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A method for reconstructing models of heat and mass transfer from the

spatio-temporal distribution of parameters

© N.Y. Bykov 1,2, A.A. Hvatov 2, A.V. Kalyuzhnaya 2, A.V. Boukhanovsky 2

1 Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
2 ITMO University, St. Petersburg, Russia

E-mail: nbykov2006@yandex.ru

Received July 20, 2021

Revised September 7, 2021

Accepted September 11, 2021

An algorithm of the generative design method for reconstruction of heat transfer models from the available data

is proposed. The method is applied to generate a partial differential equation describing the process of heating and

evaporation of a metal, the surface of which is heated by laser radiation. The high efficiency of the method was

demonstrated for the purpose of reconstructing the correct structure of the equation, indicating additional processes

accompanying heating as phase transitions, and also for determining the values of the temperature-dependent

coefficients of the derivatives.
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From the point of view of the development of artificial

intelligence (AI) technologies, of particular interest is the

development of methods for reconstructing models of

processes of various nature in the form of partial differential

equations (PDE) based on available data [1]. This approach

(hereinafter referred to as the generative model design

(GMD) method) seems to be extremely promising for

solving a wide range of heat and mass transfer problems.

The development of the GMD algorithm in relation to

heat transfer problems will allow, according to available

data, to clarify the structure of the PDE describing the

thermal process, to identify the presence of
”
hidden“

accompanying processes, such as phase transformations and

chemical reactions, and in some cases to describe complex

phenomena with unknown properties of the objects under

consideration with simpler models. From the point of

view of clarifying the structure of the equations, as an

example, we can cite the need to take into account the

second derivative of temperature in time in
”
classical“ heat

transfer equation for the correct description of high-intensity

non-stationary processes, thermal processes in objects with

strong internal heterogeneity or in small-sized objects [2].

In the case of a moving medium, the heat transfer equation

is expanded by adding a convective term. Thus, in the

presence of data on the thermal process (for example, the

temperature distribution in the medium at different points in

time), the artificial intelligence algorithm must first correctly

identify the structure of the equation (the number and

type of the main terms), and then determine the necessary

coefficients for each structural element.

The objectives of this work are 1) development of

an original recovery algorithm based on the model data

in the form of the PDE in relation to solving thermal

problems; 2) demonstration of the possibilities of applying

the proposed approach.

The developed algorithm of the GMD method provides

for the implementation of several stages of reconstruction

of the unknown structure of the equation according to the

available data. First, the full possible template of the desired

equation is written. In this paper, we consider a general

template of the thermal conductivity equation describing

pulsed heating of a material by a surface heat source [3]:

−
∂T
∂t

+
1

cρ
∂

∂x
λ
∂T
∂x

+ ω
∂T
∂x

= 0. (1)

Here is t — time, x — coordinate. The coordinate system is

associated with a moving (at a velocity of ω in the presence

of evaporation) target surface. The thermal conductivity

coefficient λ is considered unknown. For this coefficient,

a polynomial dependence on temperature is assumed with

unknown coefficients β : λ = β0 + β1T + β2T 2 + β3T 3. The

contribution of the convective term determined by the

coefficient ω is also unknown. The density ρ and the heat

capacity of the material c are assumed to be constant and

given. The power of the surface heat source qs , which

determines the boundary condition at x = 0, is assumed to

be known.

For the application of statistical learning methods [4]
a discretized finite difference method the option of the

expression (1) can be written as

Y = α0E +

Pt
∑

p=2

αpVp, (2)

where Y = −α1V1, α0 = 0, α1 = −1, αp = βp−2/(cρ) for

2 6 p 6 5, α6 = ω, E — a vector with all components

equal to one. The components of the vectors Vp contain
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the difference patterns of the elements of the equation (1)
corresponding to the internal nodes of the grid and the

considered moments of time. The number of components is

equal to n = (N − 2)L (N — the number of grid nodes of a

uniform grid, L — the number of time slices for which the

temperature values in the nodes are known). The number

of summands P t depends on the number of summands

of the original PDE and the degree of the polynomial

describing the dependence λ(T ). For the considered case

of a polynomial of the third degree Pt = 6. Coefficients αp

(p > 1) are unknown and subject to definition.

Further implementation of the GMD algorithm involves

two stages.

1. The components of the vectors Vp are calculated from

the initial synthetic data (temperature distributions in grid

nodes for different time slices).
2. To (2), the procedure for selecting the optimal subset

of variables [4] is applied, which allows us to filter out

insignificant terms and determine the necessary coefficients.

In our case, the number of variables (predictors) for internal
nodes is P = P t − 1 = 5. The procedure involves iterating

through 2P possible layouts (2) with one, two, three, etc.,

up to P terms (elements). For each fixed number of terms

p, possible options of elements are sorted out and the

optimal model is selected based on the calculation of the

smallest sum of the square of the residuals (RSS). Next, the
only optimal model is selected using the criterion BIC [4],
calculated as

BIC = n ln(RSS/n) + k ln n, k = P + 2.

In this paper, statistical analysis is performed using the

package R [5].
Synthetic data (spatial distributions of material tempera-

tures for different time slices) were obtained by numerical
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Figure 1. The spatiotemporal temperature distribution for

option 2.
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Figure 2. Change in surface temperature (1, 3) and evaporation

front velocity (2) for options 3 (3) and 4 (1, 2).

solution (1) using the finite-difference Krank−Nicholson [2]
scheme (Table 1). The boundary and initial conditions have

the form [3]:
T (x , 0) = T0,

−λ
∂T
∂x

∣

∣

∣

∣

x=0

= qs − Lρω, T (∞, t) = T0, (3)

where L — latent heat of evaporation, qs = (1− R f )I0,
R f = 0.77 [6] — reflection coefficient, I0 — radiation

intensity on the target surface, T0 = 300K. The velocity of

the surface ω corresponds to the Hertz law [3,6]. Duration
of the laser pulse (I0 6= 0) — 100 ns, the radiation intensity

is assumed to be constant in time, the target material is —
niobium. In options 1 and 2, the material is heated below

the melting point. For this case, the dependence of the

thermal conductivity coefficient on the temperature is taken

into account according to [7]. In options 3 and 4, the

surface temperature of the material approaches or exceeds

the boiling point. Taking into account the lack of reliable

data for this range, the thermal conductivity of the material

is considered constant and equal to the thermal conductivity

of the liquid metal [7]. It should be noted that in order to

simplify the formulation, the solid−liquid phase transition is

not considered in the work. Examples of synthetic data are

shown in Fig. 1, 2.

In this paper, data corresponding to a single temporal

slice is used to generate the model (Table. 1) contain-

ing three nearby time layers (time step between layers

1t = 10−11 s for options 1−4, 1t = 10−10 s for option 5).
The number of degrees of freedom (nodes of the spatial

grid with a known temperature value) used to generate the

model is 580−16,000, depending on the option (Table 1).
First, the GMD method was applied to reconstruct the

equation from the data assuming that the target is heated

to temperatures less than 2300 K (options 1 and 2) and

the temperature dependence of the thermal conductivity
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Table 1. Options of synthetic data on the target heating process

Option
Tempóral

I0(t), W/m2 ρ, C, λ,
Nd

slice, µs kg/m3 J/(kg · K) W/(m · K)

1 0.01 3 · 1011 8570 263 Var 998

2 1 3 · 1011 8570 263 Var 11704

3 0.0975 7 · 1011 7580 449.9 65 3224

4 0.0975 12 · 1011 7580 449.9 65 3355

5 1 3 · 1011 8570 263 Var 580

Note. Nd — number of degrees of freedom, Var — variable.

Table 2. Results of applying the optimal subset selection procedure for option 1

α2 α3 α4 α5 α6 BIC

Theory * * * *

(1) * −3628.851

(2) * * −10980.495

(3) * * * −12940.783

(4) * * * * −29934.639

(5) * * * * * −29928.260

Table 3. Results of the GMD application

α0 α1 α2 α3 α4 α5 α6

Theory 0 −1 2.2845 · 10−5 2.9668 · 10−9 2.9513 · 10−12
−1.0009 · 10−15 0

Option 1 2.2415 · 10−5
−1 2.2845 · 10−5 2.9669 · 10−9 2.9513 · 10−12

−1.0009 · 10−15 0

Option 2 1.2132 · 10−7
−1 2.2845 · 10−5 2.9668 · 10−9 2.9513 · 10−12

−1.0009 · 10−15 0

Option 5 −2.5967 · 10−7
−1 2.2845 · 10−5 2.9668 · 10−9 2.9513 · 10−12

−1.0009 · 10−15 0

Theory 0 −1 1.9060 · 10−5 0 0 0 −

Option 3 7.3003 · 10−6
−1 1.9060 · 10−5 0 0 0 0

Option 4 1.4656 · 10−5
−1 1.9060 · 10−5 0 0 0 0.283

coefficient. In Table 2, as an example of the application of

the procedure for selecting the optimal subset of elements,

the results for option 1 corresponding to the irradiation

stage are presented. In the first column, the number in

parentheses means the number of p elements included

under the sum sign on the right side of the expression

(2). For this option, the procedure correctly reproduces

the structure of the equation, which includes four terms

(excluding the term corresponding to α1). The minimum

value of the BIC criterion corresponds to such a set of

equation elements. Option 2 corresponds to the same

conditions, but a longer process time t = 10−6 s. The

temperature of the material decreases due to the process

of heat diffusion into the depth of the target. By time 1µs,

the temperature range of the material is 300−800K, while

the number of degrees of freedom increases to 12 000. The

convective term for this option is also not reproduced.

The results of using the GMD method for options 1 and

2 are summarized in Table 3. In the first row of the table

(graph
”
Theory“), the normalized coefficients α2 − α5 are

given, corresponding to the approximation of the thermal

conductivity coefficient used in the numerical solution of

equation (1). The following lines contain the reconstructed

coefficients for the considered options. As follows from

the presented results, the values of the coefficients in

the polynomial dependence of thermal conductivity are

reproduced fairly accurately. The error of restoring the

total coefficient of thermal conductivity does not exceed

0.002%. Increasing the time step to 10−10 s and grid pitch

50 times up to 10−7 m did not affect the model recovery

results (option 5, Table 3).

To demonstrate the capabilities of the GMD to indicate

the flow of additional physical processes, the model was

restored for options 3 and 4. In option 3, the intensity of

laser radiation was insufficient for evaporation of the target

surface. The surface temperature reaches 4000K (Fig. 2).

For option 4, the surface temperature by the time the pulse

is completed exceeds 6000 K and the evaporation front

velocity becomes significant (Fig. 2).

The results of using GMD for options 3 and 4 are

shown in Table 3. It can be seen that the GMD correctly

restores the structure of the equation. For option 4, the

coefficient for the convective term is reproduced. The value
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of the dimensionless thermal conductivity coefficient is also

reproduced correctly.

The conducted research is the first stage in the study

of the possibilities of using the proposed GMD algorithm

both for the direct construction of a mathematical model

of a complex phenomenon according to available data,

and for the indication of related processes, such as, for

example, phase transformations, as well as to clarify the

thermophysical parameters of materials. The next important

step in the study of the effectiveness of the generative design

algorithm for reconstructing models of thermal processes

will be its approbation on noisy experimental data.

Funding

The study was performed at the expense of a grant

from the Russian Science Foundation � 21-11-00296

(https://rscf.ru/project/21-11-00296 /).

Conflict of interest

The authors declare that they have no conflict of interest.

References

[1] M. Maslyaev, A. Hvatov, A.V. Kalyuzhnaya, J. Comp. Sci., 53,

101345 (2021). DOI: 10.1016/j.jocs.2021.101345
[2] A.A. Samarskii, P.N. Vabishevich, Computational heat trans-

fer, in 2 Vols. (Willey, Chichester, 1995).
[3] S.I. Anisimov, Ya.A. Imas, G.S. Romanov, Yu.V. Khodyko,

Deistvie izlucheniya bol’shoi moshchnosti na metally (Nauka,
M., 1979). (in Russian).

[4] G. James, D. Whitton, T. Hastie, R. Tibshirani, An introduction

to statistical learning: with applications in R (Springer, New
York, 2013).

[5] R: A language and environment for statistical computing

(R Foundation for Statistical Computing, Vienna, 2020)
[Electronic source]. URL: https://www.R-project.org/

[6] N.Y. Bykov, N.M. Bulgakova, A.V. Bulgakov, G.A. Loukianov,

Appl. Phys. A., 79, 1097 (2004).
[7] V.E. Zinoviev, Thermophysical properties of metals at high

temperatures (Metallurgy, M., 1989).

Technical Physics Letters, 2022, Vol. 48, No. 15


