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On the nonlinear optics of extremely short pulses
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Short and ultrashort pulses

With the advent of pulsed lasers in the 1960s, one of

the main trends in the development of nonlinear optics and

laser physics was the creation of light pulses of ever shorter

durations under laboratory conditions. In turn, this caused

the rapid development of the theory of the interaction of

short laser pulses with matter.

The development of Q-switched and mode-locked lasers

led to the generation of nanosecond optical pulses. Such

pulses began to be called as short pulses. The point here

is that the durations of these pulses turned out to be

comparable or even shorter than the characteristic times

of irreversible relaxation of the medium, which determine

the rates of irreversible losses of the energy acquired by

the medium. Therefore, it became possible to study fast

intraatomic processes. As a result, such a resonant effect as

self-induced transparency (SIT) [1,2] was discovered. The

resonance here is that the carrier frequency of the optical

pulse is very close to the frequency of one of the quantum

transitions of the medium. The SIT effect is interesting,

among other things, because it is accompanied by the

propagation of a resonant optical soliton i.e. a stable solitary-

pulse. It was the first optical soliton that was observed under

experimental conditions and was described theoretically.

In theoretical studies for the electric field of a laser pulse,

the wave equation is used, which follows from the Maxwell

equations:

∇2E− 1

c2

∂2E

∂t2
−∇(∇ · E) =

4π

c2

∂2P

∂t2
. (1)

Here c is speed of light in vacuum, P is polarization

response of the medium.

For the response P, constitutive equations are written.

Their appearance depends on the choice of a particular

model of the medium, which in each particular case can

be different and is determined by physical considerations.

Equation (1) and constitutive equations for the response

of the medium constitute a self-consistent nonlinear system

that describes the dynamics of the medium and the pulse

propagating in it.

For a purely transverse wave, equation (1) can be

simplified by considering in it

(∇ · E) = 0. (2)

Below we will return to this condition, which is consistent

with the Gauss theorem at zero density of free and bound

charges.

The carrier frequency of a short optical pulse in the visible

range is ω ∼ 1015 s−1. Moreover, its duration is τp ∼ 10−9 s.

The number of light vibrations that such a pulse can contain

is of the order of N ∼ ωτp ∼ 106 . This circumstance allows

us to introduce a small parameter

δ1 =
1

N
∼ 1

ωτp
≪ 1. (3)

Owing to this small parameter, it is possible to determine,

in the general case, the complex slowly-varying envelope

(SVE) ψ of the electric field of a linearly polarized pulse:

E(r, t) = eE = eψ(r, t)ei(ωt−kz ) + c.c. (4)

Here e is the unit vector in the direction of the pulse

polarization, r is the radius vector of the observation

point inside the medium, z is axis along which the pulse

propagates, k is projection of the wave vector onto the z
axis.

The SVE approximation corresponds to the fact that the

envelope ψ noticeably changes at times of the order of τp,

which significantly exceed the period of optical oscillations
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T ∼ 1/ω, which can be formally written as (3) . This allows
us to neglect the second derivatives of ψ with respect to z
and t on the left side of the wave equation (1). As a result,

the wave equation for ψ is of the first order with respect to

the derivatives with respect to z and t . This greatly facilitates

theoretical studies. In turn, the neglect in constitutive

equations (including for the polarization response of the

medium) of rapidly oscillating terms at frequencies of the

order of ω in comparison with terms that change noticeably

at times of the order of τ also significantly simplifies the

constitutive equations .

The resonant nature of the SIT effect makes it possible,

with good accuracy, to take into account only one quantum

transition of the medium, which is in resonance with

the laser pulse (two-level medium approximation). The

system of wave and material equations describing the

SIT is called the Maxwell−Bloch (MB) [3,4] system. If

the carrier frequency of the laser pulse exactly coincides

with the frequency of the excited quantum transition, the

MB system in the one-dimensional case reduces to the

sine−Gordon (SG) equation for
”
the area“ of the pulse —

the time integral of the envelope of its electric field,

θ ∼
t
∫

−∞

ψdt [3,4]:

∂2θ

∂z∂τ
= −α sin θ. (5)

Here, the running time τ = t − z/νg , νg is the linear group

velocity of light corresponding to the carrier frequency of

the pulse, α is a constant coefficient determined by the

parameters environment.

Equation (5) has a well-known soliton solution, as well

as multisoliton solutions, which describe elastic interactions

between solitons of different amplitudes, durations and

velocities [3]. In addition, the SG equation has breather

solutions. A breather can be considered as a bound

state of two solitons with the same group but different

phase velocities. As a result, the breather is a localized

pulse propagating at a constant speed, the profile of

which periodically changes (
”
breathes“) in the comoving

coordinate system.

What has been said above about the solutions of the

SG equation can also be fully applied to the MB system.

Both SG and MB are integrable nonlinear systems in the

sense that boundary problems can be analytically solved for

them, and not only many exact solutions can be found. This

is a non-trivial fact for nonlinear systems.

It is important to note that the velocities and amplitudes

of the SG and MB solitons increase with a continuous

shortening of their time duration τp .

In the 1970s, one taked a leap in the field of picosecond

laser optics. Accordingly, the intensity of the generated

signals, called ultrashort pulses, increased. Therefore, there

appeared a real possibility of strong excitation of the

medium not only by resonant, but also by nonresonant

pulses. It was a jump-start to the development of nonlinear

nonresonant optics. For picosecond pulses, the parameter δ1
is still small, on the order of 10−3 . Such intense non-

resonant signals lead to a nonlinear modification of the

refraction index of the medium [5,6]

n → n + n2|ψ|2, (6)

where n2 is so-called non-linear refraction index.

For n2 > 0 the nonlinearity is focusing, otherwise is

defocusing one.

The envelope ψ of such pulses obeys the nonlinear

Schrödinger equation (NSE) [5,6]

i
∂ψ

∂z
= −k2

2

∂2ψ

∂τ 2
+ a1|ψ|2ψ, (7)

where k2 = ∂k/∂ω2 = ∂ν−1
g /∂ω is parameter group veloc-

ity dispersion (GVD) of the second order, the nonlinearity

coefficient a1 is proportional to n2.

The nonresonant cubic nonlinearity in (7) is often called

as
”
Kerr nonlinearity“.

NSE, like SG and MB, turns out to be integrable, having

soliton solutions [3] for k2a1 < 0. Moreover, in contrast to

SG and MB solitons, the velocity of NSE solitons is equal

to the linear group velocity of light νg and does not depend

on their amplitude and duration.

In the case of a focusing nonlinearity (a1 > 0), NSE

solitons are formed in the spectral range where the GVD

is negative (anomalous). And vice versa.

By the 1980s, pulses with a duration of several tens of

femtoseconds had been generated. Such pulses are called

as ultrashort pulses. For them δ1 ∼ 10−2−10−1. Despite

the fact that this parameter is still small, it is nevertheless

much larger than in the case of short and ultrashort pulses.

Therefore, equation (7) has to be modified by adding

higher-order derivatives to it [7,8]:

i
∂ψ

∂z
= −k2

2

∂2ψ

∂τ 2
− i

k3

3!

∂3ψ

∂τ 3
+ i

k4

4!

∂4ψ

∂τ 4

+ i
k5

5!

∂5ψ

∂τ 5
+ a1|ψ|2ψ + ia2

∂

∂τ

(

|ψ|2ψ
)

− a3

∂2

∂τ 2

(

|ψ|2ψ
)

− ia4

∂3

∂τ 3

(

|ψ|2ψ
)

+ ... (8)

Here k j and a j are respectively the parameters of the GVD

and j-order nonlinear dispersion ( j = 2, 3, 4, . . .).
Each higher order derivative in (8) is a subsequent

expansion term in the still small parameter δ1.

It is important to note once again that for short, ultrashort,

and ultrashort pulses, the number of oscillations satisfies the

condition N ≫ 1. Consequently, the spectra of these pulses

are rather narrow, since the inequality δω ≪ ω is valid for

their widths δω ∼ 1/τp . Thus, these signals in the spectral

sense are quasi-monochromatic pulses (QMP).
With a further shortening of the laser pulse durations,

in (8) it is necessary to take into account the linear and

nonlinear dispersions of ever higher orders In addition, as
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the intensities of the generated signals increase, higher-

order nonlinearities become significant. All this leads to

a significant complication of equation (8) and suggests the

need to use a fundamentally new approach.

Extremely Short Pulses

For pulses consisting of one period of optical oscillations,

the value of the parameter δ1 becomes about unity. In this

case δ1 is no longer a small parameter, and the expansion in

its powers becomes incorrect. Therefore, adding new terms

to equation (8) will not lead to an adequate description of

the pulse dynamics in a nonlinear medium. Here it becomes

necessary to search for a fundamentally new theoretical

approach.

Pulses containing the order of one period of electro-

magnetic oscillations in the domestic literature are called

Extremely Short Pulses (ESP) [9]. Recently, the term
”
low-

cycle pulses“ [10] has been applied to such signals. The

term
”
few-cycle pulses“ [11,12] has firmly taken root in the

English literature. The duration of a ESP in the optical range

is on the order of a few femtoseconds.

At the turn of the 1980s and 1990s, successful experi-

ments were carried out on the generation of ESPs in labo-

ratory conditions. Although, two even earlier experimental

works on the generation of ESPs in the infrared [13] and

subterahertz ranges [14] by optical rectification should be

noted. In this connection, we will apply the term ESP to all

single-period pulses, regardless of their absolute duration.

As a rule, the duration of such signals lies in the range

from pico- to units of femtoseconds. Attosecond pulses that

cause ionization processes in a nonlinear medium will not

be discussed here. Below, the focus of our attention will

be on the interaction of ESPs with nonconducting dielectric

media.

To construct theoretical schemes and methods that make

it possible to describe the propagation of USPs in dielectrics,

it is necessary to return to the wave equation (1), abandon-
ing the SVE approximation. In the constitutive equations,

one must also abandon the concept of envelopes of the

components of the polarization response.

As usual, theoretical studies are ahead of experimental

ones, sometimes anticipating them by several decades.

The refusal to use the SVE approximation was made

in the early 70s of the last century. We note the

theoretical works [15–17], where this failure was made

when describing the SIT effect. Let us emphasize the

approximation of unidirectional propagation (UP), with the

help of which the wave equation is reduced from the second

order to the first one [16]. Let us illustrate the use of

the UP approximation by the example of equation (1)
with allowance (2). For simplicity, let’s restrict ourselves

”
to the scalar“ case, assuming the field to be linearly

polarized. Therefore, from vectors E and P, let’s move on

to scalar quantities E and P . Then, having singled out the

predominant momentum propagation along the z axis, we

rewrite (1) in the form

(

∂

∂z
− 1

c
∂

∂t

) (

∂E
∂z

+
1

c
∂E
∂t

)

=
4π

c2

∂2P
∂t2

−∇2
⊥E. (9)

We will assume that the right side in (9) is relatively

small. This is possible if both terms on the right-hand side

are small. The smallness of the first term corresponds to

a low concentration of atoms actively interacting with the

laser pulse field. In turn, this means that the value of the

refractive index of the medium is close to unity:

δ2 = |n − 1| ≪ 1. (10)

The second term is small if we use the paraxial approx-

imation to describe the momentum dynamics in directions

transverse to the z axis.

Let us neglect the right side in (9) in the zeroth approx-

imation and take into account only the wave propagating

along the z axis, discarding the wave propagating in the

opposite direction. Then from (9) in the zero approximation

we have ∂E
∂z + 1

c
∂E
∂t = 0 or ∂

∂t = − 1
c
∂
∂t . Using this approxi-

mate equality in the first left bracket of equation (9), we
write

∂

∂t

(

∂E
∂z

+
1

c
∂E
∂t

)

= −2π

c
∂2P
∂t2

+
c
2
∇2

⊥E,

where ∇2
⊥ is the transverse Laplacian.

Integrating over time, we have

∂E
∂z

+
1

c
∂E
∂t

= −2π

c
∂P
∂t

+
c
2
∇2

⊥

t
∫

−∞

Edt′. (11)

Equation (11) describes the propagation of a laser pulse

in a rarefied medium (see (10)) along the z axis at a

velocity close to the speed of light in vacuum, taking

into account its dynamics in transverse directions in the

paraxial approximation. It is important to note that the

reduction of the wave equation from the second order to

the first occurred due to the use of the UP approximation,

and not the SVE. Therefore, equation (11) is valid both

for QMP and for pulses with an arbitrarily small number

of optical oscillations, including ESP. It would be worth

emphasizing that such a reduction was used back in the

60s of the last century when solving problems in nonlinear

acoustics [18,19], where the role of the speed of light was

played by the linear speed of sound. In those problems,

the UP approximation was called the slowly varying profile

approximation (SVP), which should not be confused with

the SVE approximation. The origin of this name is easy

to understand if once again we take into account that the

reduction of the wave equation to the first order is possible

under the assumption that the wave velocity is very close

to the linear velocity. Therefore, in the comoving reference

frame, the profile of this wave (not the envelope!) changes

very slowly.
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In the work [16] one-dimensional version of equation (11)
was considered when ∇2

⊥ = 0. Supplementing (11) with

constitutive Bloch-type equations for a medium of two-level

atoms led to a new nonlinear integrable system called the

reduced Maxwell−Bloch system (RMB).
The RMB system has both soliton (unipolar) and breather

solutions for the electric field E of the pulse [4]. In this case,

unipolar solitons have one continuous free parameter, for

which one can choose, for example, the time duration τp.

Breathers are two-parameter solutions. Taking for them τp

and the center frequency ω of the spectrum as free

parameters, one can analyze the situation for various ratios

between these parameters. For example, at ωτp ≫ 1

the breather solution transforms into a soliton of the SIT

envelope. However, it should be remembered that the

speed of such a soliton is close to the speed of light in

vacuum. At the same time, the speed of the SIT soliton can

be hundreds and thousands of times less than this speed.

Thus, the fact that the UP approximation makes it possible

to write the first-order wave equation for the electric field

itself, and not for its envelope, is an indisputable advantage

of this approximation over the SVE approximation. On the

other hand, the SVE approximation can be used to describe

resonant SIT solitons, whose speed can be much less than

the speed of light in vacuum The UP approximation does

not allow this here.

If we put ωτp ∼ 1 in the breather solution of the RMB

system, then we will arrive at a ESP with a periodically

changing profile in the accompanying coordinate system.

In the early 70s of the last century, theoretical

works [15,16] were mainly of academic interest. An urgent

need for such studies arose at the turn of the 1980s

and 1990s, when ESPs were generated under experimental

conditions [20–23].
Here one should single out the theoretical works [24–

26], in which both the SVE (3) approximation and the

approximation of a low medium density (10) were not

used. Instead of them, in the nonlinear optics of ESP,

it was proposed to use the approximations of sudden

perturbations (SPs)

δ3 = ω0τp ≪ 1 (12)

and optical transparency (OT)

δ4 = (ω0τp)
−1 ≪ 1. (13)

Note that the (12) approximation was proposed by

A.B. Migdal [27] when solving problems related to par-

ticle collisions in atomic physics. As applied to optics,

condition (12) means that the pulse spectrum overlaps the

involved quantum transition with a frequency ω0. Indeed,

in this case the spectral pulse width is δω ∼ 1/τp ≫ ω0.

Therefore, one should expect a strong excitation of the

medium, accompanied by significant changes in the pop-

ulations of stationary quantum states. This, in turn, means

a strong manifestation of the nonlinear optical properties of

the medium. In addition, with such short pulsed impacts,

the role of dispersion is very large. Therefore, favorable

conditions are created here for the formation of solitons.

As shown in [24], under condition (12) the ESP dynamics

is described by an SG equation of the form (5). Only here,

in contrast to QMP, the truncated
”
area“ θ is the integral

not of the envelope ψ, but of the electric field E of the

pulse itself: θ ∼
t
∫

−∞

Edt′. Therefore, mathematically similar

solutions are now written not for the envelope, but for the

pulse field. Here there are both solutions in the form of

unipolar solitons and breathers [3].
Note that condition (12) was used in a number of

problems related to the effects of ESP on various media [28–
33]. At the same time, attention was focused on the fact

that in this approximation, it is the electric area of the

pulse S =
∫ ∞

−∞ Edt ∼ θt→∞ that determines the result of

its action on various quantum objects. The electric area of

a single-period ESP is equal to zero. Therefore, the result

of its impact on the environment also turns out to be zero.

In order for the action to be nonzero, the pulse must have

the properties of a unipolar signal, for which S 6= 0.

In contrast to (12), condition (13) corresponds to weak

excitation of the medium and weak dispersion. In this case,

the ESP dynamics is described by the modified Korteweg-de

Vries (MKdV) equation [25,26]

∂E
∂z

+
n
c
∂E
∂t

− aE2 ∂E
∂t

− b
∂3E
∂t3

= 0. (14)

We emphasize once again that here the refractive index n,
generally speaking, does not satisfy condition (10).
Equation (14), like the SG equation, has solutions in the

form of unipolar solitons and breathers [3].
Note that the existence of one-dimensional solutions of

the type of unipolar solitons was also discussed in [34].
The model of a two-level medium used in the derivation

of the SG and MKdV equations is generally unsatisfac-

tory. As mentioned above, under condition (12), the

ESP spectrum significantly overlaps the involved quantum

transition. Therefore, this spectrum should cover other

quantum transitions as well. To prevent this from happening,

it should be assumed that the two quantum states under

consideration should be significantly removed on the energy

scale from other stationary states.

Under condition (13), the two-level model implies a

uniquely negative value of the nonlinear refractive index n2,

determined according to (6). At the same time, this value is

usually positive in the spectral region of the transparency

of solids. The Kerr nonlinearity in the two-level model

appears solely due to the change in the populations of the

stationary quantum states. In the general case, this is clearly

not enough. This is another shortcoming of the two-level

environment model.

Equation (14) can be obtained under condition (13)
using a classical oscillator with cubic non-linearity (Duffing
oscillator) [35–38] as a constitutive equation. As was

shown in the work [39], this model generally does not

Optics and Spectroscopy, 2022, Vol. 130, No. 12
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correspond to the experimental dispersion law of the

nonlinear refractive index. This is especially true for spectral

regions near resonances. Therefore, instead of the Duffing

oscillator, a classical empirical model of two nonlinearly

coupled oscillators was proposed in [39], which satisfactorily

describes the noted dispersion law. In the work [40] this

model was used to simulate the electron-optical nonlinearity

of femtosecond MPSR in wide-gap dielectrics. Since the

characteristic values of the eigenfrequencies of electron-

optical transitions are of the order of ω0 ∼ 1016 s−1, for a

ESP of duration τp ∼ 10−15 s condition (13) is satisfied. For
the vibrational optical modes participating in the interaction

with MPCP at the sites of the crystal lattice, we used the

usual model of the classical Lorentz oscillator satisfying con-

dition (12), since here the characteristic eigenfrequencies

ω0 ∼ 1013 s−1. As a result, for the electric field MPCP an

equation of the form [40]

∂E
∂z

+
n
c
∂E
∂t

+ aE2 ∂E
∂t

− b
∂3E
∂t3

+ g

t
∫

−∞

Edt′

=
c
2n

∇2
⊥

t
∫

−∞

Edt′. (15)

Note that all coefficients in (15) are positive, which

corresponds to the parameters of wide-gap dielectrics.

Neglecting the response of the vibrational modes of

the crystal, when g = 0, (15) in the one-dimensional

case (∇2
⊥ = 0) passes into an MKdV with a focusing

nonlinearity and a normal GVD (a, g > 0). In this case, one

cannot speak of the formation of solitons or breathers. Let

us make a reservation right away that here we are talking

only about
”
bright“ solitons, the field of which vanishes at

infinity. Dark solitons [6] will not be discussed here. The

situation can be changed only by the presence of vibrational

modes (g 6= 0). Numerical experiments carried out with

equation (15) in the one-dimensional case show that it

has solutions in the form of a breather-type MPCP with a

duration of approximately one and a half periods of optical

oscillations [40]. However, it has no solutions in the form of

unipolar solitons [40].
If the pulse spectrum lies closer to the frequencies of

the vibrational infrared modes of the crystal than to the

visible frequencies of electron-optical transitions, then the

dispersion created by these transitions can be neglected by

putting in (15) b∂3E/∂t3 = 0. Then in the one-dimensional

case from (15) we arrive at the Shäfer−Wayne equation [41]

∂2E
∂z∂t

+
n
c
∂2E
∂t2

+
a
3

∂2

∂t2
(

E3
)

+ gE = 0. (16)

In [42,43] it is shown that the equation (16) is integrable

and has breather solutions of the MPCP type.

In the works [44,45], a two-component model of a

medium was considered, containing two kinds of two-level

atoms with strongly different transition frequencies, which

satisfy conditions (12) and (13), respectively. As a result, a

generalization of equation (15) is obtained, which consists

in replacing g
∫ t
−∞ Edt′ → (g/µ) sin

(

µ
∫ t
−∞ Edt′

)

, where

the constant µ is determined by the characteristics of the

quantum transition that satisfies the BB (12) condition.

Obviously, in the µ → 0 limit, we have a transition to

equation (15), when the nonlinearity of the response of

the transition overlapped by the MPCP spectrum can be

neglected.

The two-component model of the medium considered

in [44,45] describes, for example, electron-optical (sat-
isfying (13)) quantum transitions and tunneling (satisfy-
ing (13)) transitions remote from them.

Accounting for the partial capture of states remote to

tunnel transitions in the interaction with MPCP was made

in the works [46,47]. As a result, a generalization of the SG

equation is obtained:

∂2θ

∂z∂t
+

(

n
c
− 4β sin2

θ

2

)

∂2θ

∂t2

= −
[

α − β

(

∂θ

∂t

)2]

sin θ. (17)

Here β is the coefficient describing the admixture of distant

quantum states to the overlapped MPCP spectrum.

Equation (17) turned out to be integrable [47]. It has both
unipolar soliton solutions and breather-type solutions [47]. If
β < 0, the unipolar solitons of equation (17) look taller and

sharper than the solitons of the SG equation. Otherwise,

the solitons, on the contrary, are blunted. As the positive

value β increases, the profile of a unipolar soliton tends

to a rectangular shape with an extremely short duration

τ min
p = 2π

√
β/α [46]. The breathers in this case have

the form of localized profiles with oscillations not of a

sinusoidal, but of a rectangular type [47].
Above, attention was paid to the propagation of MPCP

in optically isotropic media; the polarization response of

the medium consists of expansion only in odd powers of

the pulse electric field. In this connection, one should

note the works [48–50], where the soliton dynamics of

unipolar and single-period MPCP, including the generation

of harmonics [50], was studied. In the work [51] a vector

system of two equations was obtained for the ordinary

and extraordinary components of a MPCP in a uniaxial

crystal interacting nonlinearly with each other. This system

is a direct generalization of equation (15) and makes it

possible, in particular, to study the generation of terahertz

radiation in a square-nonlinear crystal using a femtosecond

optical pulse. In this connection, one should return to

experimental works [13,14], where terahertz MPCP were

generated in quadratically nonlinear crystals by the method

of optical rectification. To do this, an optical picosecond

QMP was applied to a uniaxial crystal. Due to the quadratic

nonlinearity in the crystal, among other things, the optical

pulse was rectified, accompanied by the generation of a

broadband terahertz signal consisting of only one oscillation
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period. The profile of the electric field ET of this signal is

determined by the profile of the envelope ψ of the optical

pulse. From a theoretical perspective the interest here also

lies in the fact that the SVE approximation is used for the

optical pulse, and the UP approximation for the terahertz

pulse. In the simplest case, the self-consistent dynamics

of the above process is described by a nonlinear integrable

system of Yajima−Oikawa equations [51,52]

i

(

∂ψ

∂z
+

1

νg

∂ψ

∂t

)

= −k2

2

∂2ψ

∂t2
+ σETψ, (18)

∂ET

∂z
+

nT

c
∂ET

∂t
= −q

∂

∂t

(

|ψ|2
)

. (19)

Here nT is the terahertz refractive index, σ and q are

coefficients proportional to the components of the second-

order nonlinear optical susceptibility.

It was noted above that the concept of MPCP is applica-

ble to pulses of various absolute durations. It is important

that they contain about one period of electromagnetic

oscillations. It is this condition that the generated terahertz

component ET measures up.

Generation is most efficient when the equality νg = c/nT ,

which is called as
”
Zakharov−Benney (ZB) [4] condition“

in the theory of nonlinear waves, is satisfied. It is very

difficult to satisfy this condition in real crystals, since usually

νg > c/nT . Therefore, one has to use optical pulses with

oblique wave fronts [53–57]. The phase and group wave

fronts of such pulses are not parallel to each other, but form

an angle ϕ between them. Then the ZB- condition takes the

form of a Cherenkov-type equality [55]: νg cosϕ = c/nT .

The energy efficiency of generation in this way reaches the

values ∼ 10−4−10−2 . In [58,59], systems of equations are

obtained and analyzed that generalize system (18), (19) to

the case of tilted wave fronts of an optical pulse.

System (18), (19) has a soliton solution describing the

generation process. In this case, the generated terahertz

component is a unipolar one-dimensional soliton [51,52].
A noteworthy point of this solution is that the carrier

frequency of the optical pulse is shifted to the red region:

ω → ω −�, where the value � belongs to the terahertz

range [51,52]. This fact can be interpreted in such a way

that during the generation process, each optical photon gives

up part of its energy to the generated terahertz photon. As

a result, the frequency spectrum of the optical pulse as a

whole shifts to the red region [51]. Such a phenomenon

was observed under experimental conditions [54].
At present, significant progress has been made in the

generation of both broadband and quasi-monochromatic

terahertz signals. Their intensities are such that it is time

to talk about the need to develop nonlinear
”
terahertz

optics“ [46,60]. In [60] it is shown that the nonlinear

refractive index in the terahertz frequency range can be

six orders of magnitude higher than this index in the

visible frequency range. In this case, the nonlinearity is

due to the anharmonicity of the optical vibrational mode

of the crystal nodes, and the value of n2 is expressed

in terms of the experimentally measured parameter i.e.-

the thermal expansion coefficient of the substance under

consideration [61]. Giant values n2 indicate that nonlinear

effects in the terahertz range can manifest themselves at

pulsed intensities that are millions of times lower than the

corresponding intensities in the visible range.

On the Gauss theorem, electric area and
diffraction

Relation (2) is the Gauss theorem at zero densities of free

and bound charges. As mentioned above, we do not con-

sider processes associated with ionization here. In addition,

the media are assumed to be non-conductive. Therefore,

the Gauss theorem for the cases under consideration has

the form

∇ · (E + 4πP) = 0. (20)

The density of the bound charge, as is known, is determined

by the expression ρb = −(∇ · P).
A nonzero bound charge density arises from the spatial

separation of positive and negative charges in the direction

of the E field of the laser pulse (across its propagation).
Obviously, (∇ · E) ∼ E/D, where D is the characteristic

transverse size (aperture) of the pulse.

In the case of a quasi-monochromatic pulse with a

slowly varying envelope in the pulse propagation direction

transverse to E, the induced bound charge density changes

sign on the wavelength scales λ. In this case ∂E/∂z ∼ E/λ.
As a result, we have (∇ · E)/(∂E/∂z ) ∼ λ/D. Thus, relation

(2) can be considered satisfied under the condition

λ

D
≪ 1. (21)

If the transverse size of the pulse (for example, during self-

focusing) becomes of the order of the wavelength, then

∇ · E 6= 0. In this case it is necessary to use the Gauss

theorem in the form (20). Here the condition of paraxiality

is already violated [62].
In the case of MPCP, as well as unipolar (half-wave)

pulses, condition (21) is generalized in an obvious way:

l‖
D

≪ 1, (22)

where l‖ is the characteristic size of the pulse in the

direction of its propagation.

Thus, the Gauss theorem in the form (2) is also valid for

unipolar pulses if their longitudinal dimensions are much

smaller than their transverse dimensions. In particular,

equation (2) is exactly valid for one-dimensional and two-

dimensional pulses when the transverse dimensions are

equal to infinity. For linearly polarized pulses in these cases,

one can write E = Ex (z , t) and E = Ex(z , y, t), respectively.
In the general (three-dimensional) case, equation (2) can be

considered true as long as condition (22) is satisfied.

Note that the nonparaxial diffraction regime of MPCP, in

a nonlinear medium was studied, for example, in [63]. It is
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shown, in particular, that at the non-paraxial stage, the pulse

self-separates into separate bunches of light energy.

The issue of using the Gauss theorem is closely related

to the dynamics of the electric area S ≡
∫ +∞

−∞ Edt . As

shown in [64,65], Maxwell’s equations for the electric area

of solitary pulses imply the equation

∇× S = 0. (23)

That is, the field S is irrotational. In the one-dimensional

case, when S = S(z ), this equation has the form [64]
dS/dz = 0. Thus, in the one-dimensional case, the rule

of conservation of the electric area of the transverse

momentum, S = const [65], is satisfied. This rule was

noticed and discussed in [66]. However, only in [64] it was
rigorously proved, and it was done regardless of the form of

the constitutive equations

In the general case, a vector field is uniquely determined

by specifying its curl and divergence at each point of the

considered region of space. Integrating over time (20), we
arrive at the equation

(∇ · S) = 4πQ, (24)

where the charge
”
associated with the electric area of the

pulse“ Q is defined by the expression

Q = −∇
+∞
∫

−∞

Pdt =

+∞
∫

−∞

ρbdt. (25)

Thus, the electric area of a solitary pulse obeys electro-

static type equations (23), (24).
The irrotational nature of the vector field S allows us

to introduce
”
the potential“ 8 of the electric area, defined

as S = −∇Q. Then (24) takes the form of the Poisson

equation

∇28 = −4πQ. (26)

In the paraxial approximation (see (22)) we can set

Q = 0. Then (26) becomes the Laplace equation ∇28 = 0.

The Gauss theorem is a kind of test for the physical

correctness of the obtained solutions of the wave and

material equations in the form of a MPCP. It is possible

that some solutions here may be
”
redundant“, not satisfying

the Gauss theorem. Particular care must be taken here

with respect to solutions such as unipolar pulses in three-

dimensional space.

Let us illustrate what has been said above using the

example of the diffraction of MPCP.in free space by setting

P = 0 in (11). Let the distribution of the electric field be

given on the plane z = 0: E|z=0 = E(0, t, r⊥), where the

transverse radius vector r⊥ defines coordinates across the z
axis. Then it is easy to show that for the half-space z > 0

the solution of equation (11) has the form

E(z , r⊥, t) =
1

2πcz

× ∂

∂t

∫

E(0, r′⊥, t − z/c − |r⊥ − r′⊥|2/2cz )d2r′⊥. (27)

Here the integration is carried out over the entire plane

z = 0.

Assuming that the integral in (27) takes a finite value, we

obtain for the electric area of any pulse localized in time

S = ∞+∞
−∞Edt = 0.

Thus, the area of MPCP subjected to diffraction in free

three-dimensional space is equal to zero. This is true

even if the MPCP is unipolar on the plane z = 0. This

circumstance can be easily explained using the expression

for the diffraction length ld ∼ D2/λ ∼ ωD2/c . This shows

that for zero frequency, this length is zero. Therefore, due

to diffraction, the zero frequency
”
is immediately washed

out“ from the pulse spectrum. As a result, its electric area

becomes zero.

Conclusion

The brief, far from complete, scientific and method-

ological review carried out in this work shows that the

approaches to theoretical studies of the nonlinear dynamics

of MPCP in various media are very diverse. A wide range

of MPCP indicates the need to take into account a large

number of degrees of freedom of the medium that can be

involved in the interaction. At the same time, taking into

account a large number of degrees of freedom and quantum

transitions in constitutive equations can greatly complicate

the study. Therefore, the process of derivation or empirical

search for material equations requires the researcher to have

the professional skills of a theoretical physicist, intuition and,

if you like, art.

It is intuitively clear that for pulses with a duration

of only a few periods of electromagnetic oscillations, the

concept of an envelope is inapplicable. In fact, it turns

out that everything is not so simple here either. For

example, in the work [67] for such pulses, the concept of

an envelope is nevertheless used and a general equation

containing an integral operator is derived. The expansion

of this operator into a series in terms of higher time

derivatives leads to an equation of type (8). Here it is

useful to note one of the results of the work [68], where

it is shown that for a single-period MPCP in a medium

with Kerr nonlinearity, instead of the third harmonic of the

central frequency of its spectrum (as happens in the case

of (QMP), the fourth harmonic is generated. An increase

in the number of oscillation periods from one to two leads

to the generation of the third harmonic, as for conventional

QMP. A similar situation takes place in a medium with

a quadratic nonlinearity, where in the case of a single-

period MPCP, not the second, but the third harmonic [69]
is generated. If the pulse is two-period, then, as in the case

of QMP, the second harmonic is generated. This transition

between the generated harmonics cannot be described using

the electric field envelope. At the same time, starting from

the work [67], it is possible to assume that the use of the

envelope is correct for impulses containing only up to two

oscillations. For single-period MPCP, the concept of an
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envelope is no longer correct; therefore, it is necessary to

use the electric field of the pulse itself in the material and

wave equations.

Numerous papers are beyond the scope of our analysis,

where the effects of ionization under the action of MPCP

on matter and the formation of laser plasma are considered.

Here already the Gauss theorem in the form (20) is not

valid. The right side in these cases should contain the

density of free charges. The study of these processes is

now most relevant for intense attosecond pulses. Plasma

generation here can also contribute to the formation of

solitons [70–72].
There is no doubt that in the near future the nonlinear op-

tics of MPCP will present both theorists and experimenters

with many more new mysteries and surprises.
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