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Introduction

Various options of the linear theory of laser generation

of sound waves by one- and two-layer samples in a

photoacoustic (PA) chamber, when the signal is recorded by

a microphone technique, are proposed in [1–4]. Numerous

theoretical and experimental studies have shown that the

parameters of the PA signal are saturated with information

about the physical quantities of condensed media, including

nanosystems (see, for example, [5–11]). The main mecha-

nism of excitation of acoustic waves in this case is thermal,

due to the periodic change in the heat flux coming from the

sample into the gas layer, the thermal acoustic piston model

[1]. It is known that when performing an PA experiment, as

a rule, a laser beam is used, the spatial distribution of which

is Gaussian, and with an increase in its intensity I0, a

significant increase in the temperature of the sample occurs,

due to which all physical quantities of the medium become

temperature-dependent, and this dependence is commonly

called thermal nonlinearity (TN) [7].

The features of the excitation of nonlinear components

of heat waves, including the second harmonic (SH), are

studied in sufficient detail in [12–14]. Meanwhile, relatively

recently it was shown [15] that the resolution of the PA

microscope on the SH significantly exceeds the resolution of

a conventional PA microscope on the fundamental harmonic

(FH) and this allowed the authors to implement the visu-

alization of biological samples. Essentially, a fundamentally

new opportunity has emerged for the visualization of ultra-

high resolution biological materials, which is a significant

potential for the development of studies of nonlinear PA

response of samples.

For the case when the registration of the PA signal is

performed by the gas-microphone technique, the theoretical

consideration is carried out in [16,17]. In [17] for a two-

layer one-dimensional PA chamber model, the theory of

generating a nonlinear PA response was developed when

the sample is low heat conducting, but which is not

acceptable for samples with moderate or high thermal

conductivity. The purpose of this paper is to summarize

the results of [17] and a detailed theoretical study of the

contribution of the TN substrate to the characteristics of a

nonlinear PA signal.

1. Mathematical model

Suppose that the intensity of the monochromatic beam

incident on the PA chamber is modulated harmonically

with the frequency ω, and the absorption coefficient of

the incident beam of the sample is — β . As in [17], we
consider a one-dimensional model of the PA chamber in

which the buffer gas and the substrate are transparent for the

incident beam, and then the following system of nonlinear

heat conduction equations for all layers of the chamber takes

place:

C pg(Tg)
∂T ′

g

∂t
=

∂

∂x

(

κ(Tg)
∂T ′

g

∂x

)

, 0 ≤ x ≤ lg , (1)
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C ps (Ts)
∂T ′

s

∂t
=

∂

∂x

(

κs(Ts)
∂T ′

s

∂x

)

+ 0.5A(T )βI0(1 + eiωt) exp(βx),−l ≤ x ≤ 0, (2)

C pb(Tb)
∂T ′

b

∂t
=

∂

∂x

(

κb(Tb)
∂T ′

b

∂x

)

,−(lb + l) ≤ x ≤ −l.

(3)
The temperature dependence of the values

C pi (T ) = ρic pi and κi(T ) — the heat capacity of the

volume unit and the thermal conductivity coefficient of the

corresponding layers in the PA chamber, as well as A(T ) —
the degree of blackness of the sample is considered linear

and let us imagine in the following form

C pi = C(0)
pi (1 + δi T

′), κi = κ
(0)
i (1 + δ2iT

′),

A = A(0)(1 + δ3T ′),

where C(0)
pi = C pi (T0), κ

(0)
i = κ(T0), A(0) = A(T0) — ini-

tial values, and δi = (1/C(0)
pi )(∂C pi/∂T ), δ2i = (1/κ

(0)
i )

× (∂κi/∂T ), δ3 = (1/A(0))(∂A/∂T ) — thermal coefficients

of the same values.

The temperature perturbation is represented as a sum

T ′

i (x , t) = T0i(x) + 8Li(x , t) + 81Ni(x , t) + 82Ni(x , t),

where T0i(x) is locally equilibrium, and 8Li(x , t) and

8Ni(x , t) are linear and nonlinear components correspond-

ing to the acoustic parts on the main and second harmonics.

Then from (1)−(3) we obtain the following systems of

equations for T0i(x), 81Ni(x , t) and 82Ni(x , t):

d
dx

[

dT0i(x)

dx
+ 0.5δ2i

dT 2
0i(x)

dx

]

= Hi , i = g, s, b, (4)

∂281Ni

∂x2
− 1

χ
(0)
i

∂81Ni

∂t
= −

(

δ2i
∂2

∂x2
− δ1i

χ
(0)
i

∂

∂t

)

×
(

T0i(x)8Li (x , t)
)

+ H1i, i = g, s, b, (5)

∂282Ni

∂x2
− 1

χ
(0)
i

∂82Ni

∂t
= −1

2

(

δ2i
∂2

∂x2
− δ1i

χ
(0)
i

∂

∂t

)

×
(

82
Li(x , t)

)

+ H2i, i = g, s, b, (6)

where

Hg = Hb = 0,

Hs =
0.5β A(0)I0

(

1 + δ3s T0s(0)
)

eβx

k(0)
s

,

H1g = H1b = 0,

H1s = 0.5A(0) βI0δ3
[

T0s(0)e
iωt + 8L(0, t)

]

eβx ,

H2g = H2b = 0, H2s = −0.5A(0)βI0δ38L(0, t)eiωt eβx .

Taking into account that 8L(t, x) = 8L(ω, x) ×
× exp(iωt) [1], put 81Ni(t, x) = 81Ni(ω, x) exp(iωt) and

82Ni(t, x) = 82Ni(2ω, x) exp(i2ωt). Then from (4)−(6)

for functions 91i(x , ω) = 81Ni(x , ω) + δ2i T0i(x)8Li (x , ω)
and 92i(t, x) = 82Ni(2ω, x) + 0.5δ2i8

2
Li(ω, x) we get the

following system of equations:

d291i

dx2
− σ 2

i 9i = σ 2
i (δi − δ2i)T0i(x)8Li(x , ω) + Gi ,

i = g, s, b, (7)

d292i

dx2
− σ 2

2i92i =
(δi − δ2i)

2
σ 2
2i8

2
Li (ω, x) + G2i ,

i = g, s, b, (8)

where

Gg = Gb = 0,Gs = −0.5A(0)βI0δ3[20 + 8Ls(0, ω)]eβx ,

G2g = G2b = 0,

G2s == −0.5A(0)βI0δ38Ls (0, ω)eβx ,

8Lg(x , ω) = 2Le−σg x , 8Lb(x , ω) = WLeσb(x+l),

8Ls(x , ω) = ULeσs x + VLe−σs x − Eeβx

are the linear components of temperature fluctuations, the

amplitudes of which are determined by the expressions [1]:

UL = 11/1, VL = 12/1,

11 = E[(g + r)(b + 1)eσx l − (g − 1)(b − r)e−βl ],

E = 0.5βA(0)I0[k
(0)
s (T0)(β

2 − σ 2
s )]−1,

12 = E[(g + 1)(b − r)e−βl − (b − 1)(g + r)e−σx l ],

1 = [(g + 1)(b + 1)eσs l − (g − 1)(b − 1)e−σs l],

but σ 2
i = iω/χ(0)

i , σi = (1 + i)/µi , g = κ
(0)
g σg/κ

(0)
s σs ,

b = k(0)
b σb/k(0)

s σs , r = (1− i)βµs/2, µi = (2χi/ω)1/2 —

thermal diffusion length, χ
(0)
i = κ

(0)
i /C(0)

pi — the initial

value of the thermal conductivity of the corresponding

layers. We emphasize that when deriving a system of

equations (4)−(6) The fact was taken into account that

the degree of blackness of the sample A(T ) characterizes

the optical properties of its surface and is not a function

of its thickness. This is due to the appearance of terms

with T0s(0) and 80s(0, ω) in the right parts of the system

of equations (4)−(6), and then in equations (7) and (8).
The conditions of continuity of temperatures and heat

flows at the boundaries between the layers, as well as the

absence of heating at the ends of the PA chamber, allow

us to write the following boundary conditions for a joint

solution (4)−(8):

T0g(lg) = T0b(−1− lb) = 0, T0s(0) = T0g = 20,

T0b(−l) = T0s(−l) = W0, (9)

κg(Tg)
dT0g(x)

dx

∣

∣

∣

∣

x=0

=

[

κs(Ts )
dT0s(x)

dx

]∣

∣

∣

∣

x=0

,

κb(Tb)
dT0b(x)

dx

∣

∣

∣

∣

x=−l

=

[

κs(Ts )
dT0s(x)

dx

]∣

∣

∣

∣

x=−l

, (10)
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81Ns(ω, 0) = 81Ng(ω, 0), 81Nb(ω,−l) = 81Ns(ω,−l),
[

∂91g(ω, x)

∂x

]
∣

∣

∣

∣

x=0

=
κ

(0)
s

κ
(0)
g

∂91s(ω, x)

∂x

∣

∣

∣

∣

x=0

, (11)

81Nb(ω,−l − lb) = 81Ng(ω, lg) = 0,

∂91b(ω, x)

∂x

∣

∣

∣

∣

x=−l

=
κ

(0)
s

κ
(0)
b

∂91s(ω, x)

∂x

∣

∣

∣

∣

x=−l

, (12)

82Ns(ω, 0) = 82Ng(ω, 0), 82Nb(ω,−l) = 82Ns(ω,−l),
[

∂92g(ω, x)

∂x

]∣

∣

∣

∣

x=0

=
κ

(0)
s

κ
(0)
g

∂92s(ω, x)

∂x

∣

∣

∣

∣

x=0

, (13)

82Nb(ω,−l − lb) = 82Ng(ω, lg) = 0,

κ
(0)
s

κ
(0)
b

∂92s(ω, x)

∂x

∣

∣

∣

∣

x=−l−lb

=
∂92b(ω, x)

∂x

∣

∣

∣

∣

−l−lb

. (14)

Boundary conditions (9)−(14) together with a system of

equations (4)−(8) represent a mathematical model of the

formulated problem and allow it to be solved.

2. Temperature field

Using the notation Ti(x) = δ−1
2i g0i(x), from the sys-

tem (6) for a stationary temperature field we obtain the

following expressions:

g0g(x) =

[

1 +20δ2g(2 +20δ2g)

(

1− x
lg

)]1/2

− 1,

g0b(x) =

[

1 + W0δ2b(2 + W0δ2b)

(

1 +
x + l

lb

)]1/2

− 1,

g0s(x) =

{

1 + δ2s20(2 + δ2s20)

(

1 +
x
l

)

− δ2sW0(2 + δ2sW0)
x
l

+
A(0)I0δ2s (1 + δ320)

βκ
(0)
s

×
[

1 +
x
l
−

(

eβx + E0

x
l

)]

}1/2

− 1,

where E0 = exp(−βl). The conditions of continuity of heat

flows allow us to write the following system of nonlinear

algebraic equations to determine the values of 20 and W0:

22
0(δ2s +dδ2g) + 220(1+d+Uδ3) −W 2

0 δ2s −2W0 + U = 0,

(15)

22
0δ2s + 220(1 + U1δ3) −W 2

0 (δ2s + d1δ2g)

− 2W0(1 + d1) + U1 = 0, (16)

where

d =
κ

(0)
g l

κ
(0)
s lg

, d1 =
κ

(0)
b l

κ
(0)
s lb

,

U =
A(0)I0

βκ
(0)
s

(1− E0 − βl),U1 =
A(0)I0

βκ
(0)
s

[(1− E0(1 + βl)].

The expressions for g0i(x) together with the system of

algebraic equations (15), (16) determine the main features

of the formation of a stationary temperature field in the

PA chamber for the case under consideration. Obviously,

due to the nonlinearity of the system (15), (16), its

solution can be obtained only numerically. We performed

this calculation for the case when the sample is quartz

glass, and the role of the substrate is played by zir-

conium dioxide ZrO2. The thermophysical parameters

required for the calculation have the following values:

T0 = 300K, κ
(0)
g =0.025W/(m ·K), κ

(0)
s =1.36W/(m · K),

κ
(0)
b =1.7W/(m·K), δ2g=2.39·10−3 K−1, δ2s=0.56·10−3 K−1,

δ2b=0.104·10−3 K−1 [18]. Thickness values lg=5·10−3 m,

ls = 10−3 m, lb = 10−3 m. The calculation results are

illustrated in Figure 1, from which it can be seen that for

small values of β not only the temperature increase is small,

but also the nature of its dependence on intensity is linear.

With the growth of β and the gradual transition from the

condition β < 1 to the condition β > 1, the heating will

increase significantly, and the dependence on I0 goes to a

power one. Numerical solutions of the system (15), (16)
were also found for different values of δ3, the results of

which are shown in Figure 2. It can be seen that with an

increase in the value of variable value and a change in its

sign from negative to positive, the heating of the sample

increases significantly, and the nature of its dependence

on the intensity of the incident beam becomes close to

quadratic. The decrease in the values of 20 and W0 at δ3 < 0

compared to their values at δ3 = 0 is due to a decrease in

the absorption capacity of the system. And conversely, an

increase in the values of these values for the case δ3 > 0

compared to the case is associated with an increase in

the absorption capacity of the sample. The calculating

results of the temperature increment for various substrates

are illustrated in Figure 3, from which it can be seen

that with the transition from substrates made of materials

with low thermal conductivity to materials with higher

thermal conductivity, the heating of the sample decreases

significantly. This is due to the fact that with such a

transition, the rate of heat transfer to the substrate increases,

and then from it to the environment. It is obvious that with

an increase in the thermal conductivity of the substrate, the

values of 20 and W0 will decrease significantly. Meanwhile,

as it was found in [16], only for small values of I0 the

dependencies 20 ∼ I0, W0 ∼ 1 are valid, and for moderate

and higher values of I0 this dependence goes from linear

to a power one.

3. The fundamental harmonic

The expressions

91Ng = 21Ne−σg x + R1gS1g(x)eσg x − R1gS2g(x)e−σg x ,

(17)

91Ns = U1Neσs x + V1Ne−σs x + [R1s S1s(x) −�1(x)]eσs x

− [R1s S2s(x) −�2(x)]e−σs x . (18)
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Figure 1. Dependence of the temperature of the irradiated (a) and rear (b) sides of quartz glass in contact with zirconium dioxide in

the PA chamber on the intensity of the incident beam at values A(0) = 0.87, δ3 = −0.577 · 10−3 K−1, (integral values) [19] and β = 1, 5,

10, 50 cm−1 (curves 1–4 respectively).
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Figure 2. Dependence of the temperature of the irradiated (a) and rear (b) sides of quartz glass in contact with zirconium dioxide

in the PA chamber on the intensity of the incident beam at values A(0) = 0.87, δ3 = 0 (curve 1), δ3 = −0.577 · 10−3 K−1 (curve 2)
and δ3 = 1.2355 · 10−3 K−1 (curve 3).

91Nb = W1Neσb(x+l) + R1bS1b(x)eσb(x+l)

− R1bS2b(x)e−σb(x+l), (19)

are solutions of equations (7) for the corresponding

layers. The following designations are used here:

R1i = 0.5δ−1
2i σi(δi−δ2i),

S1g(x) =

∫

g0g(x)8Lg(x , ω)e−σg x dx ,

S2g(x) =

∫

g0g(x)8Lg(x , ω)eσg x dx , (20)

S1b(x) =

∫

g0b(x)8Lb(x , ω)e−σb(x+l)dx ,

S2b(x) =

∫

g0b(x)8Lb(x , ω)eσb(x+l)dx , (21)

S1s(x) =

∫

g0s(x)8Ls (x , ω)e−σs x dx ,

S2s(x) =

∫

g0s(x)8Ls (x , ω)eσs x dx , (22)
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Figure 3. Dependence of the temperature of the irradiated (a) and the rear (b) side of the quartz glass (A(0) = 0.87, beta = 50 cm−1,

δ3 = 1.2355 · 10−3 K−1) for the case of substrates made of: zirconium oxide (curve 1), polycrystalline bismuth κ
(0)
b = 7W/(m ·K),

δ2 = 2.38 · 10−3 K−1 [18] (curve 2) and stainless steel κ
(0)
b = 14.9W/(m ·K), δ2 = 0.94 · 10−3 K−1 [18] (curve 3).

�1s(x) = (0.25A(0)βI0δ3)(κ
(0)
s )−1σ−1

x

×
∫

[20 + 8Ls (ω, 0)]e
(β−σs )x dx , (23)

�2s(x) = (0.25A(0)βI0δ3)(κ
(0)
s )−1σ−1

x

×
∫

[20 + 8Ls (ω, 0)]e
(β+σs )x dx , (24)

Substituting the functions 8Li(ω, x) into the correspond-

ing expressions (20)−(24) and by performing the integra-

tion according to the procedure proposed in [17], we will

have

S1g(x) ≈ 2L

2σg

[

1−
√

Bg +
bg

2lg
√

Bg

(

x +
1

2σg

)]

e−2σg x ,

S2g(x) = −
[

2lg

2bg
B3/2

g

[

√

(

1− bgx
Bg l

)3

− 1

]

+ x

]

2L,

S1s(x) ≈
{

2l
3(bs −bs ,b)

B3/2
s

[

√

(

1 +
(bs − bs ,b)x

B s l

)3

− 1

]

− x

}

UL + (1− B1/2
s )

VL

2σs
exp(−2σs x),

S2s(x) ≈
{

2l
3(bs −bs ,b)

B3/2
s

[

√

(

1 +
(bs − bs ,b)x

B s l

)3

− 1

]

− x

}

VL + (B1/2
s − 1)

UL

2σs
exp(2σs x),

S1b(x) =

{

2

3
B3/2 lb

bb

[

√

[

1 +
bb

lbBb
(x + l)

]3

− 1

]

− (x + l)

}

WL, S2b(x) ≈ WL
√

Bb − 1

2σb
e2σb(x+l),

where B i=1+bi , bg=δ2g20(2+δ2g20), bs=δ2s20(2 +
+δ2s20), bb =δ2bW0(2+δ2bW0), bsb =δ2sW0(2+δ2sW0).
Taking into account the condition lg ≫ µg and equal-

ity g0g(0) = δ2g20,
√

Bg=1+δ2g20,
√

B s =1+δ2s20,

g0s(0)=δ2s20, g0s(−l) = δ2sW0, gb(−l) = δ2b20, we get

that

S1g(0) ≈ −0.52Lδ2g20σ
−1
g , S2g(0) = 0,

S1s(0) ≈ −0.5VLδ2s20σ
−1
s , S2s(0) ≈ 0.5ULδ2s20σ

−1
s .

In expressions (17)−(19) there are four unknown param-

eters 21N , U1N , V1N and W1N , for finding which, using the

boundary conditions (11), (12), we obtain the following

algebraic system of equations:

21N + R1g [S1g(0) − S2g(0)] − g0g(0)8Lg(0, ω)

= U1N + V1N + R1s [S1s(0) − S2s(0)] − g0s(0)8Ls (0, ω)

+�2s (0) −�1s(0), (25)

g[R1g
(

S1g(0) + S2g(0)
)

−2N1] = U1N −V1N

+ R1s [S1s(0) + S2s(0)] −�1s(0) −�2s(0), (26)

U1Ne−σs l + V1Neσs l + [R1s S1s(−l) −�1s (−l)]e−σs l

− [R2s S2s(−l) −�2s (−l)]eσs l − g0s(−l)8Ls(−l)

= W1N + R1b[S1b(−l) − S2b(−l)] − g0b(−l)8Lb(−l),
(27)
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U1Ne−σs l −V1Neσs l + [R1s S1s(−l) −�1s(−l)]e−σs l

+ [R1s S2s(−l) −�2s(−l)]eσs l

= b{W1N + R1b[S1b(−l) + S2b(−l)]}. (28)

Taking into account the smallness of g ≪ 1, the equality

8Ls (0) = 8Lg(0) = 2L = U + V − E,

8Ls (−l) = 8Lb(−l) = Ue−σs l + Veσs l − Ee−βl = WL

and using the notation

9 =
{

[

(1− b)S1s(−l)e−σs l + (1 + b)S2s (−l)eσs l
]

R1s

+ [g0s(−l)8Ls (−l)− g0b(−l)8Lb(−l)− 2R1bS2b(−l)]b
}

,

for the value 21N , we get the following expression:

21N =
{

12L20(δ2g − δ2s) + R1g1[S1g(0) − S2g(0)]

+ 2eσs l(b + l)[�2s(0) − R1s S2s(0)] + 2(1 − b)e−σs l

× [�1s(0) − R1s S1s(0)] + 29− 2[�2s (−l)eσs l(b + 1)

−�1s(−l)e−σs l(b − 1)]
}

1−1. (29)

Taking into account the fact that 20 ≫ 2L, the type of

functions �1s (ω, x) and �2s(ω, x) can be written in the

form of

�1s(x)=(0.25A(0)βI0δ3)(κ
(0)
s )−1σ−1

s 20(β−σs)
−1e(β−σs )x ,

(30)

�2s (x)=(0.25A(0)βI0δ3)(κ
(0)
s )−1σ−1

s 20(β+σs)
−1e(β+σs )x ,

(31)

Expressions (30) and (31) together with the formula

(29) allow us to determine the acoustic pressure per-

turbation in the buffer gas. To do this, using the

ratio 81Ng(x , t) = 91g(x , t) − δ2gTg0(x)8Lg(x , t) and the

expression (17), we find the form functions 81Ng(x , ω),
and then δp1N(ω) — the nonlinear part of the acoustic

pressure fluctuation, for which it is necessary to integrate

the expression

δp1N(ω) =
γ p02πµg

T0lg
81Ng(ω) =

γ p0

T0lg

2πµg
∫

0

81Ng(ω, x)dx .

(32)
The expression [17]

δpN(ω) =
γ p0

Tolgσg

[

21N + R1g S̃1g(0) − g0g(0)2L
]

(33)

is the result of integration, where

S̃1g(x) = S1g(x) exp(2σg x). Performing the necessary

calculations, we obtain the expression

R1g S̃1g(0) − g0g(0)2L = −0.252L(3δ2g + δg)20,

considering which the expression (33) can be rewritten

in the form

δp1N(ω) = δpL
[

2−1
L 21N − 0.25(3δ2g + δg)20

]

, (34)

where δpL = γ p02L/T0lgσg — is the linear component of

the PA signal, the amplitude of which linearly depends

on I0. Due to the fact that the expression for 21N is

very complex, we will consider the limit cases that are

implemented in the experiment. We will also assume that

the system is strongly absorbing, for which the conditions

are valid βl ≫ 1 and exp(−βl) ≈ 0.

3.1. Thermally thin samples

The conditions l ≪ µs , µs ≫ µβ , exp(−βl) ≈ 0,

exp(±σs l) ≈ 1, |r | ≫ 1, g ≪ 1, b ≫ g , r ≫ g , 1 ≈ 2b,
WL = Er/b, 11 ≈ r(1 + b)E , 12 ≈ r(1 − b)E , E = b(r −
−b)−12L, UL = Er(b + 1)/2b, VL = Er(1− b)/2b,
UL + VL = Er/b, UL −VL = Er , are met for them, where

µβ = β−1 — is the photon path length in the sample.

It follows from the expression (29) that to define 21N ,

it is necessary to have an explicit form of the functions

S1g(0), S2g(0), S1s(0), S2s(0), S1s(−l), S2s(−l), S2b(−l).
Performing the necessary calculations for these functions,

we obtain the following expressions:

�1s(ω,−l) ≈ 0, �2s (ω,−l) ≈ 0,

�1s (ω, 0) ≈ �2s(ω, 0) = 0.25A(0)I0δ3,

S1s(0) ≈ −VLδ2s20

2σs
, S2s(0) ≈

ULδ2s20

2σs
,

S2s(−l) ≈ VLδ2s20

2σs
, S1s(−l) ≈ −VLδ2s20

2σs
,

S2b(−l) =
δ2bW0WL

2σb
,

S2s(−l) − S1s(−l) = −δ2s20

2σs

Er
b
,

S2s(−l) + S1s(−l) =
δ2s20

2σs

Er
b
,

9 ≈ bW0WL

[

δ2s − δ2b −
δb − δ2b

2

]

.

Then from the expression (29) we get

21N = 2L

{

20[δ3 + 0.25(δg − δ2g) + δ2g − δ2s ]

+ W0[δ2s − δ2b + 0.5(δ2b − δb)]
}

. (35)

Further, substituting the expression (35) into (34) for the

nonlinear PA signal on FH, we obtain

δp1N(ω) = δpL(ω)[K1(1)20 + K1(2)W0], (36)

where K1(1) = δ2 − δ2s , K1(2) = δ2s − 0.5(δb + δ2b).
From (36) it is easy to see that in this case the dependence

of the amplitude of the PA signal on the frequency is

governed by the dependence |δp1N(ω, l ≪ µs)| ∼ ω−1.
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3.2. Thermally thick samples. Case I

In this case, these conditions come around µs < l,
µs > µβ , exp(−βl) ≈ 0 and exp(−σs l) ≈ 0 and |r | > 1.

Then the equalities are valid 11 = Er(b + 1)eσs l , 12 ≈ 0,

1 = (b + 1)eσs l , UL ≈ Er , VL ≈ 0, 2L = E(r − 1) ≈ rE ,

WL ≈ 0, E = A(0)I0(2βk(0)
s )−1, accounting for which allows

you to get the following expressions:

8Ls (−l) = WL = 0, 8Lb(−l) = WL = 0, S1s(0) ≈ 0,

�1s(ω,−l) ≈ 0, �2s(ω,−l) ≈ 0,

S2s(0) ≈
20δ2s

σs
UL, S1s(−l) ≈ − lUL

2
δ2s20, S2s(−l) ≈ 0,

S2b(−l)=0, �1s(ω, 0)≈�2s (ω, 0)=0.25A(0)I0δ320σ
−1
s .

Substituting these formulas in (29), we obtain the expres-

sion

21N ≈
[

δ3 + δ2g + 0.25(δg − δ2g) − 0.5(δs + δ2s)
]

202L,

which allows you to write the following expression for the

FH acoustic pressure fluctuations in the buffer gas

δp1N = δp1L20K1(3), (37)

where K1(3) = δ3 − 0.5(δ2s + δs). Rewriting the expres-

sion (37) as δp1N(ω, l ≫ µ) = |δp1N |eiψ1N , for the ampli-

tude |δp1N | and the phase ψ1N of the excited PA signal, we

get

|δp1N(l ≫ µs)| =
γ psµ

(0)
s µ

(0)
g A(0)I0

4T0lgk(0)
s

|K1(3)|20,

ψ1N(1)(l ≫ µs) =

{

− π
2
, i f K1(3) > 0,

π
2
, i f K1(3) < 0.

(38)

This expression shows that the dependence of the

amplitude of the nonlinear PA signal on the frequency for

thermally thick samples obeys the law ∝ ω−1.

3.3. Thermally thick samples. Case II

Consider the case when the conditions are valid µs ≪,

µs < µβ , exp(−βl) ≈ 0, exp(−σs l) ≈ 0, |r | < 1 and equal-

ity 11 = Er(b + 1)eσs l , 12 ≈ 0, 1 = (b + 1)eσs l , UL ≈ Er ,
VL ≈ 0, WL ≈ 0,

2L = E(r − 1) ≈ −E = A(0)I0[2κ
(0)
s σ 2

s ],

E = −A(0)I0(2σ
2
s k(0)

s )−1, �1s(ω, 0) ≈ −�2s(ω, 0),

�2s(ω, 0) = 0.25A(0)(κ(0)
s )−1βl0δ320σ

−2
s ,

S2s(0)≈
20δ2s

σs
[0.5UL−E]≈20δ2s E

σs
[0.5r−1]≈ −20δ2s E

σs
.

The other functions S1s(0), S1s(−l), S2s(−l), S2b(−l)
and 9 have the same form as above. Then from (29) we

get the expression

21N ≈
[

δ2g + 0.25(δg −22g) − 0.5(δs + δ2s) − δ3
]

202L,

substitution of which into (34) will lead us to the expression

δp1N(ω, µ ≪ l, µs < µβ) = δp1L20K1(4), (39)

where K1(4) = −δ3 − 0.5(δs + δ2s). In this case, for the

amplitude and phase of the signal, we get

|δp1N(ω, l ≫ µs , µs < µβ)| =
γ p0A(0)I0µgµ

2
s

4
√
2lgT00k

(0)
s

K1(4)20,

ψ1N(ω, l ≫ µs , µs < µβ) =

{

π
4
, i f K1(4) > 0,

− 3π
4
, i f K1(4) < 0.

(40)

It follows from (40) that the amplitude of the

generated PA signal depends on the frequency

|δp1N(ω, l ≫ µs , µs < µβ)| ∼ ω−3/2.

It follows from (36), (38) and (40) that only for low

values I0, when 20 ∼ I0, W0 ∼ I0, there is a dependence

|δp1N(ω, l ≫ µs , µs < µβ)| ∼ I20.

4. Second harmonic

The expressions

92g(ω, x) = 22Ne−σ2g x +eσ2s xW1g(ω, x)−e−σ2g xW2g(ω, x),
(41)

92s(ω, x) = U2Neσ2s x + V2Ne−σ2s x + eσ2s x [W1s(ω, x)

− Q1s (x , ω)] − e−σ2s x [W2s(ω, x) − Q2s (x , ω)], (42)

92b(ω, x) = W2Nbe+σ2b(x+l) + eσ2b(x+l)W1b(ω, x)

− e−σ2b(x+l)W2b(ω, x) (43)

are the solution of equation (8), where

W1g(ω, x) = R2g

∫

e−σ2g x82
Lg(ω, x)dx ,

W2g(ω, x) = R2g

∫

eσ2g x82
Lg(ω, x)dx , (44)

W1b(ω, x) = R2b

∫

e−σ2b(x+l)82
Lb(ω, x)dx ,

W2b(ω, x) = R2b

∫

eσ2b(x+l)82
Lb(ω, x)dx , (45)

W1s(ω, x) = R2s

∫

e−σ2s x82
Ls (ω, x)dx ,

Q2s (ω, x) = (0.25A(0)βI0δ3)(κ
(0)
s )−1σ−1

2s

×
∫

8Ls (ω, 0)e
(β+σ2s )x dx , (46)

W2s(ω, x) = R2s

∫

eσ2s x82
Ls (ω, x)dx ,

Q1s (ω, x) = (0.25A(0)βI0δ3)(κ
(0)
s )−1σ−1

2s

×
∫

8Ls (ω, 0)e
(β−σ2s )x dx . (47)
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To determine the values of 22N , U2N , V2N and W2N from

the boundary conditions (13), (14) we obtain the following

algebraic system of four equations:

Q2N + W1g(ω, 0) −W2g(ω, 0) = U2N + V2N + W1s(ω, 0)

−W2s(ω, 0) + Q2s (ω, 0) − Q1s(ω, 0) + 0.522
L(δ2g − δ2s),

(48)

− Q2N + W1g(ω, 0) + W2g(ω, 0) = g−1
[

U2N −V2N

+ W1s(ω, 0) + W2s(ω, 0) + Q1s (ω, 0) − Q2s (ω, 0)
]

,

(49)

U2Ne−σ2s l + V2Neσ2s l + e−σ2s l[W1s(ω,−l)− Q1s (ω,−l)]

− eσ2s l[W2s(ω,−l) − Q2s (ω,−l)] = W2N + W1b(ω,−l

−W2b(ω,−l) + 0.582
Ls (ω,−l)(δ2s − δ2b), (50)

U2Ne−σ2s l −V2Neσ2s l + e−σ2s l[W1s(ω,−l)− Q1s (ω,−l)]

+ eσ2s l[W2s(ω,−l) − Q2s(ω,−l)]

= b[W2N + W1b(ω,−l) + W2b(ω,−l)]. (51)

Here g=k(0)
g σ2g/k(0)

s σ2s=k(0)
g σg/k(0)

s σs , b=k(0)
b σ2b/k(0)

s σ2s

= k(0)
b σb/k(0)

s σs . The expression is valid for the acoustic

pressure fluctuation on the SH [17]

δp2N(2ω, t) =
γ p02πµ2g(ω)

T00lg
82N(ω)

=
γ p0

T0lg

[

22N

σ2g
− 22

L

4σg

(

δ2g +
2R2gσ2g

σ 2
2g − 4σ 2

g

)]

. (52)

It follows from (52) that in order to find the features of

generating the PA signal on the SH, it is necessary to have

an expression only for 22N , for which from the system of

equations (48)−(51) we get

22N = 3(ω)

{

(b + 1)31(ω)eσ2s l + (b − 1)32(ω)e−σ2s l

+ b82
Ls (ω,−l)(δ2s − δ2b) − 4bW2b(ω,−l)

+
22

L

2
(δ2g − δ2s)

[

(b − 1)e−σ2s l + (b + 1)eσ2s l
]

}

. (53)

The following designations are used here:

3(ω) = eσ2s l(b + 1)(g + 1) − e−σ2s l(b − 1)(g − 1),

31(ω) = (1 + g)W2g(ω, 0) + (g − 1)W1g(ω, 0)

− 2[W2s(ω, 0)−Q2s(ω, 0)] + 2[W2s(ω,−l)−Q2s(ω,−l)],

32(ω) = (1− g)W2g(ω, 0) − (g + 1)W1g(ω, 0)

+ 2[W1s(ω, 0)−Q1s(ω, 0)] − 2[W1s(ω,−l)−Q1s(ω,−l)].

Expressions (53) together with (52) are the solution of the

formulated problem with respect to the SH of PA signal.

Substituting the functions 8Lg(x , ω), 8Ls (x , ω) and

8Lb(x , ω) in expressions (44)−(47) and after completing

the integration, we will have

W1g(ω, x) = − R2g2
2
L

(σ2g + 2σg)
exp[−(σ2g + 2σg)x ],

W2g(ω, x) = − R2g2
2
L

(2σg − σ2g)
exp[−(2σg − σ2g)x ],

W1b(ω, x) = − R2bW 2
L

(σ2b − 2σb)
exp[−(σ2b − 2σb)(x + l)],

W2b(ω, x) =
R2bW 2

L

(σ2b + 2σb)
exp[(σ2b + 2σb)(x + l)],

W1s(ω, x) =

= R2s

{

U2
L exp[(2σs − σ2s )x ]

2σs − σ2s
− 2ULVL exp(−σ2s x)

σ2s

− V 2
L exp[−(σ2s + 2σs )x ]

σ2s + 2σs
− 2EUL exp[(β + σs − σ2s)x ]

β + σs − σ2s

− 2EVL exp[(β − σs − σ2s )x ]

β − σs − σ2s
+

E2 exp[(2β − σ2s)x ]

2β − σ2s

}

,

W2s(ω, x) =

= R2s

{

U2
L exp[(2σs + σ2s )x ]

2σ2s + 2σs
+

2ULVL exp(σ2s x)

σ2s

+
V 2

L exp[(σ2s − 2σs )x ]

σ2s − 2σs
− 2EUL exp[(β + σs + σ2s )x ]

β + σs + σ2s

− 2EVL exp[(β − σs + σ2s )x ]

β − σs + σ2s
+

E2 exp[(2β + σ2s)x ]

2β + σ2s

}

,

Q1s(ω, x) =
0.25A(0)βI0δ32L

κ
(0)
s σ2s (β − σ2s )

e(β−σ2s )x ,

Q2s(ω, x) =
0.25A(0)βI0δ32L

κ
(0)
s σ2s (β + σ2s )

e(β+σ2s )x .

The bulkiness of the expression for 2i squiteobvious2N,

and in this connection, as above, we will consider the

limiting cases that take place in a highly absorbing system.

4.1. Thermally thin samples

Here µs ≫ l, µsβ ≫ 1, exp(−βl) ≈ 0, exp(±σs l) ≈ 1,

|r | ≫ 1 and |r | ≫ b. Then the equalities are valid

Q1s (ω,−l) ≈ Q2s (ω,−l) = 0,

W1s(ω, 0) −W1s(ω,−l) = 0,

W2s(ω, 0) −W2s(ω,−l) = 0.

31(ω) = W2g(ω, 0) −W1g(ω, 0) + 2Q2s (ω, 0),

32(ω) = W2g(ω, 0) −W1g(ω, 0) − 2Q1s (ω, 0),
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Q1N = 0.5
{

[31(ω) + 32(ω)] + [31(ω) − 32(ω)]b−1

+ W 2
L (δ2s − δ2b) − 4W2b(ω,−l) +22

L(δ2g − δ2s )
}

.

Given that 21s(ω, 0) ≈ Q2s(ω, 0), we get the expression

Q2N = W2g(ω, 0) −W1g(ω, 0) + 2Q1s (ω, 0)b
−1

+ W 2
L (δ2s − δ2b) − 4W2b(ω,−l) +22

L(δ2g − δ2s ),

which will allow one to get the expression after performing

the necessary calculations

22N = 0.522
L

[

2δ2g − δg − (δb +
√
2δ2b)

1 +
√
2

+
√
2δ3

]

. (54)

Then from (52) for the acoustic pressure fluctuation on the

SH we will have

δp(2ω, µsβ ≫ 1) =
γ p(A0I0)2µ2gµ

2
b

16
√
2T0lgk(0)2

b

eiψ2(l≪µ3)|K2(1),

ψ2(2ω, l ≪ µs ) =

{

−3π/4, i f K2(1) > 0,

π/4, i f K2(1) < 0,
(55)

where

K2(1) = [(2δ2g − δg) − (
√
2δb + 2δ2b)](2 +

√
2)−1 +

√
2δ3

— a nonlinear coefficient, which is determined by a

combination of the thermal coefficients of the absorption

capacity of the sample and the thermophysical parameters

of the gas and substrate. It can be seen from (55) that in

this case the dependence of the amplitude of the PA signal

on the frequency obeys the law ∝ ω−3/2 .

4.2. Thermally thick samples. Case I

For them µs < l, µs > µβ , µ2s > µβ , exp(−βl) ≈ 0 and

exp(−σs l) ≈ 0 and |r | > 1. Then the expressions are valid

W2b(ω,−l) = 0, Q1s (ω,−l) ≈ Q2s (ω,−l) = 0,

W1s(ω,−l) = 0, W2s(ω,−l) = 0,

Q2s (ω, 0) = 0.25A(0)I0δ32L[κ
(0)
s σ2s ]

−1

= β22
Lδ3[2(r − 1)σ2s ]

−1,

that allow to obtain the expression from (52) are valid

21N = 31(ω) + 0.522
L(δ2g − δ2s). (56)

Further, considering the equality

W1s(ω, 0) = R2s

(

U2
L

2σs − σ2s
+

2EUL

σ2s − σs − β
+

E2

2β − σ2s

)

≈ R2s

(

U2
L

2σs − σ2s
− 2EUL

β
+

E2

2β

)

,

W2s(ω, 0) = R2s

(

U2
L

2σs + σ2s
− 2EUL

σ2s + σs + β
+

E2

σ2s + 2β

)

≈ R2s

(

U2
L

2σs + σ2s
− 2EUL

β
+

E2

2β

)

≈ R2s r2E2
L

(2σs + σ2s )
,

we will get

31(ω)=W2g(ω, 0)−W1g(ω, 0)−2[W2s(ω, 0)−Q2s(ω, 0)]

≈ − 22
L

2

[

δg − δ2g +
δ2s − δs

1 +
√
2
−
√
2δ3

]

. (57)

Substituting (57) into (56) results in the expression

22N =
22

L

2

[

2δ2g − δg +
δ2s − δs

1 +
√
2
− δ3 +

√
2δ3

]

,

considering which enables us to obtain from (52) for the

desired value the following formula:

δp(2ω, l > µs ) =
γ p02

2
L

2T0lbσ2g
K2(2), (58)

where

K2(2) =
(

2δ2g − δg − 2δ2s −
√
2δs

)(

2 +
√
2
)−1

+
√
2δ3

is a nonlinear coefficient for this case. It can be seen

that in this case, the amplitude of the nonlinear PA signal

on the SH depends on the temperature coefficients of the

thermophysical quantities of the sample and gas, as well as

the absorption capacity of the sample and does not depend

on the parameters of the substrate. In view of the fact that

for this case

QL = (r − 1)E ≈ rE =
A(0)I0 µs(1− i)

4κ
(0)
s

,

the expression (58) can be written as

δp(2ω, l > µs) =
γ p0(A(0)I0 µs)

2µ2s

16
√
2T0lg(κ

(0)
s )2

K2(2)

× exp[iψ2N(2ω, l > µs)].

For this case, the phase of the nonlinear PA signal at

K2(2) > 0 is (−135◦), and at K2(2) < 0 is 45◦; the amplitude

does not depend on β, and its frequency dependence obeys

the law ∝ ω−3/2 .

4.3. Thermally thick samples. Case II

We believe that the conditions µs ≪ l, µs <µβ , are

valid exp(−βl) ≈ 0 and exp(−σs l) ≈ 0, |r | < 1. Then

the following equalities take place: W2b(ω,−l) = 0,

Q1s(ω,−l)≈Q2s(ω,−l)=0, W1s(ω,−l)=0, W2s(ω,−l)=0,

Q2s = A(0)βI0δ32L[4κsσ
2
2s ]

−1 = −22
Lδ3σ

2
s [2σ 2

2s (r − 1)]−1

≈ 22
Lδ3σ

2
s [2σ 2

2s ]
−1,
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W2s(ω, 0) = R2s

(

U2
L

2σs + σ2s
− 2EUL

σs + σ2s
+

E2

σ2s

)

= R2s E2

(

r2

2σs + σ2s
− 2r
σs + σ2s

+
1

σ2s

)

≈ R2s E2

σ2s
,

accounting for which allows you to get expressions

21N = 31(ω) + 0.522
L(δ2g − δ2s ), (59)

31(ω) = W2g(ω, 0) −W2s(ω, 0) − 2[W2s (ω, 0)

− Q2s (ω, 0)] ≈ 0.522
L[δ2g − δg + δ2s − δs + δ3]. (60)

From (59) and (60) we will have

22N = 0.522
L(2δ2g − δg − δs + δ3).

Then for the acoustic pressure fluctuation on the SH we get

the expression

δp(2ω, µsβ < 1) =
γ p0(I0A(0))2µ2gµ

4
s

32
√
2T0lgκ

(0)2
s

K2(3)e
i π
4 , (61)

where K2(3) = (2δ2g − δg)(
√
2 + 2)−1 − δs + δ3 is a nonlin-

ear coefficient for this case. It can be seen that this value

depends on the temperature coefficients of the absorption

capacity of the sample, as well as the thermophysical values

of the gas and sample. Since the value of K2(3) can be both

positive and negative, it is obvious that the phase of this

signal is equal to 3π/4 in one case and −π/4 in the other

case. As it follows from (61) that for this case the frequency
dependence of the amplitude obeys the law ∝ ω−5/2. We

note that for all the above cases, the dependence of the

amplitude of the SH of PA signal on I0 is quadratic.

Conclusion

A theory has been developed for the generation of the

first two harmonics of a nonlinear PA signal by a solid

sample with an arbitrary value of thermal conductivity, due

to the TN of the emissivity of the sample, as well as the

thermophysical parameters of the sample, gas layer and

substrate. For the limiting cases (thermally thin and thick

samples), quite simple expressions are obtained for the

dependence of the amplitude of the excited PA signal on the

emissivity of the sample and the thermophysical parameters

of the sample, gas, and substrate, including their thermal

coefficients. Obviously, measurements of the parameters of

the first ghost harmonics of a nonlinear PA signal make

it possible to determine the emissivity of the sample, as

well as the thermophysical parameters of the sample, gas

layer, substrate, and their thermal coefficients. As a result,

a complete picture of the temperature dependence of these

quantities will be obtained. It seems to us that it is very

important to be able to determine the value of δ3, which will

allow one to establish the temperature dependence of the

degree of emissivity of the sample, which is rather difficult

to implement by traditional methods.
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