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Quantum crystal equation of state

© S.Sh. Rekhviashvili, M.M. Bukurova, A.A. Sokurov

Institute of Applied Mathematics and Automatization, Kabardino-Balkar Scientific Center, Russian Academy of Sciences,

Nalchik, Russia

E-mail: rsergo@mail.ru

Received September 16, 2022

Revised December 12, 2022

Accepted December 12, 2022

A new and simple equation of state of a monatomic quantum crystal is constructed using the continuum

approximation for interacting atoms and the Mie−Gruneisen theory. The equation makes it possible to describe

the phase diagram both in the region of compressive pressures and in the vicinity of the critical point. Expressions
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experimental data for helium shows satisfactory agreement.
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It is known that a quantum liquid crystallizes under a

certain pressure. A so-called quantum crystal forms as a

result. The amplitude of oscillations of atoms in a crystal

of this kind is comparable to the lattice period or is even

greater. For example, liquid isotopes of helium and their

solutions crystallize under a pressure of 2.5−10MPa, and

this process is accompanied by just a slight density variation

(∼ 5%) [1]. The produced crystals retain unique quantum

properties.

Equations of state of solid helium were constructed and

analyzed in [2–14], and its heat capacity was measured

and calculated theoretically. The molar volume, the Debye

temperature, and the Grüneisen parameter were determined

as functions of temperature and pressure. Both low- and

high-pressure conditions were considered. However, the

critical parameters of helium, which define the temperature,

volume, and pressure at the critical point (i.e., the state

in which liquid and gas phases are indistinguishable), have
not been determined based on the equations of state in the

indicated studies. This is the reason why the conditions of

stability of thermodynamic phases of helium have not been

formulated. The present study is aimed at filling these gaps.

Let us consider a defect-free monatomic quantum crystal.

Since the amplitude of atom oscillations in this crystal at low

temperatures is comparable to the interatomic distance, the

probability function of finding an atom within a specified

small crystal volume broadens. Therefore, its density may

be assumed, as a first approximation, to be independent

of coordinates. In view of this, we use the continuum

approximation for atoms. The potential energy of one mole

of matter in this approximation is

U =
NAnV

2

∫

V

φ(|r|)dV, (1)

where φ(|r|) is the atomic pairwise interaction potential,

—r— is the interatomic distance, NA is the Avogadro

number, and nV is the volume concentration of atoms. The

integral in formula (1) multiplied by the concentration of

atoms yields the energy of interaction of one atom in a

volume with its entire environment, which is an infinite

continuum. The multiplier of 1/2 implies that any two

interacting points (atoms) from this continuum should be

factored into calculations only once. Let us assume that

each crystal atom occupies a sphere with radius R that

corresponds to the equilibrium state of matter. The con-

centration of atoms is then equal to nV = 3/(4πR3). With

this expression taken into account, formula (1) assumes the

following form in spherical coordinates:

U =
3NA

8πR3

2π
∫

0

π
∫

0

+∞
∫

R

φ(r, θ, ϕ)r2 sin θdrdθdϕ

=
3NA

2R3

+∞
∫

R

φ(r)r2dr. (2)

We use the Lennard−Jones form of the pairwise potential:

φ(r) = D

[

(

r0
r

)12

− 2

(

r0
r

)6
]

, (3)

where D is the potential well depth and r0 is the equilibrium
distance between two atoms. Having inserted (3) into (2)
and integrated the result, we obtain

U = U0

[

(

V0

V

)4

− 2

(

V0

V

)2
]

, (4)

where V if the volume of one mole of a phase,

V0 = 4πR3
0NA/3 is the equilibrium molar volume corre-

sponding to the potential energy minimum in the lack of
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thermal oscillations of atoms
(

U(V0) = −U0 = −3DNA/2),

and R0 = r0/
6
√
3. Expression (4) is used to determine the

volume modulus of elasticity without thermal oscillations of

atoms

B0 =

(

V
d2U
dV 2

)

V0

=
8U0

V0

. (5)

The volume modulus of elasticity calculated in accordance

with (5) has a limit value that is essentially inaccessible in

a quantum crystal.

Both a finite temperature and zero-point oscillations of

atoms need to be taken into account in a quantum crystal.

By definition, pressure p = −
(

∂〈F〉/∂V
)

T
, where 〈F〉 is

the mean free energy. The following equation of state

of a quantum crystal is obtained in the Mie−Grüneisen

approximation [5,12,15] with (4), (5) and the results

from [16] taken into account:

p =
B0

2

[

(

V0

V

)5

−
(

V0

V

)3
]

+
9γRθ
8V

f

(

θ

T

)

, (6)

where

f (x) = 1 +
8

3

1
∫

0

3
√

ydy

exp(x 3
√

y) − 1
,

γ = − ∂ ln θ

∂ lnV
,

γ is the Grüneisen parameter, θ is the Debye temperature,

and R is the gas constant. Specifically, at γ = const, (6)
yields equation

p = a(z 5 − z 3) + bz 1+γ f (cz γ), (7)

where z = V0/V , a = B0/2, b = 9γRθ0/(8V0), c = θ0/T ,
and θ0 is the Debye temperature at V = V0. Figure 1

presents the results of an example calculation performed us-

ing (7) at T = 0 (c → ∞) and f = 1 for solid helium. Opti-

mized values of the model parameters are B0 = 52.81MPa,

γ = 3, θ0 = 26K, and V0 = 14.68 cm3/mol. Literature

values of the Grüneisen parameter and the Debye tem-

perature are similar [4,6,17]: γ = 2−3, θ0 = 25−33K.

At p = 2.5MPa and T = 0, helium assumes a solid

state [18,19]. The calculated and experimental values of

the molar volume at this point also agree in the order of

magnitude: 24.8 and 21.1 cm3/mol. Note that the errors of

measurement of pressure and molar volume of helium at

low temperatures are fairly small (below 1% [4,6]).
Using (6), one may write analytical expressions for criti-

cal parameters. It is important to bear in mind that phonons

in a crystalline solid cannot be identified with quasi-phonons

in a quantum liquid. In contrast to oscillations in crystalline

solids, oscillations of atoms in any liquid are strongly

damped. However, if one admits asymptotics at θ → 0,

function f (x) and Debye temperature θ are excluded from

(6) due to the presence of the lim
x→0

x f (x) = 8/3 limit

(Fig. 2). Thus, this equation technically loses its
”
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Figure 1. Isotherm of helium in the region of compressive

pressures. The solid curve is the result of calculation in accordance

with (7) at f = 1, while dots are experimental data from [4].
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Figure 2. Function characterizing the temperature dependence of

pressure in equation of state (6).

form“ and becomes applicable, with certain reservations,

to monatomic matter in the critical region. The proposed

transition from a solid to a liquid in the equation of state

has a rather simple physical foundation. It is well-known

that the molar heat capacity of simple liquids is close to

3R. This value follows exactly from the Debye theory of

specific heats at θ → 0. It can also be said that the Debye

temperature of a liquid is negligible compared to the one

for a solid.

Thus, it follows from (6) that

p =
B0

2

[

(

V0

V

)5

−
(

V0

V

)3
]

+
3γRT

V
. (8)

As usual, the critical point is characterized by conditions

(

d p
dV

)

T

= 0,

(

d2p
dV 2

)

T

= 0. (9)

Solving (8) and (9) together, we obtain

Vc =

√
30

3
V0, pc =

3
√
30

250
B0 =

8γRTc

5Vc
. (10)
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Figure 3. Isotherm of helium in the neighborhood of the critical

point. Solid and dashed curves are the results of calculations in

accordance with (8), while dots are experimental data from [20].

The stability condition for a thermodynamic phase is

(∂ p/∂V )T < 0. With this condition taken into account, we

derive V > Vc and V < Vc from (8) and (10) to the right

and to the left of the critical point. This is exactly how it

should be.

Formulae (8), (10) provide an opportunity to characterize

with a certain accuracy the phase diagram of matter in

the neighborhood of the critical point with the pairwise

interatomic interaction parameters taken into account. Let

us again consider helium as an example. Its parameters

are well-known: D/kB = Tm = 0.95K (Tm is the melting

point of helium under the lowest possible pressure of

2.5MPa), r0 = 2rA = 280 pm (rA = 140 pm is the van

der Waals radius of a helium atom). The following

critical pressure and density values may then be calculated

using (10): pc = 0.195MPa and ρc = 68.572 kg/m3. The

obtained values are comparable with experimental data

reported in a number of studies [18,19]: pc = 0.227MPa

and ρc = 69 kg/m3. If we use the experimental value

of Tc = 5.2K for the critical temperature of helium, the

Grüneisen parameter is γ = 0.164. The smallness of γ is

attributable in the present case to a finite growth of isochoric

heat capacity at the critical point.

The results of calculations performed in accordance

with (8) are compared with the experimental data [20]
in Fig. 3. The solid curve corresponds to the theoretical

calculation with the critical parameters indicated above, and

the dashed curve is the polynomial p = Aρ5 − Bρ3 + Cρ

approximation, where coefficients A, B , and C were

determined using the least squares method; ρ = M/V is

the density of helium; and M is molar mass. The mean

percentage error of theoretical calculation and approxima-

tion of pressure within the entire presented density interval

is 15 and 0.25%, respectively. This accuracy is acceptable

for such a simple physical model.

To conclude, let us summarize the key findings:

(1) A new practically convenient equation of state (6) of

a quantum crystal was constructed.

(2) Formulae (10) for critical parameters of matter were

derived.

(3) Numerical calculations of the isotherm of helium in

the region of compressive pressures and in the vicinity of the

critical point were performed. The obtained results were in

reasonable agreement with experimental data.

In our view, it is also noteworthy that function (8) in

coordinates p−ρ characterizes a fold-type catastrophe in the

mathematical catastrophe theory (see, e.g., [21]).
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