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Dynamics of coupled quasiperiodic generator and Rössler system
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The interaction of a system with quasi-periodic autonomous dynamics and a chaotic system (Rössler system) is

considered. The behavior of Lyapunov exponents is studied to identify possible types of system dynamics: chaos

with additional zero Lyapunov exponents, three-frequency and two-frequency quasi-periodic regimes, periodic

oscillations and the mode of oscillation death.
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The interaction of nonlinear oscillation systems is of

prime scientific and technological importance. The syn-

chronization of periodic and chaotic oscillations is al-

ready understood well [1,2]. That said, studies touching

on novel physical features of synchronization of quasi-

periodic oscillations have been initiated in [3–6] and

subsequent publications. The construction of autonomous

low-dimensional radiophysical systems with quasi-periodic

dynamics (quasi-periodic oscillators) was essential here.

Issues of forced synchronization of quasi-periodic oscilla-

tors, mutual synchronization of such oscillators, etc., were

examined next [3–10]. This research area also overlaps

with the subject of bifurcations of invariant tori, which

continues to attract interest [11–13]. Synchronization theory

commonly deals with coupling of same-type systems (e.g.,
of van der Pol oscillators with each other, of Rössler systems

with each other, etc.). However, the case of coupling of

different-type systems is also of interest. The problem of

interaction of a subsystem with quasi-periodic autonomous

dynamics and a chaotic oscillator arises in this context.

These issues are the ones examined in the present study.

A quasi-periodic system [7,9] serves as the first subsystem,

and a chaotic Rössler oscillator [1,2] was chosen to be the

second one.

Let us write down the equations for an oscillator [7,9]
and a Rössler system coupled to it:

ẋ1 = y1,

ẏ1 = (λ + z 1 + x2
1 − βx4

1)y1 − ω2
0x1 − µ(ẋ1 − ẋ2),

ż 1 = b(ε − z 1) − ky2
1,

ẋ2 = −y2 − z 2,

ẏ2 = x2 + py2 + µ(y1 − y2),

ż 2 = q + (x2 − r)z 2. (1)

Here, x1, y1, and z 1 are variables of the quasi-periodic

oscillator; x2, y2, and z 2 are variables of the Rössler

oscillator; ω0 is the natural frequency of the oscillator; and

µ is the coupling parameter. The coupling was introduced so

as to be dissipative both for the first subsystem, which was

constructed as a generalization of a van der Pol oscillator,

and for the second one. Parameters were chosen in

accordance with [7,9] (ε = 4, b = 1, k = 0.02, β = 1/18,

λ = −1) and [1] (p = 0.15, q = 0.4, r = 8.5). Quasi-

periodic oscillations are feasible in this case within a certain

range of values of ω0 for the first subsystem, while the

Rössler oscillator with the indicated parameter set features

chaotic dynamics.

Let us discuss the dynamics of system (1). Figure 1

shows the plots of its Lyapunov exponents for coupling

0 6 µ 6 0.25. Parameter ω0 was set to 2π, which

corresponds to quasi-periodic dynamics in the isolated first

subsystem. Note that one exponent is positive at zero

coupling (31 > 0), since chaos is observed in the isolated

Rössler system. One exponent remains zero at any coupling,

which is mandatory for flow systems. The plots in Fig. 1

reveal three characteristic regions. In the case of strong

coupling, two the largest exponents are zero (31 = 32 = 0),
while the other ones are negative. This spectrum of

exponents corresponds to a double-frequency quasi-periodic

regime (two-frequency invariant torus in the phase space).
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Figure 1. Dependences of Lyapunov exponents of coupled

systems on the coupling strength at ω0 = 2π. A color version

of the figure is provided in the online version of the paper.
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Figure 2. Lyapunov exponents chart of coupled systems (a) and an enlarged fragment of it (b). A color version of the figure is provided

in the online version of the paper.

As the coupling grows weaker, exponents 33, 34 remain

equal, increase, and become zero at the boundary of region

2T . From this point onward, exponent 33 remains zero,

while 34 again assumes a negative value. In accordance

with [11], a quasi-periodic Hopf bifurcation occurs: a stable

three-frequency torus 3T arises softly from a two-frequency

one. Three Lyapunov exponents are equal to zero inside

the 3T region (31 = 32 = 33 = 0), while the rest are

negative. As the coupling grows weaker, several successive

bifurcations of doubling of three-frequency tori (DT) occur,

wherein the first exponent turns to zero at the bifurcation

point, but remains negative in its neighborhood [11]. The

largest exponent becomes positive (31 > 0) in region C;

thus, this is a mostly chaotic region. Very narrow windows

of three-frequency tori are also possible. In the case of

chaos, all three exponents 32, 33, and 34 turn to zero.

Note that the possibility of chaos with an additional zero

Lyapunov exponent (specifically, resulting from disruption

of doubling two-frequency tori) was discussed in [14–17]. In
the present case, two additional zero exponents are observed

instead of a single one. The presence of an additional

zero Lyapunov exponent is debatable [16]. In view of

this, the authors of [17] speak of a
”
very close to zero“

Lyapunov exponent, which may be indistinguishable from

zero in numerical calculations. Let us now perform two-

parameter analysis including the region of stronger coupling.

Figure 2, a presents the Lyapunov exponents chart on the

”
natural frequency of the quasi-periodic oscillator−coupling

strength of subsystems“ (ω0, µ) plane, and an enlarged

fragment of this chart is shown in Fig. 2, b. The regime type

and the invariant torus dimension are determined from the

spectrum of Lyapunov exponents and the number of zero

exponents, respectively. The color code legend is shown on

the right (a color version of the figure is provided in the

online version of the paper).

This figure visualizes the regions of periodic (P) regimes,

two-frequency (2T ) and three-frequency (3T ) tori, and

chaos (C). The region of a stable equilibrium state of

the system is also observed. This is a manifestation of the

OD (oscillation death) effect [1] wherein strong dissipative

coupling suppresses oscillations of both oscillators. Narrow

windows of three-frequency tori are discernible in the chaos

region in Fig. 2, b, and doubling lines DT are seen in the

region of three-frequency tori.

The boundary between the OD region and the region of

periodic regimes in Fig. 2, a is the Andronov−Hopf (AH)
bifurcation line, and the region of two-frequency regimes

is bounded from two sides by lines of Neimark−Sacker

(NS) bifurcations of limit cycles. These bifurcations were

identified using the XPPAUT numerical package. A small
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Figure 3. One-parameter bifurcation diagram. Lines 1 and 2

denote stable and unstable equilibrium states, and curves 3 and 4

represent saddle and stable limit cycles. The maximum value of

variable x1 is shown.

part of the OD region in Fig. 2, a also borders visually

on the region of two-frequency tori. Bifurcation analysis

was performed to clarify this issue. Figure 3 presents

the corresponding one-parameter bifurcation diagram for

ω0 = 1.2π. As the coupling grows stronger, unstable

equilibrium at the subcritical Andronov−Hopf (SAH) bi-

furcation point becomes stable, and saddle limit cycle C1

arises from it. This cycle, in turn, merges with stable cycle

C2 at the saddle-node bifurcation point (SN). Cycle C2

undergoes a Neimark−Sacker bifurcation at point NS, and

a stable torus arises softly from it as the coupling grows

weaker. Thus, a certain transition region is established

between the SAH and SN points in a narrow coupling

parameter interval of 2.4 6 µ 6 2.476, and bistability be-

comes possible (specifically, a stable equilibrium may exist

alongside a stable torus). Any oscillations to the right

of the SN point are suppressed by the coupling. Note

that the authors of [9,18,19] discussed bifurcation at the

OD region boundary resulting in the emergence of a two-

frequency torus attractor and two saddle limit cycles from

the equilibrium state in coupled oscillators with identical

control parameters. This bifurcation got disrupted when

a parameter mismatch was introduced. In the present

case, the bifurcation scenario is different: the systems are

definitely
”
non-identical“, and the bifurcation structure is

stable against certain parameter variations.

Thus, the oscillation death regime is observed in the

interaction of a system with quasi-periodic autonomous

dynamics and a chaotic system under strong coupling. As

the coupling becomes weaker, periodic self-oscillations and

a two-frequency torus emerge. A three-frequency torus,

which undergoes several doubling bifurcations, arises from

this two-frequency one as a result of a quasi-periodic

Hopf bifurcation. The three-frequency torus then gets

disrupted, and chaos with two additional zero Lyapunov

exponents emerges. The Lyapunov exponents chart provides

an opportunity to localize different types of regimes on

the parameter plane. A new scenario of transition from

the oscillation death regime to quasi-periodicity occurring

in a certain parameter region in coupled systems was

characterized.
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