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On the origin of chains of cavities in the rotating flow between cylinders
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Cavitation between rotating and immobile cylinders appears in the form of a regular chain of bubbles. The bubble

sizes are practically equal, as well as the distances between the bubbles and their azimuthal locations. Though such

a form of cavitation has been observed in numerous experiments (in particular, in the experiments with bearings),
its nature was not clarified. The presented analysis shows that breakdown of the flow axial symmetry due to

displacement of the axis of one of cylinders leads to the regular wave-similar three-dimensional flow perturbations.

Their
”
wavelength“ is predetermined by the minimal gap between cylinders. Though the flow between cylinders is

not curl-free, these perturbations can be determined with the use of a velocity potential.
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Introduction

The present work is devoted to the experiment [1] in

which a periodic chain of bubbles was found, which appear

in a flow between non-coaxial cylinders. This periodicity is

not explained. Periodic incipient cavitation patches have also

been reported in studies [1–8] and reviews [9,10] concerning
flows in bearings. Such bubbles appear just below the line

of minimum clearance between the cylinders. Analytical

studies explaining the existence of such formations are in

the literature not found.

Thus, the flow between two circular cylinders with

parallel axes is analyzed here. The flow diagram in Fig. 1

corresponds to the experiment [1]. The outer cylinder of

radius R rotates with frequency �, (R will be used below

as the unit of length, �R will be used as the unit of

velocity). The radius of the inner stationary cylinder is

equal to Ri . One of the axes of the cylinder coincides

with the axis z . The other is at a distance ŷ below the

first. The Y-axis runs along the minimum clearance between

y

x

Figure 1. View of the cross section of the flow z = const; the

solid circle shows the sections of the rotating cylinder, the dotted

line shows the stationary cylinder.

the cylinders. Experimental data [1] refer to outer cylinder

of radius 0.025m, rotating with frequencies in the range

0.03 < � < 0.34 s−1.

The traditional mathematical model for flow between

cylinders is based on considering the Reynolds equation

for hydrodynamic lubrication, but this equation depends

on only two variables. Meanwhile, the occurrence of a

clearance between the axes of the cylinders leads to the

transformation of the axisymmetric flow into the three-

dimensional one, and it becomes necessary to take into ac-

count three-dimensional perturbations of the flow. Although

the unperturbed flow is not curl-free, its perturbations

can be determined using velocity potentials, as described

in [11,12] for other flows with visible regular structure.

1. Inviscid flow calculation

Let’s consider the flow between non-coaxial cylinders as

the perturbed steady flow between coaxial cylinders. Two

cylindrical coordinate systems will be used. The system

{z , r, θ} is connected with the outer cylinder, the system

{z , r∗, ϕ} is connected with the inner cylinder; θ and ϕ

are measured from the symmetry line of the section. The

unperturbed flow can be described by the approximate

formula

u0{r, θ} =

(
r −

ε2

r

)
1− R2

i (1− 2 lnRi)

1− ε2 + 2ε2 ln ε
(1)

for the circumferential velocity in the flow between the

cylinders, where ε(θ) = 1− h(θ), h is distance (clearance)
between the surfaces of the cylinders. This formula satisfies

the law of conservation of mass. The fluid flow through

the sections θ = const between the coaxial cylinders is

0.5[1− R2
i (1− 2 lnRi)]/(1 − R2

i ). Equation (1) assumes

that the same flow will be maintained after the displacement

of the axis of the outer cylinder, and the similarity of
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the velocity profile along the radius continuation of inner

cylinder will also be preserved. The value h is measured

along this continuation. It is also possible to find from

equation (1) the velocity of the unperturbed flow on the

surfaces of the inner cylinder, which is equal to zero. On

the outer cylinder, it grows with the decrease of h.
A three-dimensional velocity perturbation can be defined

using the velocity potential 8, which consists of two

components, which are solutions of the Laplace’s equation

(to which the same law leads for incompressible liquids

comes). First component

81 = A sin(θ) cos(kz )I1(kr), (2)

where I1 is the modified Bessel function, is the fundamental

solution [13] of the Laplace’s equation; the wavenumber k
is found from the condition

dI1
dr

(k) = 0. (3)

Equation (3) has many roots. The choice between them

must be made taking into account the additional condition
dI1
dr (k − kH) ≃ 0. Here H is minimum clearance between

cylinders. Second component

82 =
1

4π

�{

S0+Si

Qds
D

(4)

is determined using intensity sources or sinks Q distributed

over the surfaces of both cylinders. Here S0 and

Si are surfaces of outer and inner cylinders, distance

D=
√

(z−ζ )2+(sin θ−Ri sin ε)
2+(cos θ−Ri cosϕ−ŷ cosϕ)2.

The boundary conditions for determining the intensity Q
are the impermeability conditions for both surfaces. This

condition has the form

∂82

∂r
+

∂81

∂r
= 0 (5)

on S0, while on Si

∂82

∂r∗
+

∂81

∂r∗
+ u0 cos(r̂, θ) = 0. (6)

Additional condition

�{

S0

[
∂81

∂r
+

1

4π

∂

∂r

�{

S1

Qds
D

]
ds = 0 (7)

allows to determine the coefficient A. The solution of this

problem for the Laplace equation can be found by the

boundary element method. The presence of exact formulas

for the coordinates S0 and Si makes it possible to avoid

the approximation of these surfaces (unlike the algorithm

described, for example, in [14]) and thereby reduce calcu-

lation errors. After calculating the velocity components, the

pressure can be calculated by integrating the Navier–Stokes
equation written in cylindrical coordinates (see Appendix 2
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Figure 2. Distribution of pressure along the line of the minimum

clearance between the cylinders for R i = 0.75R; the numbers

near the curves show the values H; the pressure coefficient is

normalized to 0.5ρ(�R)2 .
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Figure 3. Distribution of pressure along the line of the minimum

clearance between the cylinders for R i = 0.95R; the numbers

near the curves show the values H; the pressure coefficient is

normalized to 0.5ρ(�R)2 .

in [15]). However, in the minimum clearance between the

cylinders, the radial velocity component is negligible, and its

azimuthal component has the maximum. Therefore, when

integrating, the terms depending on the viscosity can be

omitted.

Comparisons of the calculated pressure distribution over

the cross sections of the outer cylinders (z = const) for two
values Ri and for several ones H = 1.0− Ri − ŷ are shown

in Fig. 2 and 3 for the difference between R and Ri , which is

much smaller than in the experiment [1], but this is closer to
the situation with bearings [9]. As can be seen from these

figures, the contribution 81 leads to the axial and radial

pressure waves mentioned in [2]. As can be deduced from

the above calculations, the constant distance between the

two parallel axes of the cylinders results in the generation

of
”
waves“. In the vicinity of pressure minima must take

place emerging cavities.

Comparison of the calculated dependences for wave-

length λ with those measured in [1] is shown in Fig. 4. Their
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Figure 4. Dependences of wavelengths on the minimum

clearances between cylinders. Lines — calculations, triangles —
experimental data [1].

difference can be evaluated as satisfactory. The calculated

curve for another ratio Ri/R and, accordingly, other ŷ on

the same diagram (dashed curve) practically coincides with

the first one. Thus, the developed mathematical formulation

of the problem makes it possible to explain the nature of

the observed systems of cavities.

2. On forecast the origin of cavitation

The studied regular cavitation spots appeared in a very

wide range of Reynolds numbers, including at sufficiently

high Re (at Re > 106 in [6]). In particular, in the exper-

iments [1] carried out with the PDMS1000 liquid, which

has the kinematic viscosity ν = 10−3 m2s−1, corresponding

values of Re are below 1.0. To analyze these experiments,

the models of viscous fluid cavitation flows used in [16]
(but previously proposed in [17]) or in [18] (but previously
proposed in [19]) don’t match.

Thus, the author compares his results with the exper-

imental data [1] on the occurrence of cavitation, using

very approximate estimates. First, he assumed that the

cavities appear in the form of spherical bubbles near the

points of separation of the laminar boundary layer from the

cylinder. Secondly, it was assumed that the pressure in

the liquid in these places can be estimated without taking

into account the reverse effect of the separation zone on it

(as in the outdated method used in [20]). Thirdly, since

the known criteria for separation of a laminar boundary

layer do not work at such small Re (as well as the special

criterion from [10] for flows between cylinders), the point

of maximum pressure gradient was chosen as the point

of separation of the boundary layer. Nevertheless, the

calculations are in good agreement with the experimental

data [1]: the point of the gradient maximum is 6.5 degrees

below the clearance minimum, while the observed bubbles

were located approximately below 7 degrees. Example of

the calculated pressure distribution over the cross section of

the inner cylinder in an ideal fluid is shown in Fig. 5. The
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Figure 5. Example of the calculated pressure distribution over

the cross section of the inner cylinder (H = 0.005); the pressure

coefficient is normalized on 0.5ρ(�R)2 .

cavitation number in [1] was not entered and comparison of

cavitation occurrence numbers is not possible.

Thus, the satisfactory solution for the considered type

of separated flows was found within the framework of the

ideal fluid theory (as well as in the situations considered

in [21]). Typically, calculations of internal cavitating flows

for very low Reynolds numbers are done using the software

for Navier–Stokes equation (as in [22]). There is only

one work [23] devoted to cavitation between cylinders at

such Re, however, rather fully-developed cavitation was

considered there, and there should be a smoothing back

effect of the cavity on periodic pressure minima. Thus, it

is impossible to compare the results of this work with the

results of [23].
Accurate quantitative analysis at Re values corresponding

to the data [1] may be possible by the Direct Numerical

Simulation (DNS) method. However, the surface tension

force must be included in the analysis, since, according

to the photo [1], for H = 0.004 the radius of emerging

bubbles is approximately equal to RC = 0.00004m. Since

the surface tension coefficient normalized using PDMS1000

density is χ = 0.02m3s−2 at 20◦C, the inertial force ratio

at the location of the bubble to the surface tension force is

approximately 1.26. Therefore, the influence of the surface

tension force is significant here. As a result, existing DNS

methods for cavitating flows without taking into account

surface tension (as described in [24]) must be modified to

account for the effect of surface tension.

Conclusion

Periodic chain of bubbles in flows between cylinders is

described using the velocity potential for nonaxisymmetric

perturbations of these flows. It is shown that the constant

distance between two parallel axes of the cylinders leads to

the appearance of undulating pressure distributions along

them. Regular system of pressure minima leads to the

appearance of the regular system of caverns with practically
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constant distances between them.
”
The wavelength“ of the

system is determined by the minimum clearance between

the cylinders. Comparison of calculations with experimental

data showed the ability of the developed calculation model

to satisfactorily predict the azimuth and axial location of

emerging caverns. So, it can be stated that the nature

of the chain under study has been discovered. Although

the described flow model does not make it possible to

quantitatively predict the number of cavitation occurrence,

the performed calculations allow to conclude that the

deviation from the axisymmetric flow (the distance between
the axis of the inner cylinder and the axis of the outer one)
is more significant for the occurrence of cavitation than the

increase in the rotation speed, and since these deviations

are essentially three-dimensional, their influence cannot be

analyzed using the Reynolds equation for lubrication.

Finally, it should be noted that the fluid flow models

developed by Professor Stepanov (he would have turned

100 years old in 2022) remain effective for solving problems

in the theory of cavitation.
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