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The analysis of flows with free boundaries is a non-linear problem, since their forms are not known in advance

and must be found. The described method is effective for various problems with various dynamic conditions on

free boundaries. This iterative method is based on the quasi-linearization of the boundary conditions for the velocity

potential proposed by A.N. Ivanov in 1962. The iterations include the successive solutions of the Fredholm integral

equations of the second kind (allowing to determine the pressure over a known boundary) and singular integral

equations (to correct the boundary shape). Here both the general formulation of the method and its development

for specific types of flows are presented, as well as numerous examples of solutions for them.
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Introduction

The goal of this work is to summarize the achievements

obtained on the basis of the method proposed by professor

A.N. Ivanov (1923−2006) for flows with free boundaries —
cavitation and Stokes waves. Later, this method was

developed for a wider variety of problems: wing stall,

capillary waves, etc. However, all modifications keep the

similarity with the original. It is worth to summarize

them, and the jubilee of A.N. Ivanov, an alumnus of

the Loytsyansky department in the Leningrad Polytechnic

Institute (now the Peter the Great St.Petersburg Polytechnic

University), who worked for more than half a century in the

A.N. Krylov State Research Center, is a good reason for it.

The analysis of flows with free boundaries is a non-linear

problem, since their forms are not known in advance and

must be found on the basis of dynamic conditions. The

Kirchhoff solution for two-dimensional flow downstream

of a flat plate published in 1869 was the first solution

to this problem. More than a century after it main

methods of analysis of such problems were based on

the variables inversion. We remind its basis using the

Riabouchinsky’s modification of the Kirchhoff problem.

This modification (which is described, in particular, in [1])
allowed investigating the constant pressure zones with

limited lengths. A fictitious boundary/body beyond such

zone was introduced [2] to avoid the d’Alembert paradox.

In the ideal fluid theory, fluid velocity U at the boundary

of this zone is constant, but it increases gradually from

zero to U0 along an obstacle and decreases gradually along

the fictitious boundary. Therefore, the image of flow

boundary downstream of a flat plate or a disc in the plane

of transformed variables {U, NX}, where N — normal to

the partly unknown boundary S, is just a rectangle. The

inversion of the unknown part S in the {x,y} space into a

line segment in this plane often simplifies the calculations

for plane problems, conformal mappings sometimes allow

obtaining Exact solutions. Inversed variables were also used

for axisymmetric cavitating flows downstream of obstacles

of simple geometries [3].
However, an inversion of variables becomes useless for

the analysis of flows over bodies with complex geometries.

This is illustrated by the example of partial cavitation of

the hydrofoil OK2003 shown in Fig. 1. Free boundary in

the plane {x,y} lays on the top side of the hydrofoil from

its leading edge to the point with an abscissa of x = 0.6C,

where C being its chord. Downstream of this point there

is a fictitious body, value of U is unknown there. The

image of the boundary of this flow in the plane {U, NX} is

very complex and unknown are even the ends of the line

segment U = U0. The situation does not become better with

the selection of another hodograph planes described in [4]:
in general, the inversion of variables does not transform a

partially unknown boundary into a fully known boundary in

another planes.

Meanwhile, the linear theory [5] gives unsatisfactory

results for profiles with significant variations of their cur-

vature, such as sections of propeller blades. The pessimistic

mood of the review in [6] regarding the situation with

mathematical analysis of cavitation and its applicability to

technical issues was understandable in 1971. Although the

first breakthrough was already done by Ivanov [7,8] with

the use of iteration methods in physical spaces {x,y} and

{x,y,z}, and another quasi-linear method was developed

soon by Tulin [9], the influence of these innovations was

not immediate. In the following decades two groups of

iteration methods for cavitating flows of nonviscous fluid

were developed. The first group uses modifications of the
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Figure 1. Boundaries of flow over the cavitating Hydrofoil

OK2003 in {x, y} and {U, Nx} planes.

Ivanov’s method in the exact non-linear formulation for

plane and axisymmetric cavitating flows, starting from [10–
14], and later [15–17] for more complicated problems. All

iterations in all modifications of this method are composed

of two parts. The first part — solving the Neumann

problem. For velocity potential out of the approximately

defined boundary S. The second part — correction of

the boundary using a quasi-linearized dynamic boundary

condition at the free boundary.

The second group of methods described in [18–23] uses
iteration algorithms also based on solving two different

problems in two successive parts of each iteration. The first

problem is solved for the velocity potential with Neumann

condition on known parts S and Dirichlet condition on the

free surface. The second problem is a correction of S by

integration of the kinematic boundary condition.

Since 2000 calculations of fully turbulent flows with

variable density using RANS- or LES-codes often displace

the calculations of nonviscous fluid flows with free bound-

ary. The use of these codes (especially some commercial

codes) can be referred to as a more simple normal

approach. Nevertheless, according to experts [24,25], there
are different problems where ideal fluid calculations yield

better results. In addition, combinations of ideal fluid

calculations and viscous flow calculations often can be

useful, as in [26,27].

The description of initial version of the Ivanov’s method

and examples of its use were presented in the mono-

graph [28] in addition to papers [7,8,29,30]. Later pub-

lications, where this method was also applied, did not

include detailed descriptions of its modifications, being

rather focused on the physics of the problems than on

computation aspects of solving them. Nevertheless, the

successful use of the same method for very different

problems makes reasonable this description supported by

new examples of solutions for them.

1. General formulation and
quasi-linearization

Flows with free boundaries are considered here within

the ideal fluid theory framework. A velocity potential is

introduced that meets the Laplace equation

18 = 0 (1)

and the boundary condition for its normal derivative on S:

∂8

∂N
= F1 (2)

with a set function F1. Also, the inflow is set, for example

∂8

∂x

∣

∣

∣

∣

∣

x→−∞

= 1. (3)

The potential and its derivatives here are normalized

using inflow velocity U∞ and size of the body. With

fixed S equations (1)−(3) describe the Neumann problem.

It is stated in the course of mathematical physics [31],
that for regions outside the closed limited surface S this

linear problem has a single solution. However, there is

also a dynamic condition, which is a consequence of the

momentum equation integral on the part of S that belongs

to the free surface SF:

∂8

∂s
= F2, (4)

where F2 is a function that can be dependent on coordi-

nates SF, their derivatives or on derivatives of 8. This

condition makes impossible solving the problem (1)−(4)
out of an arbitrarily-shaped boundary. Therefore, the shape

of SF here is unknown initially, and conditions (2), (4) are

non-linear for any F1, F2, and all the problem is non-linear.

For different right parts of equations (2), (4) in various

physical problems the algorithm of their solving by the

method is mainly the same. At any iteration first it is

necessary to find U = grad(8) on S by solving equations

(1)−(3) with the shape of S obtained at the previous

iteration; the initial shape should be defined before the

first iteration. This solution can be found by different

numerical methods. In particular, the author has used

boundary element methods. The resulted distribution of U
over S needs to be substituted in equation (4). The

iterations are stopped and S is adopted as the final boundary

of the flow when the difference between left and right

parts of equation (4) nowhere exceeds a set small value.

Otherwise a quasi-linear inverse problem has to be solved

and SF has to be corrected before the next iteration.

The correction of S can be interpreted as a motion

opposite to the gradient in the auxiliary system of variables

that define the shape of SF. Though an analytical description

of this surface might exist sometimes, the general approach

is its stepwise determination using M points distributed over
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this surface. Let us start from the two dimensional case and

denote coordinates of these points as

x k+1
m = x k

m + hk
mNk

xm, y k+1
m = y k

m + hk
mNk

ym, (5)

where superscripts indicate iteration numbers, and sub-

scripts are numbers of points. Quasi-linearization of

equations (2), (4) allows determining components of the

antigradient hk on Sk
F . This quasi-linearization in the

point {x k+1
m , y k+1

m } will be implemented using a solution

to equations (1)−(3) in the point {x k
m, y k

m}. Normal and

tangent lines to Sk
F are denoted as n and τ . Normal and

tangent lines to Sk+1
F are N and T . The difference of velocity

components in nearly points {x k+1
m , y k+1

m } and {x k
m, y k

m} is

caused, first by the small rotation of the normal, second

by the short distance h between these points, third by the

small change 8 of potential between them due to the small

perturbance q. Here

ϕ(q, Sk
F) =







1
2π

∫

qln|r |ds −2D case,

1
4π

s q
r ds −3D case,

(6)

{x , y, z} — coordinates of the point where the

potential is calculated, and points with coordinates

x̃ , ỹ , z̃ located on Sk
F . In the two-dimensional case

r =
√

(x − x̃)2 + (y − ỹ)2, in the three-dimensional case

r =
√

(x − x̃)2 + (y − ỹ2 + (z − z̃ )2. In the left part of

equation (3) the derivative

∂8

∂N
=
∂8

∂n
cos(N, n) +

∂8

∂τ
cos(N, τ ) (7)

over Sk+1
F can be rewritten as follows:

∂8

∂N

∣

∣

∣

∣

Sk+1
F

=
∂8

∂n

∣

∣

∣

∣

Sk+1
F

− ∂8

∂τ

∣

∣

∣

∣

Sk+1
F

∂h
∂τ

, (8)

using the connection between the derivative h and small

rotation of the normal. Replacement of the decomposition

∂8

∂n

∣

∣

∣

∣

Sk+1
F

=
∂8

∂n

∣

∣

∣

∣

Sk
F

+
∂ϕ

∂n

∣

∣

∣

∣

Sk
F

+ h
∂28

∂n2

∣

∣

∣

∣

Sk
F

, (9)

in (8) fallowed by the consideration of equation (2) at both

boundaries results in the following equation:

∂ϕ

∂n

∣

∣

∣

∣

Sk+1
F

+
∂(Uh)

∂τ

∣

∣

∣

∣

Sk
F

= F1(S
k
F) − F1(S

k+1
F ), (10)

that establishes a relation between h and q. This equation is

linear. By transforming the left part of equation (4) in the

similar way, we get:

∂8

∂T
=
∂8

∂n
cos(T, n) +

∂8

∂τ
cos(T, τ ), (11)

∂8

∂T

∣

∣

∣

∣

Sk+1
F

=
∂8

∂τ

∣

∣

∣

∣

Sk+1
F

− ∂8

∂n

∣

∣

∣

∣

Sk+1
F

∂h
∂τ

, (12)

∂8

∂τ

∣

∣

∣

∣

Sk+1
F

=
∂8

∂τ

∣

∣

∣

∣

Sk
F

+
∂ϕ

∂τ

∣

∣

∣

∣

Sk
F

+ h
∂28

∂τ ∂n

∣

∣

∣

∣

Sk
F

. (13)

However, in the right part of quasi-linearized equation (4)
the curvature ϑ arises

F2

(

Sk+1
F

)

= F2

(

Sk
F

)

− F1

(

Sk+1
F

) dh
dτ

+
∂ϕ

∂τ

∣

∣

∣

∣

Sk
F

− hUϑ
∣

∣

Sk
F
.

(14)

The derivation for the replacement of ∂28
∂τ ∂n with ϑ is

rather cumbersome and omitted here. Thus, it is possible to

determine hk
m and then to use of equation (5) to correct Sk

F
after the difference between the set right part of equation (4)
and its value on Sk

F is determined.

Usually, in time-independent problems with free bound-

aries, F1 = 0. Then

∂ϕ

∂n

∣

∣

∣

∣

Sk
F

+
(Uh)

∂τ

∣

∣

∣

∣

Sk
F

= 0, (15)

∂ϕ

∂τ

∣

∣

∣

∣

Sk
F

− hUϑ |Sk
F

= F2

(

Sk
F

)

−U. (16)

It is important to note that equation (16) is a singular

integral equation in q, while the calculations of F2

(

Sk
F

)

usually are based on the solution to integral Fredholm

equations of the second kind. To integrate equations

of different kinds, different grids are preferable, therefore

interpolations of U, h, and q from one grid to another are

needed.

This general description needs to be supplemented by

specific recipes for the most effective solving of different

types of problems. These recipes will be illustrated by

computational examples in the following sections of this

work.

2. Problems with constant right part of
the dynamic condition

The oldest problems for flows with free bound-

aries correspond to F1 = 0 and F2 =
√
1 + σ . Here

σ = 2(P∞ − Pcavity)/(ρU2
∞

) — cavitation number. These

problems describe flows, where σ is a constant value. This

type of F2 corresponds to the condition of constant pressure

with negligible gravity-to-inertia ratio on a free surface.

Typical scheme of these two-dimensional problems is shown

in Fig. 2.

Here, the flow boundary is composed of three parts. The

first part is wetted surface of the hydrofoil. This parts

remains unchanged in the process of iterations. The second

part is free surface (the surface of the cavity). Its shape

needs to be found in the process of iterations. The third

parts encompasses the rear part of the cavity, where the real

flow is extremely unstable, and yielding both equation (2)
and equation (4) is impossible in this part. As it is

described in the monograph [32], different schemes have

been proposed for this area. In particular, here we use of

Technical Physics, 2023, Vol. 68, No. 1
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Free boundary

Riabouchinsky
solid

Hydrofoil section

Figure 2. Scheme of two-dimensional cavitating flow over a

hydrofoil. Dashed curve — free boundary.

the Riabouchinsky’s solid, which length is fixed, while its

vertical dimension varies from iteration to iteration.

For the {F1, F2} under consideration in section 2, equa-

tion (16) can be further simplified. It becomes allowable to

neglect the third term in the right part of equation (16) along
the main part of the free surface (except for a fairly small

neighborhood of its edges), because it has low curvature

there. In the same part and due to the same reason the

second term in the right part of equation (16) can be

simplified to a Cauchy integral. As a result, this equation

can be rewritten as follows:

U +
1

2π

s 1
∫

s 0

q(s̃)

s − s̃
ds̃ =

√
1 + σ . (17)

Then an inversion of the Cauchy integral can be applied

to equation (17)

q = −2
Z(s)

π

s 1
∫

s 0

√
1 + σ −U

Z(s̃)(s − s̃)
ds̃. (18)

As it is described in [33], there are four types of infersion.

Three of them

Z(s) =



















Z0
0 ≡

√

(s − s0)(s1 − s),

Z∞

0 ≡
√

(s − s0)/(s1 − s),

Z0
∞

≡
√

(s1 − s)/(s − s0),

(19)

are engaged in the problem under consideration.

The same assumption regarding the curvature of the

free surface allows simplification of equation (15) to
q
2

= d(Uh)
dτ . However, if we substitute this formula directly in

equation (18), it would impair the iteration convergence,

because velocity along S has the number of continuous

derivatives one fewer than that of its coordinates. Therefore,

a certain smoothing is required before corrections of SF , and

first the value of q should be determined, and h should be

found by integrating the following:

h(s) =
b

2U(s)

s
∫

s 0

q(τ )dτ + h(s0). (20)

The corrected surface S must have continuous coordinates

and components of normal. Two ways of such correction

are possible for two-dimensional and axisymmetric flows.

The first way corresponds to a fixed length of the cavity.

The second way corresponds to a fixed value of σ . Different

ways have different corresponding types inversion of Cauchy

integral.

The algorithm of correction at a fixed value of σ is

illustrated in Fig. 3. It is based on the use of two solutions

to equations (18), (20) and their matching in the point x∗,

where the least curvature of SF takes place. The first

solution uses Z∞

0 and a fixed point s0; based on this solution

an abscissa x∗ will be found; this solution defines the left

branch of SF . The second solution uses Z∞

0 and a fixed

point s1 in the equation for h, which is symmetric to

equation (20); this solution defines the right branch of SF

and abscissa x∗∗ with the same normal as in x∗, but x∗∗

may differ from x∗. The branches are connected at x = x∗,

however the right branch and the Riabouchinsky’s solid will

be moved over a distance of x∗∗ − x∗ along axis x and

over a distance of h∗ along the perpendicular axis. This

movement will be accompanied by a shift and a deformation

of its contour with continuous coordinates and normal lines

on its edges remained unchanged.

The correction algorithm for the cavity with a fixed

length is based on solving equation (18) with Z = Z0
0 and

equation (20). In this case the additional condition of

s 1
∫

s 0

(√
1 + σ −U

)

dτ

Z0
0(τ )

= 0 (21)

should be met to make it possible the use of Z0
0 . This

condition is also an equation to determine σ . Two branches

of h(x) are connected in a point with NX = 0, and for the

correction of SF only vertical shift of the rear branch is

needed.

As shown in Fig. 4, for the case of supercavitation,

the same body can be considered as a cavitator and as a

Riabouchinsky’s body. The iteration process convergence is

illustrated in Fig. 5 for an axisymmetric flow.

Fig. 6 shows distribution of the pressure coefficient over

a cavitating hydrofoil after 80 iterations at 0.2 < b < 0.4.

Visible deviation of the calculated pressure coefficient from

a constant value only remains near the leading edge of the

cavity. The residual error in equation (4) at the edges of

the cavity decreases much slower than that in the middle,

because of the greater curvature of SF near its edges; ϑ may

even become infinite at the point s0,and the last term in the

Riabouchinsky solid

Hydrofoil contour

–h*

X0

X1

Figure 3. Scheme of cavity correction at a fixed σ .
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Figure 5. Convergence for the numerical solution of two-

dimensional cavitating problems; dσ — change in σ from iteration

to iteration, dB — correspondent change in cavity thickness.

right part of (16) may not be negligible there. At the edges

of SF the asymptotic solution

h(s) = A1(s − s0)
3/2 + . . . (22)

with uncertain coefficients A1, A2 was matched with the

solution to equation (20).

In three-dimensional flows the cavity length is different

along different streamlines. Meanwhile, tangent derivatives

of 8 have the same feature there as the tangent derivatives

in two-dimensional flows. Therefore, 3D-equation (16) can

be rewritten in the following form:

1

2π

s 1
∫

s 0

q(s̃)

s − s̃
ds̃ =

√
1 + σ −U − ∂ψ

∂τ
(23)

using an auxiliary function without feature:

ψ(q, s) =
1

4π

x q
r

ds − 1

2π

∫

qln|r |ds . (24)

Equation (20) must be integrated along streamlines. The

condition

s 1
∫

s 0

(√
1 + σ −U − ∂ψ

∂τ

)

dτ

Z0
0(τ )

= 0 (25)

is written along streamlines as well, but in the three-

dimensional case s1 is an unknown parameter in equa-

tion (25), while σ is set and is the same for all streamlines.

A computational example of cavity Sections in a three-

dimensional flow is shown in Fig. 7. We have used there

a modification of Roshko’s scheme with infinite cylinder

downstream of the cavity instead of the Riabouchinsky’s

solid. As it was forecasted theoretically [1], Sections of the
cavity downstream of a three-dimensional obstacle tend to

circle.

A few general notes regarding the efficiency of calcu-

lations are relevant. First, as can be seen from Fig. 6,

the solution to problem (1)−(3) at each iteration of the

method used allows estimating how accurate is the solving

0 1.000.25 0.50 0.75
–2.0

–1.0

x/C

2
1
 –

 U

1.0

0

–1.5

–0.5

0.5

1.8 1.58 1.28

Figure 6. Measurement of dimensionless pressure coefficient

CP = 1−U2 around the hydrofoil ClarkY-11.7% with cavities

at an attack angle of 8◦; numbers near the curves identify

correspondent values of σ .
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z

0

–0.3

–0.1

0.79

³1.49

0.1 0.5

0.07 0.21 0.3 0.5

Figure 7. Sections of a three-dimensional cavity downstream of

an elliptic obstacle at σ = 0.2. Numbers near the curves are values

of coordinate x .
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of both equation (2) and equation (4), and this is a

significant advantage of the described method. Using the

linear problem (1)−(3) in this way similar to the verification

by the method of manufactured solutions of Roache [34]. In
this case, for two-dimensional and axisymmetric flows there

are well-known analytic solutions, which can be used to

determine the required density of the grid. Then this density

should be kept for more complex geometry of the body.

Second, lower value of b should be used in equation (20)
with decrease in σ . Third, the restriction imposed on

the difference between left and right parts of equation (4)
should be dependent on the accuracy of U calculation.

In addition to cavitating flows, there are also other

problems where the right part of equation (4) is constant.

One of these problems is related to plasma equilibrium

figures [35]. The main role in such flow is played by

mass forces, while the inertia force is negligible, but the

calculation technique remains very similar.

3. Problems with coordinate-dependent
dynamic conditions

As it was shown experimentally [36], the attached

cavitation is a specific type of viscous separation. The pres-

sure along separation zones is not constant, but increases

significantly in their tail. Therefore the analysis of cavitation

can be formulated more precisely as a problem with free

boundary with a dynamic condition dependent on x , as it

was suggested in [37]. The calculation of flows downstream

of diaphragms in pipes is the simplest example of this type

of problems. Scheme of this flow is shown in Fig. 8.

Pressure in such separation zone has a nearly isobaric part

immediately downstream of the diaphragm, but increases at

a certain distance upstream of the point of the boundary

layer attachment to the pipe wall. The following equation:

1

2π

s 1
∫

s 0

qds̃
[s − s̃ ]

= C0 + C1 f 1(x) −U(x) − 2U(x)h
R

(26)

is considered in this problem instead of equation (16). The
first and the second terms in the right part of equation (26)
reflect the change in pressure along the free surface. Along

its isobaric part we have f 1 = 0, and downstream of it the

pressure increases. The fourth term is an approximated

R

LO
x

Figure 8. Scheme of the separation flow downstream of a

diaphragm. The free surface is shown by dashed line, the fictitious

body downstream of the separation zone is shown by dash-dotted

line.
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|
1
 +

–
|

Ö
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U

Figure 9. Example of the iteration process convergence in the

problem of separation downstream of a diaphragm.

correction to U that takes into account the influence of

change in the flow blocking between the pipe walls and

SF , caused by the correction of SF .

For this inner flow problem (1)−(3) has no a single

solution, and it must be replaced by the Dirichlet problem

for current function. As a result U will be found by solving

the following equation:

U +
1

2π

∂

∂N

x
U
cos θ

r
ds = −NR

(

Q
πR2

)

, (27)

where R is coordinate in a cylindrical coordinate system.

Here, the current function is determined using vortices in

axisymmetric flow.

With a set form of f 1(x/L) in this problem there are

three uncertain parameters: coefficients C0, C1, and L. To

determine them, three conditions are required. The first

of them is a generalization of equation (21) for the right

part of equation (26). A simplified form of the momentum

conservation law is

R(L)

R(∞)
=

[

1

1 + CD

]
1
4

(28)

with an empirical value of the hole resistance coefficient

(taken from the reference book [38]) is the second con-

dition. The third condition is the criterion of boundary

layer attachment U = ζRdU/dx at x = L, where ζ is an

empirical coefficient. The iteration convergence for this

problem is illustrated in Fig. 9. In this specific example,

due to the significant flow blockage, a value of b = 0.015

was used (cross-section area of the hole is equal to 0.75 of

the pipe cross-section).
As can be seen from Fig. 10, a, for other types of

separating flows the function of F2 can be more complex

and include larger number of uncertain coefficients (as for

the case of separation downstream of a backward facing

step; comparison of calculations of [26] with measurements

of [39,40] for this case is shown in Fig. 10, b). The additional
coefficients require additional conditions dependent on the
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Figure 10. a — calculated normalized distributions of pressure along the separation zones downstream of various obstacles; b —
comparison between calculated and measured pressure downstream of a step in a channel. Numbers indicate the ratio of the step height

to the channel width.

version of the viscous-inviscid interaction procedure used.

Its fundamentals are described in detail in [41,42], and since

the description of these conditions is on no importance for

the explanation of the method used, it can be omitted here.

The situation with the ordinate-dependent right part is

similar to the previous situation from the mathematical point

of view. It is interesting, that, as shown in [43], the fictitious

body on the free surface can disappear due to ordinate-

dependent mass forces as well.

The most important technical application of this effect

is the ship drag reduction by ventilated cavitation, and

the described method is used [44,45] for design of ship

elements. In this case the cavity shape depends on

more significantly, included in F2, than on σ . This is

shown in Fig. 11 taken from [44], where z 0 is an edge

ordinate of the niche intended to stabilize the cavity under

the ship bottom, F2 =
√
1 + σ − 2(z − z 0)Fr−2, Froude

number Fr = U∞/
√

gL, g — gravitational constant.

Another problem with this F2 is the determination of

non-linear gravitational waves. An example of its solving

with the use of a generalization of the Ivanov’s method is

given in [46,47] for surface Stokes waves, which are non-

linear waves with the critical point in the angles on their

crests. Stokes waves are considered as stationary waves

with maximum amplitudes [48]. The oldest solution [49] for
Stokes waves was found for a flow with infinite depth. Later

numerous solutions for surface Stokes waves were found by

many authors, as a rule listed in the review of [50].
Inner waves are also often subjected to significant non-

linear effects, as noted, in particular, in [51,52]. However,

it is necessary to prove that inner Stokes wave can exist

mathematically. Let us consider two infinite layers of ideal

incompressible fluids with different densities, separated by

the surface S. The Bernoulli equation for the top layer

over S has the following form:

P + ρ1U
2
1 /2ρ1gy = C1, (29)

and for the bottom layer it has the form of:

P + ρ2U
2
2 /2 + ρ2gy = C2. (30)

Here ρ1 and ρ2 — densities of the first and the

second fluids, U1 and U2 velocities in the first and the

second fluids, y — ordinate of S. The pressure is

continuous on the common current line of layers, thus

U2
2 + 2gy − ε(U2

1 + 2gy) = 2(C2−C1)
ρ2

there, where ε = ρ1
ρ2
.

Velocity of the ideal fluid on the angle edge can be

either infinite, or zero. We use conform mappings

to determine the zero-velocity angle. By considering

an auxiliary half-plane {ζ } for the bottom flow and

using complex potential W there, we get Zπ
2 ∼ ς α and

U2 ∼ (dW/dζ ) ·
(

dς
dZ2

)

∼ 1 · Z
π
α
−1

2 , where Z = x + iy . A

vicinity of the angle in the top flow can be mapped to

the vicinity of the critical point on the circle. Therefore,

U1 ∼ ς dς/dZ1 ∼ Z2π/(2π−α)−1

1 and Zπ
1 ∼ ς 2π−α there, but

this mapping is only possible with a certain circulation of

velocity related to vortices in the top flow. Since the sum of

angles at the crest is 2π, the crest angle is α = 2π/3, as for

the surface Stokes waves.

Waveforms and intensities of related vortices are deter-

mined with the help of two Ivanov’s contours shown in

Fig. 12. The introduction of such contours, which geometry

is known from previous iteration, allows replacement of

the problem with infinite free surface by two connected

problems with very large closed contour in an unlimited

flow. This replacement simplifies the calculation to a

significant extent. The initially unknown free surface is a

relatively small common part of both contours. However,

this part is much greater than the wavelength. Problem

(1)−(3) for the contours can be solved using integral

equations for the intensity of vortices distributed over them.

This intensity is equal to the tangent velocity U in the

bottom flow and −U in the top flow, because there is

no flow inside the contours. Different integral equations

describe the bottom and the top flows. To derive them, we

need to estimate the velocity induced on S by the vortices

distributed over all other parts of the contour. Infinities

of different orders must be analyzed. Let’s assume that

|AH| = |AB | ≪ |AE|, |CD| = |DG| ≪ |FD|, |EF| ≪ |AE|,
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|EF | ≪ |FD|. For the top contour
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R
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F
∫
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+





D
∫

F

+

G
∫

D

+

G
∫

H

+

A
∫

H

+

E
∫

A



 ,

and

∮

S∗∗

U
cos(N, R)

R
dS =

F
∫

E

+





D
∫

F

+

C
∫

D

+

C
∫

B

+

B
∫

A

+

E
∫

A





— for the bottom contour. We can estimate the integrals

over remoted parts of contours, taking into account that

velocities along them are nearly unperturbed. Therefore,

for the bottom flow we get:

U2 −
1

π

F
∫

E

U2

cos(N, R)

R
ds = NYV1 + NXV2. (31)

Here

V1 =
1

π

[

a tan

(

x − xF

y − yA

)

− a tan

(

x − xE

y − yA

)]

− 1,

V2 =
1

2
ln

(x − xE)2 + (y − yA)2

(x − xF)2 + (y − yA)2
.

For the top flow it is necessary to take into account the

induction of vortices, related to crests, and there we get:

U1 +
1

π

F
∫

E

U1

cos(N, R)

R
ds + Ũ = (NYV1 + NXV2)β, (32)

β — ratio of inflow velocities in two flows,

Ũ = Ŵ
π

∑k=∞

k=−∞

dXk NX +dYk NX

dX 2
k +dY 2

k
. The vortex intensity Ŵ is

unknown, but the asymptotics h(s) =
√

s(A1 + A2s) is

considered as an additional equation and can be used to

determine this intensity. The position of the vortex system

in the top part of flow is arbitrary and hence Ŵ depends on

this position, like for vortices in the Tulin’s scheme for the

supercavitation [32]. Vortices in the presented calculations

are located above the crests. In the nature, two layers of

fluid with different densities moving at different velocities

have a shear layer between them, and in this layer vorticity

is created continuously, which is similar to the emergence

of vorticity on a rigid flow boundary.

Quasi-linearized inverse problem is considered for one

wave in the center of S. Prior to the next iteration, other

waves will be copied from this wave. By assuming, that

wave crests are located at a level of y = 0, we have c1 = c2.

By assuming, that S is subjected to small perturbations only,

we can simplify the constant pressure condition

2εU1u1 − 2U2u2 − hNYµ = F (33)

and introduce two auxiliary potentials of sources/sinks

distributed along the selected wave on S; here u1 and u2 —
perturbations of U1 and U2, F = U2

2 − εU2
1 + µy , µ = 1− ε.

Analogues of equation (20) in this problem are:

bq1 = −2d(hU1)/dξ, bq2 =
2d(hU2)

dξ
. (34)

Here q1 and q2 — presumably low intensities of pertur-

bation potentials determined in two fluids. By substituting

equation (34) into equation (32) and using inversion of

Cauchy integral, we transform equation (34) into

πq2

Z0
0(s)

−
∫

λ













εU1

πU2

∫

λ

d

(

U1

U2

ξ
∫

0

q2dς

)

dξ
dξ













dz
5

−
∫

λ





µNY

U2
2

z
∫

0

q2dς





dz
5

=

∫

λ

F
U2

dz
5
. (35)

Here 5 = (s − z )Z0
0(z ). After solving equation (35), it

is necessary to integrate the second equation (34) with

respect to h with the initial condition of h(0) = 0 to the

point of minimum y + hNY . This point is a wave trough

on the corrected S. Then the right half-wave will be

corrected symmetrically with respect to this point, and all

the surface S will be covered with waves of the same

shape. The determination of shape of periodic surface

Stokes waves in infinite flow by the above-described method

was considered as a verification of this method. Then it was

reasonable to start calculations of inner Stokes waves from

the options close to the verification example. The calculated

waveforms for β = 1 and ε ≪ 1 can be seen in Fig. 13 for
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different values of ε. Velocities in both fluids along their

common boundary are compared in Fig. 13, a for ε = 0.1.

However, it is difficult to establish a relation between the

examples with ε = 0.1 and 0.2 and well-observed flows.

The observed flows with inner waves in the nature are

referred to ε → 1. The following examples of numerical

solutions are referred to ε = 0.98, while the value of β

is varied. In particular, the distributions of velocities in

Fig. 14, a are referred to β = −1.5; thus, directions of flow

in the top and bottom fluids in this example are opposite,

as it took place in situations of mixing described in [53].
The ratio of height to wavelength for this wave is 0.1234,

which is very close to the ratio of 0.141 for surface Stokes

waves in an unlimited flow, but wavelength of the inner

wave taken relative to 3 = 0.5U2
1∞g−1 is much higher.

Wavelengths shown in Fig. 14 are dramatically dependent

on β, but, as can be seen from Fig. 15, this does not lead to

significant variations of wave slope or normalized intensities

of vertices.

Equations (29), (30) will be satisfied with change of

velocity sign. Therefore the above-presented results are true

for 1.5 ≤ β ≤ 1.7 and the same ε with the same Ŵ/(βλ).
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0.125

β

0.125

0.135

–1.50

0.130

–min{y}/λ

Γ/(2πλβ)

Figure 15. Dependencies of the Stokes wave slope (solid line)
and normalized intensity of related vortices (dashed line) on β at

ε = 0.98.

With 0.4 < ε < 0.8 the numerical method used did not

allow achievement of iteration convergence. Perhaps, Stokes

waves simply do not exist with this ε.
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4. Problems with boundary conditions
dependent on the curvature

Finding capillary waves is a problem with a condition

of the free boundary that depends on its curvature. The

interest in this problem has grown in the last decades

due to agiotage around the drag reduction with the use of

hydrophobic coatings, and a lot of experimental studies have

been performed in different ranges of Reynolds numbers

(for example, described in [54–57]). The drag reduction

occurs due to the air films adjoining these coatings. The

modification of equation (4) for capillary waves on a

film becomes U2 + 2ϑ/We = 1 + σ , where We — Weber

number. The analogue of equation (16) in this problem is:

⌢

k
We

+ Uu + hU2ϑ =
1 + σ −U2

2
− ϑ

We
. (36)

Here
⌢

k — perturbation of ϑ . Despite the similarity of

equation (36) with equation (17), the use of equation (20)
derived from the latter is impossible in this problem. The

matter is that the curvature of boundary has the number of

continuous derivatives one fewer than that of u. Therefore,
the unknown function h(x) should be represented in the

form of sum:

h =
∑

k

Ak f k(x) +
∑

k

Bkgk(x), (37)

where Ak and Bk — uncertain coefficients, and functions

f k , gk meet the following conditions:

f k

(

λ

2

)

=
d f k

dx

(

λ

2

)

=
dgk

dx

(

λ

2

)

=
d f k

dx
(0) =

dgk

dx
(0) = gk(0) = 0. (38)

These coefficients are found by minimizing the right part

of equation (36).
Examples of waveforms, calculated in [16] for capillary

waves, are shown in Fig. 16. The approximations of h,
similar to formula (37), were used in inverse problems as

well [58–60], which also can be considered as problems

with free boundaries.
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Figure 16. Calculated waveforms of capillary waves.
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Figure 17. Meridional sections of axisymmetric cavities down-

stream of a disc in unsteady flows (dashed curves — at θ = 0.1,

dash-dotted curves — at θ = 0.02) in comparison with time-

independent cavities (shown by solid curves) at the same values

of σ (shown by numbers). For all cavities: σ (0) = 0.136. For

unsteady cavities σ (t) = σ (0)γ2, a = −θ, γ = (1− θt∗)−1 .

5. Problems for unsteady flows

Problems for inviscid flows with unsteady boundaries are

more complex even without taking into account gravitation

and capillary forces. For them the dynamic condition (4) on
the cavity surface can be represented in the following form:

∂8

∂s
=

√

1 + σ − 2γ

(

aγ8+
∂8

∂t∗

)

. (39)

Its right part depends on instantaneous values of three

parameters: σ , a = D
U2
∞

(0)
dU∞(t)

dt and γ = U∞(0)
U∞(t) ; here

t∗ = U∞(0)
C . The unsteady analogue of equation (15)

qb
2

− ∂(Uh)

∂l
− γh

t∗∗
= 0 (40)

contains t∗∗ — difference of two successive dimensionless

moments of time t∗+ and t∗
−
; here l — tangent to the

current line (which, as a rule, does not coincide with

the free surface for unsteady flows). It must be noted

that as opposed to the situation solved by equations (17),
(20), (21), here variations of L are directly connected

with the change in t, and not the σ . Therefore, the

analogue of equation (21) for unsteady flows serves to

determine t . Quasi-linearization of equation (4) with its

right part described by equation (39), followed by the

inversion of Cauchy integrals results in a cumbersome

formula, which is omitted here.

Some calculated examples from [14] for unsteady flows

are shown in Fig. 17. It can be seen that for the disc motion

with a strong deceleration the analysis of time-independent

flow results in a considerably underestimated cavity length.

In this example at σ = 0.5 the result of time-independent

theory is as low as 23% of the result of unsteady theory.

The stability of free surface in examples from Fig. 17 was

kept due to very high of |a |, although, as it is found in [61],
boundaries of unsteady cavities in ideal fluids, in general,

are unstable.

The most often observed cavitating flow is that with very

low |a |, however, in reality it is unsteady too. For this type

of unsteady flow it is difficult to achieve convergence of

the iteration process similar to the convergence shown in
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tal data of [53] for Clark11.7 and [54] for NACA0015; numerical

results are shown by lines.

Fig. 9. Due to this fact, the initial quasi-linear variant [7] of

the Ivanov’s method becomes preferable for them. Then

solutions for the time-independent cavitation for a given

σ using the Riabouchinsky’s scheme can be considered as

initial unperturbed solutions. This variant was used in [62]

to calculate such cavities on blades and in [17] - on ClarkY-

11.7 and NACA-0015 hydrofoils. As it is shown in Fig. 18,

coincidence of calculated and measured [63,64] pulsation of

cavity lengths dL is satisfactory, at least up to L = 0.5C .

The calculations presented in Fig. 18 took into account

the elasticity of the hydrofoil and the compressibility of the

cavity. These factors were taken into account in the right

part of equation (2), but they did not have effect on the

calculation scheme. However, it is necessary to note that

statements of problems with free boundaries continue to be

further defined [65], even for a fewer number of physical

parameters.

Conclusion

Calculations of flows with free boundaries are a special

class of non-linear boundary problems for differential equa-

tions, because boundaries of their definition domains are

unknown and should be found. The described iteration

method is based on quasi-linearization of the boundary

conditions for potentials followed by solving of integral

Fredholm equations of the second kind and singular integral

equations in sequence at all iterations. Variants of these

method are modifications (generalizations) of the method,

developed by A.N. Ivanov.

The general formulation of the method and its modifica-

tions for specific types of flows are presented together with

numerous computational examples for them. Fundamentally,

the similar modifications allow solving problems, which are

different from physical standpoint.
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