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Fourier analysis of modes of microstructured optical fibers
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An vectorial mode solver for microstructured optical fibers based on the representation of the longitudinal

components of the mode fields at the interfaces of media in the fiber cross section by Fourier series in angular

variables is formulated. The coefficients of the series are found from a homogeneous algebraic system solved by

the reduction method. The matrix elements of the system are determined on the basis of the Green’s theorem,

which is considered in the internal and external regions of the fiber cross section and the inclusions that form the

microstructure. The elements are represented by regular integrals, i.e. difficulties associated with the singularities

of the Green’s functions are absent. The applicability of the approach is limited only by the requirement that

the contours of the inclusions and the outer boundary of the fiber are described by single-valued functions of the

angular variables. In the special case of a circular dielectric waveguide, the method gives an exact analytical solution

of the waveguide problem. Estimates are obtained for the internal convergence of the method in computing the

modes of a dielectric elliptical waveguide and microstructural fibers with elliptical inclusions. It is established that

the attenuation coefficients of the modes caused by radiation leakage from the fiber core are significantly affected

by both the internal microstructure and the outer fiber boundary.
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Introduction

Microstructural optical fibers (MOFs), the cross section

of which contains a system of dielectric inclusions, are

widely used in optical communication and information

processing systems. To optimize such fibers, efficient

methods for analyzing their mode characteristics are needed.

MOF modes do not allow a rigorous analytical calculation.

Therefore, numerical methods are of great practical impor-

tance, making it possible to obtain a successively refined

solution of the vector waveguide problem [1]. At the present
time, in the theory of open dielectric waveguides, which

include MOFs, variational and finite-difference methods

have become widespread [1]. Their common feature is

the use of a computational window limited in space. This

makes it difficult to study the modes of open waveguides

located in the vicinity of critical and supercritical conditions.

The latter conditions take place in the presence of radiation

leak from the waveguide channel and are characteristic

for MOFs. These limitations can be eliminated by the

method of contour integral equations [1–4] and the method

of Green’s functions [5]. The latter method includes the

multipole method [6,7] and the method using Rayleigh

series for the electromagnetic field components inside and

outside the waveguide channel [8]. In these approaches, the

components of the electromagnetic field of the mode at the

interfaces between the media, or in closed regions of space

are required, and the correct asymptotics of the field with

increasing distance from the waveguide is provided by the

two-dimensional Green’s function. However, in the numer-

ical solution of contour integral equations, difficulties arise

due to the singularity of the Green’s function. Various ways

to overcome these difficulties are discussed in [1–4]. As

applied to MOFs, the corresponding results were obtained

without taking into account the interaction of their modes

with the outer boundary of fiber, which can significantly

affect the attenuation of the modes [5,9,10]. This limitation

can be overcome using the Green’s function method [5].
This method is based on solving systems of equations of

coupled waves with respect to the amplitudes of the Fourier

expansions of the components of mode electromagnetic field

by angular coordinates in the regions of inclusions. But it is

effective only for MOFs containing inclusions with circular

symmetry [5]. If this symmetry is violated, the above

expansions are not absolutely convergent. This gives rise

to the asymptotic nature of the obtained solution, which

manifests itself in the instability of the results for the mode

characteristics with respect to the order of reduction of

the Fourier series. Besides, the Green’s function method

is applicable to a limited class of MOFs whose cross-

section contains only elements that can be enclosed in non-

intersecting circles [5].
In this paper, we propose a more efficient analogue of

the Green’s function method. It uses Fourier polynomials

by angular coordinates for the longitudinal components of

the MOF mode field, given at the boundaries of inclusions
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and the outer boundary of the fiber. The amplitudes of the

Fourier harmonics are found from a homogeneous algebraic

system. Its matrix elements are determined on the basis

of Green’s theorem, considered in turn in all homogeneous

regions of the structure. The calculation of matrix elements

is reduced to the numerical calculation of integrals of

regular functions, and there are no difficulties caused by

the singularities of the Green’s functions. A formulation

of the dispersion equation for MOF modes is obtained,

which does not require direct calculation of the system

determinant, which makes it possible to avoid exceeded

word length of the computer. The method applicability is

limited only by the requirement that the contours of the

channel generatrices and the outer boundary of the MOFs

are described by single-valued functions of the angular

coordinates. In the particular case of a homogeneous fiber

with a circular cross-section, the method results in the well-

known rigorous solution of the waveguide problem. The

internal convergence of the method with respect to the

order of the Fourier polynomials was estimated using the

examples of calculating the modes of a dielectric waveguide

with elliptical cross-section and the MOF modes formed

by elliptical air channels in quartz glass. The dispersion

dependences for the modes of the elliptical waveguide are

compared with the literature data. The effects of modal

birefringence and dichroism caused by the radiation leak

from the waveguide channel and the influence of the fiber

outer boundary on these effects are studied for the MOF.

1. Modes Fourier analysis

The cross-section of the considered fibers is shown

schematically in Fig. 1.

The outer boundary of the MOF is closed and is

described by single-valued function r = ρ0(ϕ), where r
and ϕ are global polar coordinates (x = r cosϕ,
y = r sinϕ) with origin 0 (Fig. 1). Media are considered

non-magnetic with relative magnetic permeability µ = 1.

The MOF environment is homogeneous and has a relative

permittivity εc . Inside MOF (region r < ρ0(ϕ)) there are

inclusions with numbers k = 1, N surrounded by homoge-

neous medium with permittivity εs . The media inside the

inclusions are also homogeneous. The permittivity of the

kth inclusion is equal to εk (k = 1, N). The boundary

of the inclusion is closed and is described by the single-

valued function rk = ρk(ϕ), where rk and ϕk are polar

coordinates of the point in the local coordinate system of the

inclusion. It is assumed that the origin of the k-th inclusion,

which has global Cartesian coordinates x0k , y0k , can be

enclosed in some circle of radius ak < ρk(ϕk), entirely

located inside the inclusion (Fig. 1). The permittivities

εc , εs , εk (k = 1, N) are generally complex.

All components of the mode field with dependence

from time t and coordinate z in the form exp(iωt−ik0βz )
(k0 = 2π/λ — vacuum wavenumber, β — dimensionless

mode propagation constant) propagating along the waveg-
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Figure 1. a — general view of the cross-section of the studied

fibers, b — MOF with elliptical air channels.

uide axis 0z , can be expressed in terms of the longitudinal

components of this field Ez and Hz [11], which throughout

the space comply with the equations

∂2Ez

∂x2
+

∂2Ez

∂y2
+ k2

0χ
2
s Ez = f 1, (1)

∂2Hz

∂x2
+

∂2Hz

∂y2
+ k2

0χ
2
s Hz = f 2, (2)

where

f 1 = −
χ2

εε0

{

k0β

ω

[

∂χ−2

∂x
∂Hz

∂y
−

∂χ−2

∂y
∂Hz

∂x

]

+
∂(εε0χ

−2)

∂x
∂Ez

∂x
+

∂(εε0χ
−2)

∂y
∂Ez

∂y

}

− k2
0(ε − εs )Ez ,
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f 2 = −
k0β

ωµ0

[

∂χ−2

∂y
∂Ez

∂x
−

∂χ−2

∂x
∂Ez

∂y

]

−
∂χ−2

∂x
∂Hz

∂x
−

∂χ−2

∂y
∂Hz

∂y
− k2

0(ε − εs )Hz ,

χ2s = εs−β2, χ2 = k2
0(ε−β2), ε0 and µ0 are dielectric and

magnetic permeability of vacuum, relative permittivity of

space ε(x , y) is a step function of coordinates.

Applying Green’s theorem [12] to equations (1), (2) in

the domain r < ρ0(ϕ) according to the scheme described

in [5], leads to functional equations

2π
∫

0

dϕ′
√

ρ′2
0 + ρ2

0

[

8l(r
′)
∂Gs

∂n′
− Gs

∂8l(r
′)

∂n′

]

r ′=ρ0(ϕ′)−0

−
N

∑

k=1

2π
∫

0

dϕ′
k

√

ρ′2
k + ρ2

k

×

[

8l(r
′)
∂Gs

∂n′
− Gs

∂8l(r
′)

∂n′

]

r ′k=ρk (ϕ′

k)+0

= 0 (3)

and quadrature formulas

2π
∫

0

dϕ′
√

ρ′2
0 + ρ2

0

[

8l(r
′)
∂Gs

∂n′
− Gs

∂8l(r
′)

∂n′

]

r ′=ρ0(ϕ′)−0

−

N
∑

k=1

2π
∫

0

dϕ′
k

√

ρ′2
k + ρ2

k

×

[

8l(r
′)
∂Gs

∂n′
− Gs

∂8l(r
′)

∂n′

]

r ′k=ρk (ϕ′

k)+0

= 8l(r). (4)

Here

l = 1, 2, 81 = Hz , 82 = Ēz =
√

ε0/µ0Ez ,

ρ′
0 = (dρ0/dϕ)ϕ=ϕ′ , ρ0 = ρ0(ϕ

′),

ρ′
k = (dρk/dϕk)ϕk =ϕ′

k
, ρk = ρk(ϕ

′
k),

Gs = 0.25iH(2)
0 (k0χs |r− r′|),

— two-dimensional Green’s function for a homogeneous

medium with permittivity εs (H(2)
0 (. . .) — Hankel func-

tion), r and r′ are radius vectors of observation points and

integration contours, respectively; r ′, ϕ′ are polar coordi-

nates of the radius vector r′ in the global coordinate system,

r ′k , ϕ
′
k are polar coordinates of the same vector in local

coordinate systems of inclusions (k = 1, N); ∂/∂n′ denote

derivatives by the directions of external perpendiculars to

the integration contours. Equations (3) are valid if the point

of observation r is located either in the regions of inclusions

or outside the MOF (r > ρ0(ϕ)), and (4) — if this point

is located inside the MOF (r < ρ0(ϕ)), but outside the

inclusions.

Similarly, applying Green’s theorem to equations (1), (2)
in the MOF environment and in the internal regions of

inclusions, we obtain

2π
∫

0

dϕ′
√

ρ′2
0 + ρ2

0

[

8l(r
′)
∂Gc

∂n′
− Gc

∂8l(r
′)

∂n′

]

r ′=ρ0(ϕ′)+0

= 0

(

r < ρ0(ϕ)
)

, (5)

2π
∫

0

dϕ′
√

ρ′2
0 + ρ2

0

[

8l(r
′)
∂Gc

∂n′
− Gc

∂8l(r
′)

∂n′

]

r ′=ρ0(ϕ′)+0

= −8l(r)
(

r > ρ0(ϕ)
)

, (6)

where Gc = 0.25iH(2)
0 (k0χc |r−r′|), χc =

√

εc − β2,

Re χc > 0 and Im χc < 0 for leaking and waveguide MOF

modes, respectively;

2π
∫

0

dϕ′
k

√

ρ′2
k + ρ2

k

[

8l(r
′)
∂Gk

∂n′
− Gk

∂8l(r
′)

∂n′

]

r ′=ρk (ϕ′

k)−0

= 0

(

rk < ρk(ϕk)
)

, (7)

2π
∫

0

dϕ′
k

√

ρ′2
k + ρ2

k

[

8l(r
′)
∂Gk

∂n′
− Gk

∂8l(r
′)

∂n′

]

r ′=ρk (ϕ′

k)−0

= 8l(r)
(

rk > ρk(ϕk)
)

, (8)

where Gk = 0.25iH(2)
0 (k0χk |r− r′|), χk =

√

εk − β2,

k = 1, N.

In order to algebraize equations (3), (5), (7) we represent
the functions 8l(r

′) and ∂8l(r
′)/∂n′ on integration contours

in the form of Fourier polynomials:

Hz

∣

∣

r ′k=ρk
=

m
∑

ν=−m

h(k)
ν exp(iνϕ′

k),

Ēz

∣

∣

r ′k=ρk
=

m
∑

ν=−m

e(k)
ν exp(iνϕ′

k), (9)

∂Hz

∂n′

∣

∣

∣

∣

r ′=ρk−0

=

m
∑

ν=−m

h′(k)
ν exp(iνϕ′

k),

∂Ēz

∂n′

∣

∣

∣

∣

r ′=ρk−0

=

m
∑

ν=−m

e′(k)
ν exp(iνϕ′

k), (10)

Hz

∣

∣

r ′=ρ0
=

m
∑

ν=−m

h(0)
ν exp(iνϕ′),

Ēz

∣

∣

r ′=ρ0
=

m
∑

ν=−m

e(0)
ν exp(iνϕ′), (11)

∂Hz

∂n′

∣

∣

∣

∣

r ′=ρ0+0

=

m
∑

ν=−m

h′(0)
ν exp(iνϕ′),
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∂Ēz

∂n′

∣

∣

∣

∣

r ′=ρ0+0

=
m

∑

ν=−m

e′(0)ν exp(iνϕ′), (12)

where m — order of polynomials, h(k)
ν , h′(k)

ν , e(k)
ν , e′(k)

ν —
unknown coefficients (k = 0, N).
Note that, in accordance with the Graph addition theorem

for cylindrical functions [13]:

H(2)
0 (κ|r− r′|) =

∞
∑

µ=−∞

exp[iµ(ϕ − ϕ′)]

×

{

Jµ(κr)H(2)
µ (κr ′) at r < r ′,

Jµ(κr ′)H(2)
µ (κr) at r > r ′,

(13)

where κ — some constant, Jµ(. . .) — Bessel function; r, ϕ
and r ′, ϕ′ — polar coordinates of the radius vectors r and r′

in some coordinate system, and that the projection of the

gradient vectors of the Hankel functions onto the directions

of the perpendiculars to the integration contours in (3)−(8)
leads to the relations

∂Gs ,c

∂n′
=

(

ρ0
∂Gs ,c

∂r ′
−

ρ′
0

ρ0

∂Gs ,c

∂ϕ′

)

r ′=ρ0

(ρ′2
0 − ρ2

0)
−0.5,

(14)
∂Gs ,k

∂n′
=

(

ρk
∂Gs ,k

∂r ′k
−

ρ′
k

ρk

∂Gs ,k

∂ϕ′
k

)

r ′k=ρk

(ρ′2
k − ρ2

k )
−0.5.

(15)
Formulas (5), (7), (13)−(15) make it possible to establish

a relationship between the expansion coefficients (9)−(12).
Indeed, let us describe a certain circle of radius a < ρ0(ϕ)
around the origin of the global coordinate system 0. As

follows from (5), (11), (12), (14), within this circle

∞
∑

µ=−∞

Jµ(k0χcr) exp(iµϕ)

m
∑

ν=−m

(

K(0)
µν h(0)

ν + L(0)
µν h′(0)

ν

)

= 0,

(16)
where

K(0)
µν =

2π
∫

0

dϕ′

{

k0χcρ0H ′(2)
µ (k0χcρ0)

+ iµ
ρ′
0

ρ0
H(2)

µ (k0χcρ0) exp[i(ν − µ)ϕ′]

}

, (17)

L(0)
µν =

2π
∫

0

dϕ′
√

ρ′2
0 + ρ2

0 H(2)
µ (k0χcρ0) exp[i(ν − µ)ϕ′],

(18)

H ′(2)
µ (. . .) denotes the derivative of the Hankel function

H(2)
µ (. . .) with respect to each of arguments. Considering

that the functions Jµ(k0χcr) exp(iµϕ) in (16) related to

different µ are linearly independent and limited in the

external sum in (16) by terms with µ = −m, m we conclude

that

h′(0)
ν =

m
∑

µ=−m

Z(0)
νµ h(0)

µ , (19)

where

Z(0)
νµ =

m
∑

σ=−m

L(0)−1
νσ K(0)

σµ ,

L(0)−1 — matrix inverse to the matrix L(0) of the form (18).
Similarly

e′(0)ν =
m

∑

µ=−m

Z(0)
νµ e(0)

µ . (20)

Similar transformations of equations (7) consider-

ing (9), (10), (13), (15) lead to the relations

h′(k)
ν =

m
∑

µ=−m

Z(k)
νµ h(k)

µ , (21)

e′(k)
ν =

m
∑

µ=−m

Z(k)
νµ e(k)

µ , (22)

Z(k)
νµ =

m
∑

σ=−m

L(k)−1
νσ K(k)

σµ , (23)

K(k)
µν =

2π
∫

0

dϕ′
k

{

k0χkρkJ′
µ(k0χkρk)

+ iµ
ρ′

k

ρk
Jµ(k0χkρk) exp[i(ν − µ)ϕ′

k ]

}

, (24)

L(k)
µν =

2π
∫

0

dϕ′
k

√

ρ′2
k + ρ2

k

{

Jµ(k0χkρk) exp[i(ν − µ)ϕ′
k ]

}

,

(25)
where J′

µ(. . .) denotes the derivative of the function Jµ(. . .)

with respect to each of arguments, k = 1, N.

Let us now review equations (3). The derivatives

∂Hz /∂n′ and ∂Ēz /∂n′ entering into them differ from the

analogous derivatives in (10) and (12) in that they are

calculated striving to the interface of media from opposite

sides. It follows from the continuity conditions for the

tangential components of the electric and magnetic fields

at these interfaces that
(

∂Hz

∂n′

)

r ′=ρ−0

=
χ2s
χ2c

(

∂Hz

∂n′

)

r ′=ρ+0

+
β

√

ρ′2 + ρ2

×

(

1−
χ2s
χ2c

)(

∂Ēz

∂ϕ′

)

r ′=ρ

, (26)

(

∂Ēz

∂n′

)

r ′=ρ−0

=
χ2s εc

χ2c εs

(

∂Ēz

∂n′

)

r ′=ρ+0

−
β

εs

√

ρ′2 + ρ2

×

(

1−
χ2s
χ2c

)(

∂Hz

∂ϕ′

)

r ′=ρ

, (27)

(

∂Hz

∂n′

)

r ′=ρk +0

=
χ2s

χ2k

(

∂Hz

∂n′

)

r ′=ρk−0

+
β

√

ρ′2
k + ρ2

k

×

(

1−
χ2s

χ2k

)(

∂Ēz

∂ϕ′
k

)

r ′=ρk

, (28)
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(

∂Ēz

∂n′

)

r ′=ρk +0

=
χ2s εk

χ2k εs

(

∂Ēz

∂n′

)

r ′=ρk−0

−
β

εs

√

ρ′2
k + ρ2

k

×

(

1−
χ2s

χ2k

)(

∂Hz

∂ϕ′
k

)

r ′=ρk

. (29)

Formulas (26)−(29) allow the expansions (9)−(12) use in

equations (3).
Let us detail equations (3) for the case when the

observation point with the radius vector r is in the j-th
inclusion. Its polar coordinates in the local coordinate

system of the inclusion will be denoted by r j , ϕ j . Let

r j < a j (Fig. 1). To calculate the functions Gs , ∂Gs/∂n′

on the integration contours in (3), we use the local

coordinate system of the j-th inclusion. Denote the polar

coordinates of the boundary points of the k-th inclusion

by ρ jk , ϕ jk (if j = k , then ρ jk = ρk , ϕ jk = ϕ′
k), and the

outer boundary of the MOF is associated with the number

k = 0, so that the polar coordinates of its points are equal to

ρ j0, ϕ j0. It is clear from Fig. 1 that the inequalities r j < ρ jk

(k = 0, N) are met. Then, in accordance with (13), in all

integrals in (3):

Gs =0.25i
∞
∑

µ=−∞

exp[iµ(ϕ j−ϕ jk)]Jµ(k0χs r j)H
(2)
µ (k0χsρ jk).

(30)
To calculate the derivatives of ∂Gs/∂n′, note that

x0k + ρk cosϕ
′
k = x0 j + ρ jk cosϕ jk ,

y0k + ρk sinϕ
′
k = y0 j + ρ jk sinϕ jk , (31)

where x00 = y00 = 0, ϕ′
0 = ϕ′ . According to (31):

ρ jk =
√

(x0k−x0 j + ρk cosϕ
′
k)

2 + (y0k−y0 j + ρk sinϕ
′
k)

2,

(32)
∂ϕ jk

∂ρk
=

(x0k − x0 j) sinϕ
′
k − (y0k − y0 j) cosϕ

′
k

ρ2
jk

, (33)

∂ρ jk

∂ρk
=

(x0k − x0 j) cosϕ
′
k + (y0k − y0 j) sinϕ

′
k + ρk

ρ jk
, (34)

∂ρ jk

∂ϕ′
k

= −ρkρ jk
∂ϕ jk

∂ρk
, (35)

∂ϕ jk

∂ϕ′
k

=
ρk

ρ jk

∂ρ jk

∂ρk
. (36)

As follows from (15), (30)−(36):

∂Gs

∂n′
=

i

4

√

ρ′2
k + ρ2

k

∞
∑

µ=−∞

Jµ(k0χs r j) exp[iµ(ϕ j − ϕ jk ]

×

[

k0χsρkH ′(2)
µ (k0χsρ jk)

(

∂ρ jk

∂ρk
+

ρ′
kρ jk

ρk

∂ϕ jk

∂ρk

)

−iµH(2)
µ (k0χsρ jk)

(

ρk
∂ϕ jk

∂ρk
−

ρ′
k

ρ jk

∂ρ jk

∂ρk

)

]

. (37)

When relations (14), (15), (19), (22), (26)−(30), (37)
are taken into account, equations (3) for l = 1, 2 are

reduced to form

∞
∑

µ=−∞

Jµ(k0χs r j) exp(iµϕ j)

N
∑

k=0

m
∑

ν=−m

(

HH( jk)
µν h(k)

ν

+ HE( jk)
µν e(k)

ν

)

= 0, (38)

∞
∑

µ=−∞

Jµ(k0χs r j) exp(iµϕ j)

N
∑

k=0

m
∑

ν=−m

(

EH( jk)
µν h(k)

ν

+ EE( jk)
µν e(k)

ν

)

= 0, (39)

where

HH( jk)
µν = T1( jk)

µν −
χ2s

χ2k

m
∑

σ=−m

T2( jk)
µσ Z(k)

σ ν , (40)

EE( jk)
µν = T1( jk)

µν −
χ2s εk

χ2k εs

m
∑

σ=−m

T2( jk)
µσ Z(k)

σ ν , (41)

HE( jk)
µν = −iνβ

(

1−
χ2s

χ2k

)

T3( jk)
µν , (42)

EH( jk)
µν =

iνβ
εs

(

1−
χ2s

χ2k

)

T3( jk)
µν , (43)

T1( jk)
µν =

isk

4

2π
∫

0

dϕ′
k

[

k0χsρkH ′(2)
µ (k0χsρ jk)

×

(

∂ρ jk

∂ρk
+

ρ′
kρ jk

ρk

∂ϕ jk

∂ρk

)

− iµH(2)
µ (k0χsρ jk)

×

(

ρk
∂ϕ jk

∂ρk
−

ρ′
k

ρ jk

∂ρ jk

∂ρk

)

]

exp(iνϕ′
k − iµϕ jk), (44)

T2( jk)
µν =

isk

4

2π
∫

0

dϕ′
k

√

ρ′2
k + ρ2

k H(2)
µ (k0χsρ jk)

× exp(iνϕ′
k − iµϕ jk), (45)

T3( jk)
µν =

isk

4

2π
∫

0

dϕ′
kH(2)

µ (k0χsρ jk) exp(iνϕ
′
k − iµϕ jk),

(46)
sk = −1 at k > 0, and at k = 0, sk = 1, χk = χc , εk = εc .

Considering that in the studied region of change r j

the functions Jµ(k0χs r j ) exp(iµϕ j) related to different µs

are linearly independent and limited in external sums

in (38), (39) by terms with numbers µ = −m, m, we receive

the algebraic equations

N
∑

k=0

m
∑

ν=−m

(

HH( jk)
µν h(k)

ν + HE( jk)
µν e(k)

ν

)

= 0, (47)
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N
∑

k=0

m
∑

ν=−m

(

EH( jk)
µν h(k)

ν + EE( jk)
µν e(k)

ν

)

= 0, (48)

where µ = −m, m, j = 1, N.

Now let the observation point in (3) be outside the circle

of some radius a0 enclosing the MOF (Fig. 1, a). In this

case, to specify the functions Gs , ∂Gs/∂n′ on the integration

contours in (3), we use the global coordinate system in

Fig. 1, a. According to (13):

Gs = 0.25i
∞
∑

µ=−∞

exp[iµ(ϕ − ϕ0k)]Jµ(k0χsρ0k)H
(2)
µ (k0χs r),

(49)

∂Gs

∂n′
=

i

4

√

ρ′2
k + ρ2

k

∞
∑

µ=−∞

H(2)
µ (k0χs r) exp[iµ(ϕ − ϕ0k)]

×

[

k0χsρk J′
µ(k0χsρ0k)

(

∂ρ0k

∂ρk
+

ρ′
kρ0k

ρk

∂ϕ0k

∂ρk

)

− iµ Jµ(k0χsρ0k)

(

ρk
∂ϕ0k

∂ρk
−

ρ′
k

ρ0k

∂ρ0k

∂ρk

)]

. (50)

In accordance with (31)−(36) on the outer boundary

of the MOF, when calculating the matrix elements of

the system (47), (48), one should set k = 0, ρ0 = ρ00,

ϕ00 = ϕ′
0 = ϕ′, ∂ρ00/∂ρ0 = 1, ∂ϕ00/∂ρ0 = 0.

Substituting (49), (50) into (3) results in the equations

∞
∑

µ=−∞

H(2)
µ (k0χs r) exp(iµϕ)

N
∑

k=0

m
∑

ν=−m

(

HH(0k)
µν h(k)

ν

+ HE(0k)
µν e(k)

ν

)

= 0, (51)

∞
∑

µ=−∞

H(2)
µ (k0χs r) exp(iµϕ)

N
∑

k=0

m
∑

ν=−m

(

EH(0k)
µν h(k)

ν

+ EE(0k)
µν e(k)

ν

)

= 0. (52)

As in the case of equations (38), (39), from (51), (52) we

obtain

N
∑

k=0

m
∑

ν=−m

(

HH(0k)
µν h(k)

ν + HE(0k)
µν e(k)

ν

)

= 0, (53)

N
∑

k=0

m
∑

ν=−m

(

EH(0k)
µν h(k)

ν + EE(0k)
µν e(k)

ν

)

= 0, (54)

where µ = −m, m. The coefficients of algebraic equations

(53), (54) have the general form (40)−(43), but now

T1(0k)
µν =

isk

4

2π
∫

0

dϕ′
k

[

k0χsρk J′
µ(k0χsρ0k)

×

(

∂ρ0k

∂ρk
+

ρ′
kρ0k

ρk

∂ϕ0k

∂ρk

)

− iµ Jµ(k0χsρ0k)

×

(

ρk
∂ϕ0k

∂ρk
−

ρ′
k

ρ0k

∂ρ0k

∂ρk

)

]

exp(iνϕ′
k − iµϕ0k), (55)

T2(0k)
µν =

isk

4

2π
∫

0

dϕ′
k

√

ρ′2
k + ρ2

k Jµ(k0χsρ0k)

× exp(iνϕ′
k − iµϕ0k), (56)

T3(0k)
µν =

isk

4

2π
∫

0

dϕ′
k Jµ(k0χsρ0k) exp(iνϕ

′
k − iµϕ0k). (57)

Equations (47), (48), (53), (54) are a homogeneous

algebraic system

MX = 0 (58)

of dimension n × n, where n = (4m + 2)(N + 1), X —
column vector of dimension n, composed of expansion

coefficients (9), (11). As it follows from (44)−(46),
(55)−(57), the calculation of the matrix elements of the

system HH( jk)
µν , HE( jk)

µν , EH( jk)
µν , EE( jk)

µν is reduced to

numerical calculation of integrals from regular functions and

does not cause fundamental difficulties.

The condition for the existence of non-trivial solutions of

the system (58)
detM = 0 (59)

is a dispersion equation with respect to possible complex

propagation constants of MOF modes β . After solving

the dispersion equation, the mode field can be calculated.

If the rank of the matrix M is equal to n−1, as in the

case for all MOFs studied below, then all components of

the vector X can be expressed from (58) in terms of one

of its components. As a result, up to an arbitrary factor

that has the meaning of the mode amplitude, all expansion

coefficients (9), (11) will be found. The subsequent

calculation of the longitudinal components of the mode

field inside MOF and in the MOF environment can be

performed using quadrature formulas (4), (6), (8). The

lateral components of the mode field can be calculated by

differentiating the found longitudinal components [11].

2. Numerical examples

A special case of MOFs are homogeneous dielectric

waveguides surrounded by homogeneous media. In such a

situation, N = 0, and the calculation of waveguide modes

is reduced to solving a system of equations (53), (54),
where k = N = 0.

The simplest example of homogeneous waveguide is

a circular dielectric waveguide. In this case ρ0 is the

waveguide radius, and ρ′
0 = 0. Thanks to the last equality,

integrals (17), (18), (55)−(57) are taken analytically, which

leads to diagonal matrices

Z(0)
µν =

k0χcH ′(2)
µ (k0χcρ0)

H(2)
µ (k0χcρ0)

δµν , (60)

T1(00)
µν = 0.5πik0χsρ0 J′

µ(k0χsρ0)δµν , (61)

T2(00)
µν = 0.5πiρ0 Jµ(k0χsρ0)δµν , (62)

Technical Physics, 2022, Vol. 67, No. 12



Fourier analysis of modes of microstructured optical fibers 1659

0 1.6 2.00.80.4 1.2

B

0

0.8

0.2

0.6

0.4

1 0.

2 /b l

E11
x

E
11

y E
21

y

E21
x

ec = 1

es = 2 a b= 1.5

b

x

y

Figure 2. Dispersion dependences for four modes of the lowest

order of the elliptical waveguide of F = a/b = 1.5 format (insert),
calculated by the developed method (solid curves) and obtained

in [4] (discrete symbols).

T3(00)
µν = 0.5πi Jµ(k0χsρ0)δµν , (63)

where δµν — Kronecker symbol. As a result, sys-

tem (53), (54) splits into unrelated subsystems of two equa-

tions relative to e(0)
µ , h(0)

µ , where µ = 0,±1, . . .. The equal-

zero conditions for the determinants of these subsystems

lead to the well-known exact dispersion equation for the

modes of circular dielectric waveguide [11]. Thus, in this

example, the developed method gives a rigorous analytical

solution to the waveguide problem.

Another classic example of a homogeneous waveguide

is an elliptical dielectric waveguide. In principle, for such

waveguide the system of equations (1), (2) allows the

separation of variables in elliptic coordinates [14]. But

this leads to the difficult problem of the Mathieu functions

calculation [13,14]. A detailed calculation of the elliptical

waveguide was carried out in [4] by the method of contour

integral equations.

In the proposed approach the contour of the cross-section

of the elliptical waveguide is described by the functions

ρ0(ϕ) = ab(b2 cos2 ϕ + a2 sin2 ϕ)−1/2, (64)

ρ′
0(ϕ) = 0.5ab sin(2ϕ)(b2−a2)(b2 cos2 ϕ + a2 sin2 ϕ)−3/2,

(65)
where a and b — the lengths of the semi-axes of the ellipse

(Fig. 2). As follows from (55)−(57), (64), (65), under the
condition a 6= b the matrix M is dense, and the solution of

equation (59) can only be found numerically.

In Fig. 2, the dispersion dependences for four modes

of the lowest order of the elliptical waveguide of

F = a/b = 1.5 format, calculated by the above method,

are compared with the results of the paper [4]. Here

Table 1. Internal convergence of the developed method for

elliptical waveguide modes

Mode Ex
11 Ey

11 Ex
21 Ey

11

m B B B B

4 0.730388 0.699907 0.422658 0.267338

8 0.730520 0.700002 0.423185 0.267904

12 0.730510 0.700012 0.423179 0.267894

16 0.730510 0.700012 0.423178 0.267894

20 0.730510 0.700012 0.423178 0.267894

B = Re[(β2−εc)/(εs−εc)], and mode designations are used

indicating the main transverse component of their electric

field [15].

As can be seen from Fig. 2, the results of both approaches

coincide within the graphical errors.

Table 1, which refers to 2b/λ = 1, makes it possible

to judge the internal convergence of the proposed method

when calculating the curves in Fig. 2.

According to Table 1, the accuracy of calculating the

mode propagation constants acceptable for calculations

evaluation is already achieved at m = 4.

We used the developed method to describe the modal

birefringence in MOFs formed by air channels in a di-

electric medium. Single-mode fibers with a solid core are

considered, in them the inclusion centers are located at the

nodes of a two-dimensional hexagonal lattice of period 3

(Fig. 1, b). If the inclusions have a circular cross-section,

then the MOF cross-section has a rotational symmetry of the

order of s = 6. In this case, the two orthogonally polarized

fundamental MOF modes are degenerate [16], i. e., there is

no mode birefringence. This means the instability of the

light polarization as it propagates along the fiber, and the

occurrence of polarization noise when the optical signal

is detected at the MOF output. The elimination of these

defects involves the use of fibers with modal birefringence,

in which the complex propagation constants of the main

orthogonally polarized modes are different [17]. Such

situation takes place for MOF with elliptical air channels,

when s = 2 [5,18,19].

We studied MOFs whose core is surrounded by two

hexagonal rings of identical air channels with elliptical cross

section of the format F = a/b (Fig. 1, b). The contour

of the MOF outer boundary was assumed to be circular

(ρ0 = const). The values N = 18, εs = 1.452, ε j = 1

( j = 1, N) and proportions ρ0/3 = 30.85, ab/32 = 0.06,

typical for quartz single-mode MOFs [10,20] are used.

Two situations are considered when εc = ε
(1)
c = εs ,

i. e. the channels are in an infinite environment and

εc = ε
(2)
c = (1.54−i0.00002)2 , which means the presence

of absorbing butyl acrylate polymer coating on the fiber [10].
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Table 2. Internal convergence of the computational scheme when

calculating the propagation constants of MOF modes with circular

air channels (F = 1) surrounded by a homogeneous medium

(εc = ε
(11)
c ), and if there is a polymer coating on MOF

Modes Hx Hy

εc m Re β − Im β · 107 m Re β − Im β · 107

4 1.442991 0.742 4 1.442991 0.742

ε
(1)
c 8 1.442991 0.743 8 1.442991 0.743

12 1.442991 0.743 12 1.442991 0.743

4 1.442991 0.386 4 1.442991 0.386

ε
(2)
c 8 1.442991 0.354 8 1.442991 0.354

12 1.442991 0.354 12 1.442991 0.354

Table 3. Internal convergence of the computational scheme when

calculating the propagation constants of MOF modes with elliptical

air channels of F = 1/2 format surrounded by a homogeneous

medium (εc = ε
(1)
c ), and if there is a polymer coating on MOF

(εc = ε
(2)
c )

Modes Hx Hy

εc m Re β − Im β · 107 m Re β − Im β · 107

4 1.442901 1.469 4 1.442782 0.817

8 1.442789 0.871 8 1.442659 0.463

ε
(1)
c

12 1.442770 0.800 12 1.442640 0.424

16 1.442767 0.786 16 1.442636 0.416

20 1.442766 0.783 20 1.442635 0.414

24 1.442766 0.783 24 1.442635 0.414

4 1.442901 1.408 4 1.442781 1.943

8 1.442789 1.731 8 1.442659 0.289

ε
(2)
c

12 1.442770 1.514 12 1.442640 0.214

16 1.442767 1.484 16 1.442636 0.203

20 1.442766 1.478 20 1.442635 0.200

24 1.442766 1.477 24 1.442635 0.200

Calculations shown that in the case of MOFs the direct

numerical solution of equation (59) runs into the problem

of the computed values detM going beyond the computer

word length. A similar defect, caused by the multiplication

of the set of Hankel functions, was already noted in [5]
in the study of MOF with circular inclusions. It can be

eliminated by representing the dispersion equation in a form

that does not require detM calculation [5]. For this purpose,
system (58) is written in the form

∑

j 6=k

Mν jX j X
−1
k = −Mνk (ν 6= k), (66)

n
∑

j=1

Mk j X jX
−1
k = 0, (67)

where k — number of one of the equations of system (58).
If the determinant of n−1-th order of system (66) differs

from zero, then this system has a single solution with

respect to the unknowns X jX
−1
k . Then, after calculating

the above quantities from (66) the expression (67) acquires

the meaning of the dispersion equation with respect to β .

Its solution does not cause fundamental difficulties. Simulta-

neously, the mode field is determined from (9), (11), (66).

If there are no symmetry elements in the MOF

cross-section, then the specific choice of the number k
in (66), (67) is not significant. However, if there are

symmetry axes in the MOF section, some components

of the vector X can become zero [5]. If we take such

component as Xk , then the matrix of the system (66)
becomes degenerate, and the described scheme loses its

meaning. In particular, for the MOFs under study e(1)
0 = 0,

h(1)
0 6= 0 when calculating the fundamental mode with the

main lateral component of the magnetic field Hx (Hx -

mode) and h(1)
0 = 0, e(1)

0 6= 0 when calculating the mode

with main component Hy (Hy -mode) [5]. Here number

1 corresponds to the nearest inclusion from the origin,

located in the region x > 0, the center of which is on the

axis 0x (Fig. 1, b). Therefore, when calculating Hy -mode

the component e(1)
0 was chosen as Xk , and when calculating

Hx -mode — component h(1)
0 .

Mode birefringence Re1β, where 1β — difference of

propagation constants of Hx - and Hy -modes and dichroism,

i. e., different attenuation of the Hx - and Hy -modes of MOF

modes with elliptical air channels are illustrated in Figs 3, 4

and Tables 2, 3.

2.0 4.03.02.5 3.5
0

5 ·10
–4

L l/

4 ·10
–4

3 ·10
–4

2 ·10
–4

1 ·10
–4

R
e

D
b

F = 1/2

F = 2/3

Figure 3. Spectral dependences of the mode birefringence for

MOFs with elliptical air channels of 2/3 and 1/2 formats.
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Figure 4. Spectral dependences of damping coefficients of

MOF modes with elliptical air channels of the formats F = 1

(curves 1, 1′), 2/3 (a; 2, 2′ — Hx -mode; 3, 3′ — Hy -mode)
and 1/2 (b; 2, 2′ — Hx -mode; 3, 3′ — Hy -mode). Curves 1–

3 — channels in an infinite medium, 1′−3′ — MOF with polymer

coating.

The curves in Fig. 3 related to εc = ε
(1)
c and εc = ε

(1)
c

are indistinguishable within the Figure. According to

Fig. 3, the mode birefringence increases with decreasing

of ratios F and 3/λ. Similar patterns were noted in the

literature [18,19,21]. In particular, at 3/λ < 2.2 Re1β

exceeds 2 · 10−4, which is typical for conventional fibers

with strong stress-induced birefringence [22]. But in MOFs

there is also an anisotropy of damping of Hx - and Hy -modes,

caused by their radiation leak from the fiber core, which is

absent in traditional types of birefringent fibers. The results

of calculations by the proposed method of dichroism in the

MOFs under consideration are presented in Fig. 4.

Tables 2 and 3 make it possible to judge the internal

convergence of the developed method when calculating the

dependences in Fig. 3, 4. The data presented in them refer

to 3/λ = 3.

From a comparison of Tables 2 and 3, we can conclude

that increase in the format of air channels has a negative

effect on the speed of convergence of the computational

scheme, which is explained by the complication of the

fields configuration described by the Fourier polynomi-

als (9), (11). It also follows from Tables 2 and 3 that

the propagation constants of the MOF modes in the form

of air channels in infinite quartz glass and MOF modes of

the same polarization and with the same air channels, but

with a polymer coating have practically the same real parts,

however their imaginary parts differ significantly.

In Table 3 and Fig. 3, the closeness of the indicated values

Re β is explained by the fact that the fields of fundamental

MOF modes are well localized in the core of the fiber and

weakly interact with the outer boundary of the fiber [5].
At the same time, this interaction leads to the formation of

standing waves between the air channels and the boundary

r = ρ0, which significantly affects the damping of the modes

caused by radiation leak from the fiber core [10]. According
to Table 3 this effect leads to increase in mode dichroism,

which opens up the possibility of creating the single-mode

single-polarization fibers for telecommunication and sensor

applications. The resonant nature of this effect [10] leads

to nonmonotonic dependences Im β(λ), shown in Fig. 4 by

dashed lines. As follows from Fig. 4, these dependences

essentially depend on the internal structure of MOF.

Conclusion

A new method for solving the vector waveguide eigen-

value problem for MOF modes with an arbitrary finite

number of internal channels and any geometry of their

location in the MOF cross-section is proposed. It is assumed

that the outer boundary of the MOF and the channel

boundaries are closed and described by arbitrary single-

valued functions of the angular variables ρ0(ϕ) and ρk(ϕk)
in global and local coordinate systems. The longitudinal

components of the mode electromagnetic field at the indi-

cated boundaries are represented by Fourier polynomials in

angular variables. With the use of two-dimensional Green’s

functions for each of the homogeneous media forming

MOFs and the representation of these functions by series in

cylindrical functions, based on the Graf addition theorem,

the homogeneous algebraic system (58) is formulated with

respect to the coefficients of the named polynomials. If

the functions ρ0(ϕ) and ρk(ϕk) have continuous derivatives,

then the calculation of the matrix elements of the system

involves the integration of continuous functions and does

not cause difficulties. The paper presents examples of

calculating MOFs with the functions ρ0(ϕ) and ρk(ϕk)
having the specified property. It is shown that in the

particular case of a circular dielectric waveguide the method
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gives an exact analytical solution of the waveguide problem.

For more complex waveguide structures, such as a dielectric

elliptical waveguide and MOF with elliptical air channels,

estimates are obtained for the internal convergence of the

method with respect to the order of the Fourier polynomials.

The modal birefringence in the named MOFs was studied.

It was established that the mode dichroism, which consists

in the difference in the attenuation coefficients of the main

orthogonally polarized modes of these fibers, is significantly

affected by the outer boundary of the fiber.

When using waveguide models with discontinuous func-

tions ρ0(ϕ) and (or) ρk(ϕk), the calculation of the matrix

elements of the system (58) is reduced to the integration

of piecewise continuous functions, which also does not

cause fundamental difficulties. However, in this case, the

Fourier series for the longitudinal components of the mode

electromagnetic field are not absolutely convergent. As a

result, the described method becomes asymptotic. The

manifestation of this feature in the modes calculation of

rectangular dielectric waveguides is considered in a separate

paper, which will be published in the journal
”
Bulletin

of A.A. Kuleshov Mogilev State University“.
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