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Dyakonov Surface Waves at the Boundary of Anisotropic Biaxial Crystals
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A general approach to analysis of Dyakonov surface waves at the interfaces of anisotropic biaxial crystals is

proposed, taking into account arbitrary spatial orientation of the media tensors principal axes. This approach is

based on the operator representation of macroscopic Maxwell equations corresponding to the quantum-mechanical

equations for photon states in an inhomogeneous anisotropic media. Surface wave dispersion law is investigated in

the most general case. It is established that the interface eigenmode dispersion is closely related to the dispersion

of bulk waves in the partnering media, which is a specific feature of Dyakonov waves. The electromagnetic field

spatial distribution is investigated in the direction orthogonal to the boundary plane. The surface wave angular

existence domain is determined. It’s dependencies on the rotation angles of the media optical axes are studied as

well.
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Introduction

Surface electromagnetic waves are a special type of

electromagnetic fields, the energy of which is localized

near the boundaries of media with different permittivity

or permeability. A separate class of surface waves in-

cludes waves whose existence is caused by a jump in

the anisotropic properties of materials at the interface.

The first theoretical predictions of the possibility of the

existence of electromagnetic waves propagating along the

interfaces of anisotropic crystals were made in the works of

F.M. Marchevsky [1] and M.I. Dyakonov [2]. In the future,

surface waves of this type were called Dyakonov waves and

for a long time were the object of only theoretical studies.

However, after their experimental detection [3–6], this type
of surface waves has gained some prospects in terms of the

possibility of their use in various photonics and integrated

optics devices [7,8].

Theoretical studies [1,2] initially considered surface waves

arising on the heterogeneous boundary of an isotropic

medium and an anisotropic uniaxial crystal, whose optical

axis lies in the plane of the interface. It was shown that

excitation of surface waves in such structures is possible

only in a small angular range in the interface plane. The di-

rectional diagram and its angular distribution are determined

by the values of the components of the permittivity tensor

of an anisotropic material and the orientation of its principal

axes relative to the interface plane. In the following, the

problem of propagation of Dyakonov surface waves along

the interfaces of isotropic and anisotropic biaxial crystals

was solved [9–13]. The literature has also considered more

complex structures formed by identical uniaxial [14] and

biaxial [15] materials. Only some particular cases of biaxial

crystal interfaces with relatively simple spatial orientations of

their optical axes were analyzed. In addition, other varieties

of Dyakonov waves, the existence of which is possible at the

interfaces of other types of substances, such as hyperbolic,

chiral and bianisotropic materials [16–19], as well as arising
in limited media [20–23] have been studied in the literature.

This paper proposes the most general approach to the

analysis of Dyakonov surface waves at the interfaces of

anisotropic biaxial crystals with arbitrary orientation of the

principal axes of their dielectric and magnetic permeabilities.

The developed theoretical approach is based on the operator

representation of Maxwell equations [24], which allows

us to formulate the problem of determining the interface

eigenmodes of the electrodynamic system under study as

the problem of finding the eigennumbers and eigenvectors

of the Hermitian operator in the one-photon Hilbert space.

With the help of this method, the law of dispersion of

Dyakonov surface waves is calculated, the angular range of

their existence and its dependence on the angle of rotation

of the optical axes of the media relative to each other are

studied, and the spatial distribution of the electromagnetic

field in the structures in question is determined.

1. Surface electromagnetic modes at the
interface of anisotropic media

Consider a heterogeneous boundary between two arbi-

trarily oriented anisotropic media. Let the plane xy of the

Cartesian coordinate system lie in the plane of the interface

(Fig. 1). Let’s assume that the medium 1 is located in

the area z < 0, and the medium 2 — in the area z > 0.

The corresponding tensors of permittivity or permeability

are denoted as ε1, ε2 and µ1, µ2. The wave vector of the
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Figure 1. Partition boundary and entered coordinate system.

electromagnetic wave k is directed at an angle ϕ to the

axis x in the interface plane.

The stationary Maxwell equations for the complex ampli-

tudes of the electromagnetic field in the absence of sources

have the following form:

∇×H = −i
ω

c
εE,

∇× E = i
ω

c
µH. (1)

In the general case of anisotropic media, ε and µ must be

understood as tensors of dielectric permittivity and magnetic

permeability.

As was shown in [24], equations (1) are one of possible

representations of the following operator equations:

ic(ŝ · k̂)|H〉 = ωε̂|E〉,

−ic(ŝ · k̂)|E〉 = ωµ̂|H〉. (2)

Here ŝ, k̂ — Hermitian operators of the spin momentum

s = 1 and wave vector, respectively. The media parameters

are described by Hermitian operators of permittivity and

permeability ε̂ and µ̂. Two photon state vectors |E〉 and |H〉
in the complex one-particle Hilbert space are corresponded

to the electromagnetic field strengths.

Using auxiliary operators and state vectors

�̂ = ic ε̂−1/2(ŝ · k̂)µ̂−1/2,

�̂+ = −icµ̂−1/2(ŝ · k̂)ε̂−1/2,

|Ẽ〉 = ε̂1/2|E〉,
|H̃〉 = µ̂1/2|H〉

equations (2) can be reduced to two equations to find

the eigennumbers ω2
v and eigenvectors |Ẽv〉 and H̃v〉 of

Hermitian operators

�̂�̂+|Ẽv〉 = ω2
v |Ẽv〉,

�̂+�̂|H̃v〉 = ω2
v |H̃v〉. (3)

The eigenvectors defined in this way are orthogonal and can

be normalized to unity

〈Ẽv |Ẽv′〉 = δvv′ ,

〈H̃v |H̃v′〉 = δvv′ .

These states of the photon in a certain basis will describe its

energy-normalized electromagnetic eigenmodes, including

the surface ones.

As a basis, consider photon states with a certain coor-

dinate |x〉 and a certain linear polarization along the axes

of the Cartesian coordinate system |i〉, where i = 1, 2, 3

or i = x , y, z . We define it as the direct product of

these vectors |x, i〉 = |x〉 ⊗ |i〉. The resulting set of states

satisfies the following conditions of orthonormality and

completeness:

〈x, i|x′ j〉 = δ(x− x′)δi j,

∑

i

∫

dx|x, i〉〈x, i| = 1.

Later we will use this representation to determine the spatial

distribution of the components of the electromagnetic field

strengths.

Surface waves are localized solutions of field equations

near the interface (3). This allows us to introduce a

spatial constraint of the system in question along the axis z
perpendicular to the plane of the interface, and to consider

two dielectric layers of finite thickness approximately. Next,

we carry out a periodic continuation of the system in

question along the axis z . This greatly simplifies the

numerical solution of Maxwell’s equations, since in this

case there is no need to solve the corresponding differential

equations, and the problem itself is reduced to the search for

eigennumbers and eigencolumns of the Hermitian matrix.

Interface eigenmodes and corresponding eigenfrequencies

arise in this approach naturally as stationary solutions of

the original problem satisfying the necessary boundary

conditions. Within one period of the system in question, the

solution of Maxwell’s equations, corresponding to surface

waves, approximates the solution of the problem for two

semi-infinite spaces. In this case, the choice of a sufficiently

large thickness of dielectric layers allows one to achieve the

required approximation accuracy.

In accordance with the described transition to a periodic

structure similar to a photonic crystal, it is natural to

introduce direct and reciprocal lattices. Arbitrary translation

vectors of the direct a and reciprocal b lattices of a three-

dimensional photonic crystal are defined as follows:

a = n1a1 + n2a2 + n3a3,

b = m1b1 + m2b2 + m3b3,

where a1,2,3 and b1,2,3 — the main vectors of translations,

ni, mi = 0,±1,±2, . . .. It is assumed that all the previously

considered operators have translational symmetry.
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As a basis for the representation of the operator equa-

tions (3), we will use the photon states with a certain value

of the wave vector, which in the translationally invariant

system is conveniently represented as a sum of b + k, where

k —the wave vector in the Brillouin zone of the photonic

crystal.

Similar to the coordinate representation, we define a basis

with a certain value of the wave vector and a certain linear

polarization |b + k, i〉 = |b + k〉 ⊗ |i〉. This set of states is

also orthonormal and complete, i. e. satisfies the relations

〈b + k, i|b′ + k′, j〉 = δbb′δkk′δi j ,

∑

b,k,i

|b + k, i〉〈b + k, i| = 1.

The relation between vectors |x, i〉 and |b + k, i〉 is

determined by the following unitary transformation:

|b + k, i〉 =
∑

j

∫

V

dx|x, j〉〈x, j|b + k, i〉,

〈x, j|b + k, i〉 =
1√
V

exp[i(b + k)x]δ ji ,

where V = NV0 — the total volume of the photonic crystal,

N —the number of its unite-cells, V0 —the volume of

the unite-cell. In the case of one-dimensional periodic

continuation, which we introduced to analyze surface

modes, the three-dimensional volume quantities V0 and V
are reduced to lengths L0 and L, respectively.
Using a basis with a certain value of the wave vector and

a certain polarization, we can obtain a system of matrix

equations similar to (3). It turns out that all operators

and eigenvectors in the basis |b + k, i〉 are diagonal with

respect to k and k′ indices, i.e. they look like block-diagonal

matrices. This reduces the problem to finding eigennumbers

and eigencolumns of matrices parametrically dependent on

the vector k:

�(k)�+(k)Ẽv(k) = ω2
v(k)Ẽv (k),

�+(k)�(k)H̃v (k) = ω2
v(k)H̃v (k). (4)

Then, using auxiliary eigenvectors, the initial state vec-

tors of the photon corresponding to the v-th mode are

determined. In the considered representation, the initial

(true) field strengths corresponding to the v-th mode are

determined from the relations

Hv(k) = µ
−1/2H̃v(k),

Ev(k) = ε
−1/2Ẽv(k).

Their components Ebi,v(k) and Hbi,v(k) allow to calculate

the spatial distribution of the components of the electromag-

netic field strength vectors

Ei,vk(x) =
1√
V

∑

b

Ebi,v(k) exp[i(b + k)x],

Hi,vk(x) =
1√
V

∑

b

Hbi,v(k) exp[i(b + k)x]. (5)

Thus, using the periodic continuation of the system

in question and solving the problem in the basis of

photon states with a certain value of the wave vector and

polarization, we have made the transition from continuous

coordinates to discrete variables, and reduced the system

of Maxwell differential equations (1) to a system of linear

algebraic equations (4). By solving this system, we

can determine the dispersion law ω(k) and the spatial

distribution of the eigenmode field in the structure under

study.

2. Results of numerical modelling

In Section 2, we will apply the previously described

method to analyze the surface eigenmodes at the interface

of two anisotropic biaxial materials. For this purpose, let

us introduce two functions f 1(z ) and f 2(z ), determining

the coordinate dependence of the tensors of permittivity

and permeability ε(z ), µ(z ) in each medium. Let the

functions f 1(z ) and f 2(z ) be equal to one in the areas

−d < z < 0 and 0 < z < d occupied by the first and

second media, respectively, and equal to zero at other

values of coordinate z . Then, for the components of the

permittivity and permeability tensors, we obtain

εi j(z ) = ε1i j f 1(z ) + ε2i j f 2(z ),

µi j(z ) = µ1
i j f 1(z ) + µ2

i j f 2(z ),

where ε1,2i j , µ1,2
i j — tensor components in the areas occupied

by each material.

Let us first consider the simplest case of the spatial

orientation of anisotropic crystals forming an interface in

which the principle axes of their permittivities coincide with

the axes of the chosen coordinate system. Set the values of

the components as follows:

ε
1 =





11 0 0

0 12 0

0 0 6



 , ε
2 =





15 0 0

0 10 0

0 0 5



 ,

µ
1 = µ

2 =





1 0 0

0 1 0

0 0 1



 .

Next, we will also analyze the question of the existence

of surface waves when the mutual spatial orientation of the

dielectric tensors changes. To this end, rotate the crystal 1

with respect to the axes z and y , defining the corresponding

rotation angles as ξ and η. The rotation matrices Rz (ξ) and

Ry (η) can be represented as

Rz (ξ) =





cos ξ − sin ξ 0

sin ξ cos ξ 0

0 0 1



 ,

Ry (η) =





cos η 0 sin η

0 1 0

− sin η 0 cos η



 .
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The new values of the components of the permittivity tensor

ε
1 after rotation can be calculated from the components of

the original tensor ε1o by the formula

ε
1 = R(ξ, η)ε1oR

T (ξ, η), R(ξ, η) = Rz (ξ)Ry (η).

As a unit of length, we choose the period of the system —
the linear size of the lattice unite-cell L0. Then, the

thickness of the dielectric layers d = 0.5L0, and the units

of the wave vector and frequency are defined as k0 = 1/L0

and ω0 = ck0, respectively. We take the modulus of

the wave vector to be k = 200k0. The reciprocal lattice

vector directed along the axis z is defined as bn = 2πn/L0,

where n = −Nb . . . 0 . . . Nb, the number Nb = 75, with the

dimension of matrix �(k) equal to 453× 453. Note, that

for a given value of the vector modulus k, the ratio of

electromagnetic wave length to system period does not

exceed the value λ/L0
∼= 1/(kL0) = 0.005.

Setting the structure parameters and determining the

eigennumbers of the matrices in equations (4), we obtain

the law of dispersion of eigenmodes ω(k), which we will

further represent as a dependence of the refraction index

on the wave vector n(k). Fig. 2 shows the calculated

dependences n1(k) and n2(k), corresponding to the bulk

waves propagating in one of the interface-forming materials.

At certain values of the components of the media permit-

tivity tensors, the laws of dispersion of bulk waves overlap

each other. This means that in the direction of the wave

vector corresponding to the intersection axis, it is possible

to excite electromagnetic waves in both media at the same

frequency. In this case, it turns out that in a small range of

1ϕ directions, another dispersion branch is possible, which

corresponds to its interface eigenmodes.

In the case we consider, the curves n1(k) and n2(k) are

symmetric ellipses. Therefore, it is sufficient to consider one

of the angular intervals 1ϕ located in the first quadrant of

the plane xy . The result of calculating the surface wave

dispersion law no(k) near the intersection axis is shown

in Fig. 3. The dependence no on the wave vector k

appears only in a small range of angles, defining the angular

existence domain of Dyakonov waves. The boundaries of

the existence domain are designated as ϕ′, ϕ′′, with the axis

of intersection of the laws of dispersion of volume waves

located at an angle of ϕo . In the propagation directions ϕ′

and ϕ′′, the law of dispersion of surface waves is completely

transformed into the law of dispersion of bulk waves in one

of the media.

When using the method based on the periodic contin-

uation of the system and the application of the Fourier

decomposition, there is a question about the convergence

of the calculation results. Consider, how the dispersion

law of surface waves no(k, N) changes as the number of

harmonics N = 2Nb + 1 increases. For this purpose, we fix

the vector k in the direction of the angle ϕo and determine

the relative change in the refraction index as the number N
increases:

δno(N) =
no(N) − no(N + 1)

no(N)
.
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Figure 2. Sections of the dispersion surfaces n1(k) and n2(k) of

bulk waves in the xy plane in media 1 and 2.
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Figure 3. The law of dispersion of surface waves no(k).

Figure 4 shows the result of calculating the dependence

δno(N). Note, that for small values of N the structure of

dielectric layers with a sharp jump in permittivity cannot be

approximated satisfactorily. However, with a larger number

of harmonics, the dependence δno(N) tends monotonically

to zero, and the dispersion law of the interface eigenmodes

practically ceases to depend on the number of Fourier

components.

Let us fix the direction of the vector k along the

intersection axis ϕo and determine the spatial distribution

of the vectors of electromagnetic field strengths by restoring

them using the relations (5). The result is shown in Fig. 5, 6.

The obtained dependencies confirm that the calculated

dispersion law no(k) corresponds to the electromagnetic

Technical Physics, 2022, Vol. 67, No. 11
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index of the surface wave on the number of Fourier harmonics

used.
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Figure 5. Spatial distribution of the moduli components of the

electric field strength vector E(z ).

waves damped in each of the materials as they move away

from the interface plane and allow us to estimate the degree

of their localization.

Let us analyze the change in the angular existence

domain of Dyakonov surface waves when changing the

spatial orientation of anisotropic media relative to each other.

Consider the rotation of crystal 1 with respect to the axis

perpendicular to the interface. The result of calculating

the dependence of the angular range of the existence of

surface waves on the rotation angle ξ of the medium 1

relative to the axis z is shown in Fig. 7 for the I and

IV quadrants of the plane xy . As the orientation of the

axes of the permittivity tensor of one of the media changes,

the symmetrical arrangement of the angular domains of

existence is broken. In this case, surface waves can

propagate at any angle ξ , but the angular ranges lying in

different quadrants of the interface plane are of different

magnitude.

Next, consider a similar rotation of crystal 1 at an angle η

with respect to one of the axes lying in the plane of the

boundary (axis y). The value of the angle ξ is assumed to

be zero. The result of calculating the dependence of the

angular existence domain of surface waves on η is shown

in Fig. 8. In this case, the angular ranges from the different

quadrants of the interface plane change symmetrically. The

greatest width of the angular range of existence is observed

at η = 0. In this case, there are critical values of the rotation

angle, at which the angular existence domain of Dyakonov

surface waves disappears completely.

–0.2 –0.1 0 0.1 0.2
0

1

2

3

|H
(z

)|
, 
a.

 u
.

z/L , a. u.0

|H |x
|H |y
|H |z

Figure 6. Spatial distribution of the moduli of the magnetic field

vector components H(z ).

–90 –60 0 30 90
–90

–45

0

45

90

ξ, deg
60–30

ϕ
, 
d
eg

ϕ
o

ϕ', ϕ"

Figure 7. Dependence of the angular range of existence of surface

waves on the rotation angle ξ of the medium 1 with respect to the

axis z .
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Figure 8. Dependence of the angular range of existence of surface

waves on the angle of rotation η of the medium 1 with respect to

the axis y .

Conclusion

This paper proposes a general approach to the analysis

of Dyakonov surface waves propagating along interfaces

formed by arbitrarily oriented anisotropic biaxial crystals. It

is assumed that the anisotropic properties of these crystals,

described by the tensors of permittivity and permeability,

are generally different. The developed theoretical apparatus

is based on the use of the operator representation of

Maxwell’s equations, which allows us to formulate the

problem of determining the surface eigenmodes of the

interface as a problem for finding eigennumbers and vectors

of Hermitian operators. Within the framework of this

method, the law of dispersion of Dyakonov surface waves

in the form of the dependence of the refraction index on

the wave vector is defined. The relations between the law

of dispersion of bulk electromagnetic waves propagating

in each of the boundary media and the dispersion of

Dyakonov surface waves has been established. Essential

in this case is the presence of the intersection of surfaces

of the refraction indices of bulk waves in these media in

the plane of the boundary. The section of the dispersion

surface corresponding to the interface eigenmodes appears

near the specified intersection. The dependences of the

angular existence domain of the Dyakonov waves on the

angles of relative rotation of the media were investigated

in the work. The calculated dependencies made it possible

to determine, at which spatial orientations of anisotropic

crystals the surface electromagnetic waves can propagate,

and in which cases the maximum value of the angular

domain of their existence is achieved.
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