2
i = 1/

[

6n
k=1Ik/(Ek − Ai)

2
]

. (19)

The subsequent selection of the sign of matrix element B i

is unessential.

When calculating parameters of the HDW1 Hamilto-

nian [31], once the values of Ai and B2
i are determined, first

of all the normalized squares of matrix elements of coupling

are calculated: J i = B2
i /6

n−1
j=1B2

j , which are interpreted as

analogues of the observed normalized intensities Ik , and

energies of
”
dark“ states Ai — as analogues of the observed

energies of transitions Ek . In accordance with this, a

function similar to (18) is considered:

f DW(x) = 6n−1
i=1 J i/(Ai − x).

Roots a p, p = 1, 2, . . . , n− 2 of the f DW(x) = 0 equa-

tion, that fall into the interval of [Ap, Ap+1], are determined

numerically, and the square of matrix elements of coupling

of the |DW1〉 state and the rest of
”
dark“ states b2

p is

calculated from the following equation:

b2
p = 1/

[

6n−1
i=1 J i/(Ai − a p)

2
]

.

Parameter g1 of the HDW1 Hamiltonian is calculated using

formulae (10) or (16), and parameter w1 is calculated with

the help of (7) or (16).
Here the following note must be made. The classical

approach in the problem of matrix diagonalization (for
many quantum-mechanical problems — real, symmetrical)
consists in that first its eigenvalues are determined, and then

eigenvectors are derived (method eva→ evc). However,

even for n ≥ 3 order matrices difficulties arise in deter-

mining the roots of characteristic polynomial. Therefore

another approach has appeared to be practically important:

first, on the basis of some methods (Jacobi rotations, QR-,
QL-algorithms, methods of Givens, Householder, etc. [33])
the matrix of eigenvectors is determined, so that after

the similarity transformation of the matrix in question

it takes a diagonal form (method evc→ eva). For the

purpose of calculations the software implementation of the

second method has became standard. From this point of

view the method developed in [25–27,31] for the spectral

deconvolution problem in question can be considered as

analogue of the method eva→ evc: first equation (18) is

solved, followed by equation (19). In contrast to this, in

our studies [15,32] the first step consists in building up an

orthogonal matrix X meeting the condition of (X1k)
2 = Ik .

Further solving process is based first of all on formula (3),
and in general our method is similar to evc→ eva for both

the direct-coupling model and the DW1-model.

Hamiltonian matrices in the model with
several DW-states

The block of the (n− 1)× (n− 1) matrix H ′ in for-

mula (13), resulted from the proceeding from the direct-

coupling model to the DW1-model,

(

g1 bt

b a

)

(20)

is completely analogous to form (2) of the H matrix

(the presence of H ′

22 = g1 element, generally non-zero, is

unessential). Therefore, the proceeding from the DW1-

model to the DW2-model with two doorway-states can

be implemented through the Householder triangularization

of block (20) using formulae similar to (5)−(14), with
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Table 1. Experimental data for acetylene molecule [14] (energy Ek (cm−1) and normalized intensities Ik of the
”
conglomerate“ of lines in

the region of rotational component R(2) (G = 45307.1738 cm−1) of the electronic-vibrational transition 330K1
0 of the system Ã1Au ← X̃16+

g

and calculated parameters of direct-coupling Hamiltonians HDIR and doorway-models HDW1 and HDW8 (cm−1)

Experimental Parameters HDIR Parameters HDW1 Parameters HDW8

data

E1−E9 I1−I9 A1−A8 B1−B8 B1−B8 g1 w1 g1−g8 w1−w8

[14]

−0.1894 0.03 0.0272 −0.1188
−0.1772 0.03 −0.1864 0.0164 0.0168 a1−a7 b1−b7 0.0272 −0.1188
−0.1147 0.02 −0.1722 0.0272 0.0310 −0.1842 −0.0155 −0.0943 0.0636

−0.0889 0.49 −0.1137 0.0067 0.0064 −0.1591 −0.0528 0.0867 0.1256

−0.0327 0.01 −0.0341 −0.0138 0.0137 −0.1131 0.0114 −0.0639 0.0383

0.1245 0.30 0.0378 0.1103 0.1080 −0.0330 −0.0097 −0.0211 0.0765

0.1452 0.03 0.1432 −0.0107 0.0104 0.1420 0.0132 0.0236 −0.1323
0.1701 0.06 0.1635 0.0231 0.0235 0.1587 −0.0243 −0.0847 −0.0598
0.1759 0.03 0.1746 0.0070 0.0070 0.1742 −0.0057 0.1392 −0.0788

the replacement of A→ a , B → b. The Householder

similarity transformation of block (20) will affect only

”
dark“ states 8′

m at m = 3, 4, . . . , n. Energy of the DW1-

state g1 and matrix element of its coupling with the
”
bright“

state w1 will remain unchanged. As a result, for the

key elements of the DW2-model Hamiltonian we get the

energy of the DW2-state equal to g2 = btab/(btb) and the

matrix element of its coupling with the DW1-state will be

w2 = −sgn(b1)(btb)1/2 .

In a similar way further proceeding with DW3-, DW4-

, . . ., DW(n− 2)-models is implemented by successive

steps, their maximum possible number is n− 2, with no

need to solve the equation for eigenvalues of form (12) at

the last step. The Hamiltonian matrix of the DW(n− 2)-
model will be completely three-diagonal:

HDW(n−1) =

















0 w1 0 . . . 0 0

w1 g1 w2 . . . 0 0

0 w2 g2 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . gn−2 wn−1

0 0 0 . . . wn−1 gn−1

















. (21)

Using the terminology of [24,28], one can say that

the HDW(n−1) matrix is defined in a so-called channel

spectroscopic basis. For the dynamics of molecule after

ϕ0 → ϕ1 excitation actual transitions are initially from the

”
bright“ state to the first doorway-state, ϕ1 → |DW1〉,
and then successively between doorway-states:

|DW1〉 → |DW2〉 → . . . → |DW(n− 2)〉 → |DW(n− 1)〉.
Here it is worth to note that solving the time problem

requires to take into consideration a host of other transitions:

first - the reverse transitions of ϕ1 → ϕ0, |DW1〉 → ϕ1,

|DW2〉 → |DW1〉 . . . |DW(n − 1)〉 → |DW(n− 2)〉 type

and second - the deactivation of
”
dark“ states, because

”
dark“ states may turn out to be

”
bright“ in relation to

|DWk〉 → χ transitions, where χ states are other than

ϕ0 [5]. Consideration of such a problem is beyond the

scope of this work.

The direct coupling model together with DW1- and

DW(n− 2)-models is illustrated in Fig. 3.

Numerical calculation of Hamiltonian
matrix elements in doorway-models

The algorithm of proceeding from the direct-coupling

model to DW-models on the basis of the above-presented

formulae is implemented by us in the form of a Fortran

program. With this program calculations were made for a

number of molecular systems, where experimental data are

represented quantitatively [9–12,14].
In particular, the acetylene molecule calculations of [14]

use an extensive data for the
”
conglomerates“ of lines

observed in rotational Q- and R- branches of the electronic-

vibrational transitions 330K1
0 and 340K1

0 of the system

Ã1Au ← Ã16+
g . Table 1 presents, as an example, the results

of parameter calculation of Hamiltonians for the direct-

coupling model, HDIR, and doorway-models, HDW1 and

HDW8, for the
”
conglomerate“ (n = 9) in the region of

the rotational component R(2) of the vibronic transition

330K1
0 . As can be seen from Table 1, the increasing

sequence {Ek} (k = 1, . . . , n) yields increasing sequences

{Ai} and {a p}, so that values of Ai fall into the interval

of [Ei , Ei+1] (i = 1, . . . , n− 1), and values of a p fall into

the interval of [Ap, Ap+1] (p = 1, . . . , n− 2). In addition, it

should be noted that experimental energies Ek are given

in [14] with an accuracy of four decimal places, while

intensities are given with an accuracy of two decimal places

(for some
”
conglomerates“ of lines formally the equation

of 6n
k=1Ik = 1 is not always fulfilled). Therefore, for

the parameters of Hamiltonians listed in Table 1 with an

accuracy of four decimal places at least one place should be

considered excessive. This circumstance also can explain

the difference in matrix elements of coupling B i in our
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Ai ap

Bi bp

0 0 0

g1 g1

w1
w2

wn – 1

gn – 1
w1

gn – 2

H DW( – 1)nH DW1H DIR

...

Figure 3. Diagrams of Hamiltonians of direct coupling model, DW1- and DW(n− 2)-models.

Table 2. Parameters of Hamiltonian HDW1 (in cm−1) of spectral

deconvolution for the
”
conglomerate“ of components of rotational

Q- and R-branches of electronic-vibrational transitions 330K1
0 and

340K1
0 of the system Ã1Au ← X̃16+

g of acetylene molecule calculated

from the experimental data of [14]: g1 — energy of the |DW1〉
state, w1 — matrix element of its coupling with the

”
bright“ state,

G — energy of the
”
bright“ state (in relation to the ground state)

Component G g1 g1 [31] w1 w1 [31]

330K1
0

R(0) 45303.1255 −0.2730 −0.2731 −0.1418 0.1418

R(1) 45305.2209 −0.1120 −0.1120 −0.1206 0.1206

R(2) 45307.1738 0.0273 0.0272 −0.1188 0.1188

R(3) 45308.9132 0.0990 0.0990 −0.1704 0.1704

Q(1) 45300.6503 0.0418 0.0418 −0.1980 0.1980

Q(2) 45300.1678 −0.0508 −0.0508 −0.1245 0.1245

Q(3) 45299.4414 −0.2272 −0.2272 −0.1784 0.1785

Q(4) 45298.4825 −0.1753 −0.1753 −0.1695 0.1695

340K1
0

R(0) 46290.4644 0.0336 −0.1051
R(1) 46292.5043 −0.0794 −0.0547
R(2) 46294.3631 0.1412 −0.0883
R(3) 46296.0968 0.1878 −0.1222
Q(1) 46287.9946 0.0521 −0.0883
Q(2) 46287.5005 −0.1668 −0.0977
Q(3) 46286.7643 0.0495 −0.1089
Q(4) 46285.5968 −0.0283 −0.0240

calculations and in calculations of [14], probably made with

a greater accuracy of intensity values Ik . The experimental

data {Ek}, {Ik} of [14] were also used in [31] to calculate

Hamiltonian parameters for the DW1-model on the basis

of the Green’s function. As can be seen from Table 2, for

the
”
conglomerates“ of transition lines our calculation and

calculation of [31] lead to the same result.

Conclusion

Main results of this study can be summarized as follows.

The initial point for building up models of spectral decon-

volution for the complex Fermi resonance or its vibronic

analogue is the XEX t matrix, where E = diag({Ek}) is

a diagonal matrix composed of energies of the observed

”
conglomerate“ of lines, and intensities of these lines define

the first row of the matrix X , (X1k)
2 = Ik , k = 1, 2, . . . , n.

The Hamiltonian matrix of the direct-coupling model,

HDIR, which parameters are Ai — energy of
”
dark“

states and B i — matrix elements of their interaction with

the
”
bright“ state, (i = 1, 2, . . . , n− 1), is derived after

diagonalization of the XEX t block referred to
”
dark“ states.

The use of Householder triangularization method, where

reflection matrices are constructed from vectors B or D
(Di = (XEX t)1,i+1), allows proceeding from HDIR or XEX t

matrices to the Hamiltonian matrix of the doorway-model

with one DW1-state, HDW1. Expressions are obtained for

the energy of the first doorway-state and the matrix element

of its coupling with the
”
bright“ state:

g1 = 6n−1
i=1 B2

i Ai/
(

6n−1
j=1B2

j

)

= 6n
k=1E3

k Ik/6
n
l=1E2

l I l,

|w1| =
(

6n−1
i=1 B2

i

)1/2

=
(

6n
k=1E2

k Ik

)1/2

.

In a similar way, using the Householder method the

proceeding to the Hamiltonian matrices with several

DW-states: HDW2, . . . , HDW(n−1) is implemented suc-

cessively. The Hamiltonian of the DW(n− 2)-model

is represented by a symmetrical three-diagonal matrix
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HDW(n−1), its diagonal elements g i define the energies

of DW1-,DW2-, . . . ,DW(n− 1)-states, while non-diagonal

elements w i define the successive coupling between them.

It should be emphasized that Hamiltonian matrices of

the direct-coupling model and the DW-models are related

to each other by a similarity transformation, because of

which the HDIR, HDW1, HDW2, . . . , HDW(n−1) Hamiltonians

should be considered as equivalent. Hamiltonians of DW-

models are defined in bases corresponding to different linear

combinations of
”
dark“ states 8m of the direct-coupling

model. However, the 8m basis is related to the basis of

zero-order approximation functions ϕm with a clear physical

meaning only by an implicit pre-diagonalization. In general,

in the inverse problem for the complex Fermi resonance

or its vibronic analogue, to recover the Hamiltonian matrix

in the unique form a total of n(n + 1)/2 − 1 parameters

are needed, but at n ≥ 3 this number exceeds 2n− 2

independent experimental values {Ek} and {Ik}. To select

between the models under consideration, an additional

information is required along with the data of {Ek} and {Ik}.

The obtained results can be used in the consideration

of dynamic problems, which are actual, in particular, for the

problem of non-radiative transitions in polyatomic molecules

and intramolecular redistribution of vibrational energy [7].
The evident advantage of models with many doorway-

states for solving the time problem consists in that they

assume successive propagation of the excitation along the

chain of
”
dark“ states, and the initial transition from the

”
bright“ state is the only one, ϕ1 → |DW1〉. The direct-

coupling model initially requires to take into account all the

ϕ1 → 8m transitions at once. Initially the calculations of

dynamics could be conducted if only w1 and g1 parameters

of the HDW1 Hamiltonian are taken into account (they
should be taken from the spectral deconvolution for the

specific spectrum) together with the variable rate constant

of the irreversible process |DW1〉 → χ (the χ state is other

than ϕ0 [5]). The model of this kind was considered in [34].
Among the results of this study, it is worth to note the

oscillating dependence (quantum beats) of population of

the states in question, which develops on the background

of exponential decrease related to the transitions similar to

|DW1〉 → χ . Subsequent calculations could be complicated

by taking into account parameters of the |DW2〉-state, w2

and g2, the |DW2〉 → χ′ transition, etc. It must be noted

that quantum beats were observed experimentally for the

molecule of pyrazine [11,12].
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