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On the destruction of elastic polymer materials under the action of an

electron beam
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An explanation for a feature found in several experiments in the general picture of the destruction of non-brittle

polymers under the influence of a shock wave initiated by a powerful electron beam is proposed. The distance of

the cracking region from the surface of the material affected by the beam to a finite length in depth is associated

with the three-dimensional nature of the propagation of elastic waves. The universality of the effect is demonstrated

by the simplest isotropic model, which shows that large tensile stresses are effectively generated inside the target at

its sufficiently large transverse and longitudinal size, even without taking into account nonlinear and shear processes.
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Introduction

Explosive and ballistic generators are classical instruments

for excitation of shock waves in studies in the field of high

dynamic pressure physics. The desire for further progress in

the field of previously inaccessible parameters and the pos-

sibility of organizing shock-wave studies in the conditions of

the ordinary physical laboratory prompted the use of other

methods of intensive influence on matter. In particular,

high-power pulsed lasers and high-current electron beams

are widely used as sources of high dynamic pressures for

studying the elastoplastic and strength properties of metals

and plastics (see, for example, [1–4]).
Previously, in experimental studies of the effect of a

high-power pulsed electron beam on targets made of

polymeric materials, in particular, plexiglass (polymethyl

methacrylate —PMMA) and epoxy resin (EDP brand,

i.e. Epoxy-Diane resin with Plasticizer), carried out on

a high-current relativistic electron beam (REB) generator

”
Kalmar“ jcite1,2, a

”
non-standard“ pattern of their destruc-

tion was recorded. In the experiments under consideration,

the maximum beam electron energy varied in the range

200−300 keV, the maximum beam current ranged from 10

to 20 kA at half-height duration of 100 ns. Under conditions

where the frontal dimensions of the target are several

times greater than the diameter of the spot of interaction

of the beam with its surface, and the thickness of the

sample is quite comparable with it or greater, between the

region of energy release of the REB and the region of

internal damage (cracking) of the polymer, there remains

transparent zone of material unaffected by erosion along the

direction of beam propagation 2−6mm at beam diameter

of 10−20mm. In the specified range of parameters, the

thickness of this region is practically independent on the

geometric characteristics of the irradiated sample and is

determined only by the parameters of the incident electron

beam. In particular, as the beam diameter on the target

surface increases, the thickness of the transparent region

increases. In this way, the damage pattern of the mentioned

polymers differs from that for materials subject
”
to brittle

fracture“ for example, of glass or polystyrene [1,2]. Possible
reasons for the significant difference in

”
brittleness“ for

polymers can be related to the features of stress relaxation

and are considered in more detail in the works [5,6].
The reason for the described effect has not yet been

established, although among which processes one should

look for, it was immediately realized. The depth of the

energy deposition of the beam is on the order of hundreds

of microns, and therefore destruction in the volume and on

the back side of the samples occurs under the influence

of the elastic perturbation of the material generated by

heating from the REB, which propagates along the target

and has the character of the shock wave at the leading edge.

Particularly, the works [1–4] were devoted to the initiation

of such waves.

Typical set up of the discussed experiments is described

below (Fig. 1).
Polymer sample in the form of rectangular parallelepiped

was placed in the anode assembly of the diode of the

”
Kalmar“generator, in which, when a high-voltage pulse was

applied to the cathode, REB was formed due to explosive

emission, irradiating the sample. The radial distribution of

the REB energy contribution to the target was determined

from X-ray photographs taken with an X-ray pinhole camera

located behind the sample. In the standard case, the

shape of this distribution was close to Gaussian one. The

features of
”
Kalmar“ accelerator experiments at the and the

technique for measuring the beam parameters are described

in detail in the works [1,2]. Fig. 2 shows photographs of

PMMA and epoxy resin (EDP) samples after electron beam
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exposure to them; later on, similar effects were observed

more than once (see, for example, [7,8]).

It is well known that the destruction of elastic-plastic

materials under tension occurs at absolute values of me-

chanical stress, which are noticeably (by times) lower than

under compression. As part of the study of the discovered

phenomenon, experiments were carried out on the same

”
Kalmar“ machine to determine the moment of destruction

of PMMA when observing the propagation of a shock

wave initiated by REB over the sample with a good time
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6

7

7

Figure 1. Scheme of experiments to study the effect of REB on

polymeric materials: 1 is test sample, 2 is anode assembly, 3 is

cathode, 4 is REB, 5 is pinhole camera, 6 is diode insulator, 7 are

observation windows.
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Figure 2. Samples of PMMA 5× 5 cm (a) and EDP

6.2× 6.2 cm (b) irradiated with an electron beam; REB was

incident on the right surface of the samples. The numbers indicate:

1 is region of evaporation and melting of the target material under

the action of an electron beam, 2 is transparent region, 3 is region

of internal destruction, 4 is
”
spall“ region that occurs when a shock

wave is reflected from this boundary.

Figure 3. Sample of polystyrene 5.2× 5.2 cm, 2.3 cm thick,

irradiated with an electron beam; REB was incident on the right

surface of the sample.

resolution [7]. It turned out that the erosion of the material

occurs at its
”
destressing“ already after the passage of the

shock wave front, i.e. just at the stage of tension of a plastic.

For comparison, Fig. 3 shows the photograph of the

destroyed polystyrene sample irradiated with electron beam

under similar conditions. It can be seen that any transparent

region between the area of the electron beam exposure on

the sample surface and destruction area was not observed.

In this work, based on the above features of the

phenomenon, we propose the possible explanation for

the
”
effect of the non-standard“ destruction pattern i.e.

the presence of the transparent region between the area

of energy release and destruction area, associated with

the specifics of the three-dimensional evolution of the

elastic wave excited by pressure pulse at the boundary

of the medium . It is important that the effect of the

appearance of tensile stresses at a distance from the target

surface, discussed below, is of an extremely general nature,

independent of variations in the mechanical properties of

the material. For this reason, the discourse doesn’t focus on

the specific structure of the polymer, on which, naturally,

these properties depend and even anisotropy is possible.

1. Physical model

The propagation of such elastic waves, as it is known,

can be quite effectively represented on the basis of simple
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acoustic model, according to which the stress evolution in

a medium σ is described by linear wave equation with the

constant speed of sound cS :

∂2σ

∂t2
− c2

S1σ = 0, (1)

[9,10]. In this case, such approximation is justified by

the fact that the values σ achieved in the experiment, on

the one hand, are not too large, and the observed shock

wave velocities do not greatly exceed the so-called volume

sound velocity (see below), and, on the other hand, are

sufficient to overcome the yield strength of the plastic,

when the elastic properties of the material become similar

to those of a liquid or gas (except that the stress — or

pressure can also take negative values). Accordingly, the

sound velocity in (1) is of the order of
√

K/ρ, where K
is the volumetric modulus of elasticity of the material, and

ρ is its density, while shear modulus G → 0 [9,12]. In

addition, the simplicity of the model makes the conclusions

based on it especially clear and reliable. The effects

of nonlinearity, anisotropy and dissipation, of course, are

capable of modifying some quantitative characteristics of

elastic processes, but cannot change the declared qualitative

pattern of the phenomenon. Further, the process within (1)
is considered in a cylindrical coordinate system with the

axis z directed from the boundary, on which the REB falls,

deep into the sample. Since the profile of this beam can be

considered axially symmetric, σ in (1) is a function of t, z ,
and r , but not ϕ.
No presence as such of tensile stresses is subject

to explanation, but the achievement by them of values

sufficient for the destruction of the material only with

the removal of the perturbation from the boundary to the

finite distance. In [7], where it was experimentally proved

that plexiglass is cracked exactly under its tension, the

appearance of the σ < 0 region was theoretically simulated

according to the standard scheme [9] on the basis of the one-

dimensional (according to z , i.e. for σ = σ (t, z )) acoustic

equation, when unbounded and uniform in r (recall, in a

cylindrical coordinate system) electron beam rapidly heats

the near-surface layer of the material, thereby generating the

medium’s stress perturbation, propagating further according

to (1). In this case, since the beam introduces energy into

the medium, but not momentum, 1, in the forming elastic

wave traveling deep into the sample, almost immediately

(at distances of the order of the thickness of the energy

input region, which, as indicated above, is only a few

hundred microns), sections that compensate each other

appear, with σ > 0 in the head and σ < 0 (due to the so-

called
”
destressing“) on the tail [7,9] and only in this case

the medium will have total zero-momentum
∫

ρvdz , where

v is mass velocity of the medium. With distancing from the

boundary, the perturbation amplitude in reality decreases

due to the un-accounting for effects of dissipation and wave

1 Of course, the absorbed electrons also have momentum too, but its

influence is negligible due to their small mass.

divergence along the radius due to the finite thickness of the

beam that generated it, so that the maximum tensile stresses

in the framework of such a model should be reached near

the boundary, which does not correspond to the observed

pattern
”
of the break off“ of cracking areas (Fig. 2).

In present paper, we pay attention to the fact that this

pattern can be explained by changing the model concept

of the mechanism of the beam action on the sample and

the idea of the geometry of the problem. The changes

by themselves are of not-original type (see links below),
but it is interesting that only two modifications lead to the

goal. The achievement of large negative values σ only in

the depth of the material is due to the combined effect

of evaporation and spread of the sample’s substance in the

REB energy deposition region, together with the limitedness

of the excited elastic wave in all three spatial dimensions, i.e.

due to its three-dimensional nature. The last circumstance,

within the framework of completely different model, was

proposed to be taken into account also in [2].
Indeed, damage to experimental samples and observa-

tions of plasma spread from the irradiated surface [13]
illustrate that heating of their REB not only creates an elastic

stress in the near-surface layer, but evaporates (and ionizes)
it, after which this layer begins to spread indefinitely, being

under the influence of the return elastic force present in the

heated, but remaining solid material in the model [7,9]. Such
spread exerts a long-term pressure compared to the time

of the beam exposure on the material layers unaffected by

evaporation due to the reactive force, introducing into the

condensed medium an already sizeable impulse, which is

detected experimentally [14]. In other words, the generation

of an elastic perturbation in the target in the framework

of (1) in the region z > 0 is adequately described by

setting the positive pressure pulse at the boundary z = 0.

In a one-dimensional situation, the resulting acoustic wave

would have exclusively non-negative values σ . However,

since in reality, as emphasized in the Introduction, the

region of the REB energy deposition across the diameter

is noticeably smaller than the size of the sample, this

wave is completely three-dimensional, and it is well known

(see, for example, [15,16]) that in higher dimensionalities,

unlike one-dimensionality, within (1) the monopolar wave

with σ ≥ 0 cannot exist. This fact is usually explained

by the following consideration. The presence of stress in

a linear isotropic medium puts it in motion according to

Newton’s second law ρ∂v/∂t = −∇σ ). The velocity of the

medium in the acoustic approximation is potential velocity

v = −∇θ, so that the linkage
∫

σ dt ∝ θ is obtained. If

at the observation point before and after the sound wave

passes through it, the medium is at rest, characterized by

zero potential, then, therefore, in any localized wave there

are necessarily sections with σ of both signs : otherwise the

time integral will not be zeroised. One-dimensional wave

divides the space into in regions in front of and behind

it ones, and the values θ on ±∞ may differ, but when

the wave is localized in all directions, the region of rest

outside it, is connected and therefore is characterized by
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one value of the potential. Thus, if the reactive pressure

initially creates the quasi-one-dimensional (because its size

in r significantly exceeds the thickness in z , see below)
compression wave in the elastic sample, then with its

removal from the boundary by distances comparable to its

own transverse dimension, three-dimensionality comes into

play, resulting in
”
generating“ tension regions.

Note that the effect of reaching the maximum tension

of the material in the depth of the target was observed in

calculations [4] related to the excitation of shock waves in

steel samples. However, the mechanism of this phenomenon

was different, the region with σ < 0 initially putting in

appearance at the beam edge and at the target boundary,

and the subsequent increase in the perturbation amplitude

occurred when the wave converged from the edge to the

axis. Most likely, this was anyway due to the destressing

during incomplete evaporation of the steel by beam and

the fact that in the tension formation region G 6= 0 (the
description of the calculations is not too detailed). Our

mechanism is believed by us to be more universal.

2. Analytical and numerical calculations

Let’s pass on to strict calculation. It is required to

find solution (1) σ (t, r, z ), where r is a two-dimensional

vector in the xy plane, i.e. σ (t, r, ϕ, z ) = σ (t, r, z ) due

to the above symmetry of the problem, in the region

z > 0 for given initial conditions σ = 0, ∂σ/∂t = 0 at

t = 0 and the boundary condition, which, to simplify the

formulas, is written as a function with separable variables,

σ = g(t)P(r) for z = 0 conditions. Specific profiles g(t)
and P(r) will be given below Due to the linearity of

the problem, this solution is expressed by convolution

of the boundary condition with some characterizing (1)
function L(t, r, z ), which is to be determined. Indeed,

by applying the Laplace transformations in t and the two-

dimensional Fourier transformations for r and using the fact

that ∂2/∂t2 top2, 1 → −k2 + ∂2/∂z 2, one can write that

d2σpk

dz 2
=

(

p2

c2
S

+ k2

)

σpk → σpk = g pPkLpk,

where

Lpk = exp

[

−z
√

(p/cS)2 + k2

]

.

Here the standard addition of subscripts p for the Laplace

and k for the Fourier transforms of the corresponding

functions is used (see, for example, [17]). Inverting the

Fourier transformation, we obtain

Lp =
1

2π

∞
∫

0

exp

[

−z
√

(p/cS)2 + k2

]

J0(kr)kdk

=
z

2π(r2+z 2)3/2

(

1+
p
√

r2+z 2

cS

)

exp

(

− p
√

r2+z 2

cS

)

,

(J0(α) =
π
∫

0

exp(iα cos)dϕ/π — Bessel function) [18]. It

follows from this that

σ (t, r, z ) =

∫

z P(r− r1)

2πcS(r21 + z 2)

×





cS
√

r21 + z 2

+
d
dt



 g

(

t −
√

r21 + z 2/cS

)

d2r1.

The terms responsible for the monopolar (∝ g ≥ 0)
and sign-alternating (∝ ġ) terms of the acoustic wave are

clearly visible. Unfortunately, this integral can be taken

analytically only in two extreme situations: one-dimensional

one with P = const, where σ ∝ g(t − z/cS), as it should be

(sign-alternating term
”
is amortized“ by interference), and

limitingly three-dimensional one, when the reactive pressure

is delta-functional one P ∝ δ(r),

σ ∝ (ez · R)

R2

[

g(t − R/cS)

R
+

ġ(t − R/cS)

cS

]

, (2)

where R = {x , y, z} is 3-d radius vector and ez is unit

vector (ort) of applicate axis. Here, the monopolar term

is the so-called
”
near field“ of a point acoustic source at the

boundary, and the alternating term is the standard dipole

mode wave [15,16].
Nevertheless, the found integral expression is a convenient

tool for wave simulation, since the numerical calculation

of integrals is much more reliable and steady than solving

differential equations. For these purposes, it is convenient to

rewrite the convolution in the form

σ = −
∞
∫

0





2π
∫

0

P

(

√

r2 + r21 − 2rr1 cosϕ1

)

dϕ1





× z
2π

∂

∂r1

g(t −
√

r21 + z 2/cS)
√

r21 + z 2

dr1. (3)

The calculation requires setting the boundary condi-

tion in the form of quite specific function σ (t, r, 0)
Based on the experimental facts indicated in the Intro-

duction, we chose for it the Gaussian spatial dependence

P = P0 exp(−r2/2ϑ2) with ϑ ∼ 3.5mm. The shape of the

temporal pressure pulse g(t) is shown in Fig. 4.

This is the spline of total duration τ , smoothly
”
joined

together“ from two cubic polynomials, the rise time of

which, according to the physics of the case, is comparable

to the duration of the beam exposure on the sample, was

taken three times less than the decay time associated with a

decrease in pressure in the jet stream due to its irreversible

expansion. Change in the ratio of these times had practically

no effect on the nature of the process. Due to the linearity of

the problem, the pattern observed in the calculation depends

only on one dimensionless parameter cSτ /ϑ , equal to the

ratio of the longitudinal and transverse scales of the excited
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Figure 4. Dependence of the pressure impulse at the boundary

on time in ϑ/cS units for the main calculation variant.

acoustic wave (see above). The calculation was carried

out in the dimensionless form with cS = P0 = ϑ = 1, so

that the only variable parameter was τ . The smaller it

is, the closer the generated wave is to one-dimensionality

(in physical variables, the decrease τ is equivalent to

increase ϑ), and the region of negative values arises in

it and grows in size (with simultaneous increase here

also absolute values σ ) on the rear side of the profile

with respect to the direction of its propagation, at the

greater distance from the boundary. To demonstrate the

declared effect, we chose (τ = 1/3: taking into account

the fact that the volumetric velocity of sound in plexiglass

is ∼ 2.2 km/s [14], this corresponds to τ ∼ 500 ns in

physical variables, which is in good agreement with the

experimentally observed width of the perturbation traveling

along the sample [7,12]
When performing calculations, the nondimensionalized

formula (3) by replacing the independent u2 = r21 + z 2 and

the dependent P(s) = F(s2) of variables was written in the

form

σ = −
∞
∫

0

[

∫ 2π

0

F
(

r2+u2−z 2−2r
√

u2−z 2 cosϕ1

)

dϕ1

]

× z
2π

∂

∂r1

g(t − u(r1))
u(r1)

dr1

=

∞
∫

z

[

∫ 2π

0

F
(

r2+u2−z 2−2r
√

u2−z 2 cosϕ1

)

dϕ1

]

× z
2π

g(t − u) + ug ′(t − u)

u2
du.

Since the function g is identically equal to zero outside

the segment [0, τ ], the outer integral is calculated in fact

within [max(z , t − τ ), t]. In addition, due to the symmetry

of the argument of the function F in the inner integral, the

calculation was carried out not for the segment [0, 2π], but
for [0, π]. Thus, the formula was obtained

σ =
z
π

t
∫

max(z ,t−τ )

[

π
∫

0

F
(

r2+u2−z 2

− 2r
√

u2−z 2 cosϕ1

)

dϕ1

]

g(t − u) + ug ′(t − u)

u2
du. (4)
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Figure 5. Stress isolines in the elastic wave for different values t :
a is 0.34 (i.e. immediately after the end of the pressure pulse),
b is 1.0 and c is 2.0. The horizontal axis corresponds to the radial

coordinate, the vertical one to the z axis.
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By it in the rectangle {0 ≤ r ≤ 2.8, 0 ≤ z ≤ 2.1} the

matrix of values σ (r i , z j) was calculated for r i = 0.004i ,
0 ≤ i ≤ 700 and z j = 0.004 j , 0 ≤ j ≤ 525.

The results of these calculations for three successive

moments of time: immediately after the end of the pressure

pulse and during subsequent propagation into the depth of

the medium are shown in Fig. 5.

The fact that there are points in the pictures for which

the wave has not yet reached does not affect the calculation

time, since in this case the limits of the outer integral

in (4) immediately show that the point should not be

calculated. It can be seen that the tension region in the

elastic perturbation from the beam genuinely appears at

the finite distance from the boundary (at the level of −0.1

from σmax no closer then ϑ). This region, in comparison

with the compression region, is characterized by smaller

absolute values of σ (which is not surprising for the given

perturbation generation mechanism) and smaller transverse

dimensions. The latter is also in good agreement with the

real pattern of destruction. The attenuation of the wave,

which leads to the boundedness of the observed destruction

region along z from two sides, is apparently associated with

dissipation not taken into account in (1) (after all, this is

precisely the shock wave at the leading front), but, possibly,
also with wave divergence according to (2).

Conclusion

Thus, we have shown that the mysterious nature of the

destruction of PMMA and other non-brittle polymers under

the action of an elastic perturbation excited by REB can

be explained in the rather simple and clear way. Wherein,

it should be noted that PMMA and epoxy resins exhibit

similar relaxation features (see, for example, [19]). In

more brittle materials, stress relaxation mechanisms can

differ significantly [5,6], and cracking is not so dramatically

associated with high values of σ < 0. Due to this, the

pictures in Figs 2 and 3 also differ. In principle, the effect
”
of

generation“ of the tension region should have been observed

in the calculations [20], where the main attention was given

”
to the full-scale“ description of the elastic medium with

non-zero values of both K, and G (excluding the taking

into account the excess of the yield strength), but the text

does not say anything about it. Although the evolution of

the wave in this case is more complicated, and the medium

velocity in it is no longer potential, but the phenomenon

itself, as stated in the Introduction, is at the qualitative level

resistant to such perturbations. Perhaps the point is that

the authors focused on simulation the destruction of brittle

glass that cracks even at σ > 0, and therefore did not pay

attention to the seemingly small negative stress values.
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