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A hypothesis is formulated and substantiated that quasi-static deformation in an amorphous metal alloy is a

complex relaxation multi-stage process, which is a hierarchical sequence of interrelated structural transitions of the

first order ordered in time. These nonequilibrium processes sequentially proceed at different scale space-time levels,

starting from the lowest level — a cluster of atoms of the first coordination sphere with a relaxation time τη , then

the middle level - a nanocluster of atoms of the fifth coordination sphere with a relaxation time τϕ , spatial scale

of 10 nm and relaxation time τ , and τ ≫ τϕ ≫ τη . They are accompanied by transformations of various types

of potential energy of atoms (elastic, inelastic, plastic deformation, ZST) into each other. A mechanism and a

model of a nonequilibrium transition from an elastic mechanical state to a state with shear transformation zones,

a mechanism and a model of localized plastic deformation in an amorphous metal alloy are constructed. In the

interval of non-uniqueness, in response to a locally introduced perturbation, a traveling autowave arises, which

transfers the slip band from the inelastic deformation regime to the plastic deformation regime. Model parameters

are estimated and important physical properties of plastic deformation are calculated.
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Introduction

The map of the mechanical states of the amorphous-metal

alloys (AMA) in the parameters
”
temperature-applied

stress“ σ/µ (µ — the shear modulus) [1–4] shows that

within the region from the absolute zero to the room

temperature and of the low stresses σ/µ ≪ 10−2 an elastic-

deformation state is implemented. With increase of the

stress σ/µ ≤ 10−2, there is a region of inelastic deformation.

The high stresses 10−2 < σ/µ < 10−1 cause heterogeneous

plastic deformation of AMA.

Let us note features of the low-temperature deformation

of metal glasse [1–3], which have been detected as per strain

diagrams (the curves
”
tensile stress–elongation“ plotted

using the experimental data) as well as during experimental

study of internal friction.

The elastic deformation obeys the Hooke’s law, which

stipulates that the deformation ε linearly depends on the

applied stress σ , i.e. ε(σ ) ∼ σ . After load removal the

elastic deformation is fully and instantaneously reversible

(at the speed of sound).

Within the inelastic deformation region, the dependence

ε(σ ) becomes non-linear, and the deformation of the sample

increases faster than by the linear law. After load removal

the decrease of the inelastic deformation is delayed in time.

The part of the inelastic deformation is reversible for the

time of the observation (experiment). The remaining part

of the inelastic deformation is irreversible for the time of

observation. However, in case of substantial increase of

the observation time the remaining part of the inelastic

deformation decreases.

It is believed that inelasticity of the amorphous alloys

is related to free volume in their structure: if the free

volume is small, then the inelastic deformation is small, too.

Therefore, the inelasticity correlates to a degree of relaxation

of the structure, at which the free volume is decreased. The

inelastic deformation decreases after annealing, at which the

structural relaxation occurs and increases with irradiation.

The plastic deformation (PD) is heterogeneous and

localized in glide bands. The width of the glide band is up

to 10 nm, whereas the distance between the glide bands is

up to 10,000 nm. At the same time, the shear bands do not

occur spontaneously across the whole volume at an initial

stage of the plastic deformation. The band is nucleated at

a free surface of the sample to subsequently propagate and

surface as a step to another free surface.

In the heterogeneous plastic deformation, plastic flow is

localized in the glide bands, while solid body areas between

the glide bands are still plastically undeformed. The glide

band includes the changes of the atomic structure: the

concentration of the free volume is increased, i.e. the

average distance between the atoms is increasing.

The propagation speed of the shear bands is very low

and it is about 0.3mm s−1 and almost do not depend on a
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deformation rate within the range 2 · 10−4−10−2 s−1 [5,6].
During annealing, the structure of the shear bands is fully

or partially relaxed, but the steps of the shear bands remain,

therefore the plastic deformation is irreversible in time.

A synchronous source was used to study the evolution of

the structure of the amorphous alloys directly in the process

of deformation [7–9]. The [7] has studied the structure

under tension in situ, thereby detecting the changes of

the structure of the zirconium-based metal glasses, which

occur in the elastic deformation. It has been found that the

single-axis extension result in a small anisotropic change of

distances (in fractions of a percent) between the first nearest

neighbours.

In [8] the samples were plastically deformed and beside

the homogeneous inelastic deformation of the amorphous

phase there was the localized plastics deformation (of the
shear band). The rolling inelastic deformation results in

the small anisotropic increase of the interatomic distance

and, hence, the change of the first coordination sphere of

the amorphous phase. The work [9] has obtained such

the results, wherein the authors also relate the changes of

the form of the first coordination sphere to the inelastic

deformation.

The study of the deformation processes in the amorphous

metal faces some difficulties as it is impossibly to study

them by transmission electron microscopy methods used

for the study of crystals. Therefore, in spite of a significant

number of various models and deformation mechanisms

there is no complete theory on the AMA deformation.

The authors in [10] have assumed that the AMA has

”
shear transformation zones“ (STZ) with excessive free

volume and finite lifetime.The
”
shear transformation zone“

is regarded as a cluster of several dozens of atoms, whose

structure is subjected to the shear stress to pass from one

state with low energy into another through an activation

barrier. This deformation mechanism is developed in a

computational model and numerically calculated. The glide

process under the STZ mechanism is considered to be

thermally activated, with the activation energy of ∼ 1 eV.

The model of
”
free volume“ in AMA, which is somewhat

similar to crystal vacancies, has been suggested in the

works [6,11]. However, as there is no crystal lattice, the

unit free volume in place of an absence atom is partially

distributed across the whole AMA volume. The deformation

process is a series of atom jumps into the place of the unit

free volume so as the free volume would be transited across

AMA. This deformation mechanism is a diffusion-type

process, whose activation energy is approximately 0.1 eV.

Both the cases (the mechanisms of [9–11]) should involve

consideration both direct and reverse atom jump, and,

considering that these mechanisms are studied with defects

without the Burgers vector, the motion of these defects

should result in the plastic deformation only when there

is a stress gradient.

The dislocation flow in AMA within the heterogeneous

deformation is conceived in the works [12,13]. In accor-

dance with this model, the Burgers vector of Somigliana

two-dimensional dislocations varies in a magnitude and

direction along the dislocation line. However, the averaged

Burgers vector has a value close to an average interatomic

distance. The authors in [13] have suggested that the

relaxed linear defects like the dislocations form arbitrary

nets in AMA. The defects of this type can affect the low-

temperature AMA properties and can be considered as

carriers of the plastic deformation.

The works [14–18] have recently constructed a phe-

nomenological description of amorphous plasticity based

on physical principles and molecular models. As the

usual thermal fluctuations are hardly probable for the

temperatures below the glass transition temperature Tg , the

configuration disorder state of the deformed system can be

characterized by an effective disorder temperature Teff which

controls the configuration fluctuations [14]. The work [15]
has reformulated the theory on plastic deformation in glass

forming materials with STZ taking into account a role of the

effective disorder temperature and the entropy flow. The

work [16] is dedicated to non-equilibrium thermodynamics

of amorphous materials and a role of internal degrees of

freedom in the dynamics of such systems. The work [17] has
developed the theory of the effective disorder temperature

in glass-forming materials which equilibrium is disturbed

by external forces. In order to reformulate the theory on

the STZ amorphous plasticity, the work [18] has used the

thermodynamics of the effective temperature with internal

variables as developed in [16,17].
The main thesis of the theory in [14–18] is that the

slow configuration degrees of freedom in the amorphous

systems are weakly related to fast oscillation degrees of

freedom, hence, these two subsystems can be described

by various temperatures in the plastic deformation. The

systems described by this theory include non-crystal solids

at the temperature much less than their glass transition

temperature Tg , dense grain materials and soft materials

of various kinds, such as foams, colloids. It is caused by

the fact that these materials have low thermal conductivity

(thermal diffusivity), so the temperature can be localized

in the plastic deformation area for the sufficient time.

However, the amorphous metal alloys (due to presence of

conductivity electrons) have high thermal diffusivity. In fact,

for AMA the thermal diffusivity coefficient is of the order of

a ∼ 10−6 m2 s−1 and the width of the glide band is of the

order of l ∼ 10−8 m, so the time of temperature relaxation

for this subsystem (l2/a) is of the order of 10−10 s.

It is obvious that the physical mechanism of the plastic

deformation process is determined by the deformation rate.

Assuming that during the quasi-static single-axis defor-

mation with ε̇ = 3 · 10−4 s−1 the glide band completely

passes across the whole width of the sample, we obtain

a rate of motion of the glide band front V ∼ 10−4 m·s−1.

In order to evaluate the time of an elementary event of

plastic deformation, we divide the width of the glide band

l ∼ 10−8 m by the speed of motion of the glide band front

V = 10−4 m·s−1 to obtain the time of the elementary event

of plastic deformation l/V = 10−4 s. Hence, for the low
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deformation rates, when the time of the elementary event

of plastic deformation is much bigger than the time of

temperature relaxation (l/V ≫ l2/a), the energy dissipation

of the quasi-static plastic deformation does not result in

substantial increase of the temperature within the glide

band due to the high thermal diffusivity. Therefore, the

control of plastic deformation only by the effective disorder

temperature Teff is insufficient in the metal amorphous

alloys.

The plastic deformation of the crystal solid bodies is

described by a suggested scale approach [19]. It is

believed that the plastic deformation can develop as local

structural transformation in areas of variously-scaled stress

concentrators. The excessive free volume in these areas

results in emergence of virtual points of a new structure in

the interstice space. It results in undergoing local structural

transformation by means of collective configuration excita-

tions.

Due to insufficient experimental data on the AMA de-

formation it is difficult to distinguish the main mechanisms

of deformation and to coherently describe its complexity

(elastic, inelastic, plastic) and its space&time hierarchy. In

order to develop the unified theory on AMA deformation,

it is necessary to consider the relation of processes of

macroscopic deformation to the nanostructural change of

the structure.

The works [20,21] have recently formulated the physical

mechanism and the microscopic mode of the inelastic

deformation undergoing in the amorphous metal film, as

stimulated by an external mechanical impact. This process

is conditioned by nanostructural elements of the amorphous

medium: nanoclusters with an additional free volume,

which contain two-level systems. In glass deformation

the two-level systems are excited, so that they significantly

contribute to the inelastic deformation, the structural relax-

ation and the formation of nanoclusters and nanocrystals.

Under mechanical impact, beside the mechanism of local

thermal fluctuations, the physical mechanism of inelastic

deformation of the metal glass also includes an athermal

mechanism of quantum tunneling of atoms or atom groups,

as stimulated by shear stress.

The analytically obtained results for the non-equilibrium

phase transitions of the first kind have been verified

by calculation modelling using the method of molecular

dynamics [22–24]. The method of molecular dynamics can

be used to directly compute various integral parameters

of the entire modelled system or its separate parts. The

ongoing state of the system and its changes have been

analyzed by calculating the kinetic temperature. The study

of the crystal-liquid phase transition and vice versa included

calculation of the various structural characteristics which can

be used to determine the beginning of the phase transition

and its duration. In particular, calculation of an orientation

parameter of the order makes it possible to distinguish the

state of the liquid-crystal system. The results of [20–24]
qualitatively and quantitatively describe relationships of non-

equilibrium structural transformations in the amorphous

metal alloys, as stimulate by the thermomechanical pro-

cessing. It is planned to numerically illustrate the relation

of kinetics of transitions by two parameters of the near-

and mid-order to the kinetics of the relaxation equation for

AMA’s plastic deformation.

The present work is presented in an attempt to formulate

the unified theory on plastic deformation: a hypothesis

of physical nature, physical mechanisms, and a synergetic

model of localized plastic deformation in the amorphous

metal glasses, as stimulated by the quasi-static (low-rate)
mechanical load.

The features of the low-temperature deformation [1–9]
have been analyzed to show that a complex phenomenon

(the localized plastic deformation) could be fully described

based on conceptions about non-equilibrium structural

transitions in self-organizing systems (the synergetics) [25]
and it requires to solve the following tasks: 1) formulation

and justification of the hypothesis on the physical nature

of the AMA’s quasi-static deformation; 2) the description

of the mechanism and formulation of the kinetic model,

which relate the near atom order to the mid atom order and

describe nucleation and development of the STZ ensemble;

3) description of the mechanism of, and the formulation

of the synergetic model of nucleation of the structural

defect of a higher scale level — the glide band; 4) the

description of the mechanism, the kinetic model of the

autowave development of the glide band; 5) the findings

and the conclusion. The tasks have governed formation of

the structure of the work presented.

1. Formulation and justification of the
hypothesis on the physical nature of
quasi-static deformation

Based on the results and findings of the studies of [1–24],
it is usable to formulate and justify the hypothesis on

the physical nature of the AMA’s quasi-static deformation.

The AMA’s quasi-static deformation is a complex relaxation

multi-step process, which is a time-ordered hierarchial se-

quence of interrelated structural transitions of the first kind.

These non-equilibrium processes consequently undergo at

the various scaled space&time levels, starting from the

lowest level — the cluster of the first nearest neighbours

with the time of relaxation τη , then the mid level — the

nanocluster of the fifth coordination sphere atoms with the

relaxation time τϕ , and, finally, the highest level — the

atoms of the glide band with the space scale of 10 nm

and the time of relaxation τ , whereas τ ≫ τϕ ≫ τη . They

are accompanied by transformations of various kinds of the

potential energy of atoms (the energy of elastic, inelastic,

plastic deformation, ZST) into each other.

Let us consider the quasi-static single-axis deformation

with ε̇ = 3 · 10−4 s−1, the loading time of tload = 100 s for

the AMA samples of 1 cm wide with the lengthwise

elasticity (the Young’s modulus) E = 100GPa. For the

time tload = 100 s, the sample deformation reaches the value
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ε3 = 3 · 10−2, while the stress reaches the yield point

σ3 = 3GPa. It has been experimentally found that the prop-

agation speed of the shear bands weakly depended on the

deformation rate within the interval 2 · 10−4−10−2 s−1 [5].
The average propagation speed of the bands is very small is

about 0.3mm·s−1 [6].
Let us consider the solid sample of an amorphous

metal alloy, which is initially in a non-equilibrium state of

metal glass in a cubic form. Under single-axis tension,

the sample is deformed to be shaped as a rectangular

parallelepiped. During the deformation, the system gets the

work |A| =
∫

σ (ε)dε, which transforms into the potential

energy of atoms U .

Let us evaluate the density of accumulated poten-

tial energy of deformation under the quasi-static single-

axis deformation with ε̇ = 3 · 10−4 s−1, the loading time

tload = 100 s for the AMA sample of 1 cm wide with the

lengthwise elasticity (the Young’s modulus) E = 100GPa.

For the time tload = 100 s, the sample deformation reaches

the value ε3 = 3 · 10−2, while the stress reaches the yield

point σ3 = 3GPa. Assuming that the glide band completely

passes across the whole width of the sample, we obtain the

rate of motion of the glide band front V = 10−4 m·s−1.

It is known that the density of the potential energy of the

homogeneous longitudinal elastic deformation is e = Eε2/2.
When attaining the proportionality limit σ1 = Eε1 and the

deformation ε1 = 1 · 10−2, the density of the potential

energy of the elastic deformation per one atomic volume

(atom) is vel ∼ 0.85 · 10−3 eV. The internal potential energy

of the atomic system is increased by the value of the work

done to the body. It is clear that vel is much less than

the kinetic energy of the atom ekin ∼ 0.025 eV per atom

at the room temperature. During removal of external load,

the sample is instantaneously (with the speed of sound)
reshaped to its original form. That is, the systems does the

work to the external medium and returns its elastic energy

to it, whereas the potential energy of system atoms takes

its original value. The elastic deformation is instantaneously

reversible.

With the stress above the proportionality limit σ1, but

below the elastic limit σ2 = Eε2, ε2 = 2 · 10−2, along with

the elastic deformation the medium undergoes the structural

transition of the first kind to form a new near order η

oriented along the direction of the applied stress, i.e. the

inelastic deformation occurs. In order to overcome the

potential barrier between the states of the initial and new

near order, it is necessary for the system to accumulate a

critical value of the density of the potential energy of the

elastic deformation eel(σ1) = Eε21/2 (vel ∼ 0.85 · 10−3 eV

per the atomic volume), and it also requires the loading time

which exceeds the time of relaxation τη . The work done

to the system is spent for increasing the internal potential

energy: the elastic energy and the energy of inelastic

deformation (of the new near order) |A| = Uel + Uanel.

During removal of load, the samples is restoring its form, i.e.

it instantaneously does the work to the external medium,

which is equal to the elastic energy accumulated therein.

The medium state is moving away from the equilibrium,

as the internal structure has the new near order. The

medium temporarily accumulates this energy of inelastic

energy Uanel, but relaxes within a finite time. The inelastic

deformation related to the new near η order is reversible,

but is still delayed with the small time of relaxation τη .

With the stress below the elastic limit σ2, along with the

elastic deformation, the inelastic deformation of the first

nearest neighbours, there is additional inelastic deformation

of the atoms of nanoclusters with the average time of relax-

ation τϕ . This deformation can be described by emergence

of the mid order ϕ (or the STZ concentration — n, which

accumulate the additional potential energy Udef). In order

to overcome the potential barrier between the state with the

new oriented near order η and the STZ state, it is necessary

for the system to additionally accumulate the critical value of

the density of the potential energy of the elastic deformation

eel(σ2) − eel(σ1) = E(ϕ2
2 − ϕ2

1)/2,and it also requires the

loading time which exceeds the time of relaxation τϕ .

At ϕ2 = 2 · 10−2 the additionally accumulated energy is

vel ∼ 0.85 · 10−3 eV per the atomic volume. The work done

to the system is spent for increasing the internal potential

energy: the elastic energy and the energy of inelastic

deformation Uanel, the STZ energy |A| = Uel + Uanel + Udef.

During removal of load, the samples is restoring its form,

i.e. it instantaneously does the work to the external

medium, which is equal to the elastic energy accumulated

therein. The medium state is further moving away from the

equilibrium, as along with the new oriented near order the

internal structure additionally exhibit STZ’es. The medium

temporarily accumulates the STZ energy Udef and relaxes

within a finite time. The inelastic deformation related to

STZ is reversible, but is delayed with the average time of

relaxation τϕ .

With increase of the stress to the elastic limit σ3,

along with elastic and inelastic deformation the sample

is also subjected to the plastic deformation. The plastic

deformation manifests itself in an irreversible change of the

sample form (formation of the steps on the surface, which

occurs when the glide plane is surfing). The work done to

the system is accumulated as the potential energy of elastic

deformation, the energy of inelastic deformation Uanel, the

STZ energy Udef and the energy of the additional surface

of the sample Upl (the energy of plastic deformation). In

order to overcome the potential barrier between the STZ

state and the state of plastic deformation, it is required

for the system to additionally accumulate the critical value

of the density of the potential energy of inelastic de-

formation eel(σ3) = Eσ3(ε3 − ε2), whereas the additionally

accumulated energy is vel ∼ 1.7 · 10−3 eV per the atomic

volume. During removal of load, the plastically deformed

sample is restoring its form only partially. The energy of

elastic deformation fully and instantaneously returns into the

external medium. The energy of inelastic deformation Uel

returns during the time of relaxation τη . The STZ potential

energy of defects Udef only partially returns to the external

medium during the time of relaxation τϕ , as its remaining
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part transforms into the energy of plastic deformation Upl

(the additional energy of the surface). That is why the

plastic deformation is irreversible and its time of relaxation τ

is large.

Let us evaluate the increase of the local temperature

within the glide band provided that the energy of plastic

deformation has partially (20%) passed into heat. The

work done to the system when attaining the elastic limit

is of the order vel ∼ 1.7 · 10−3 eV per the atom, which is

much smaller than the average kinetic energy of the atom

at the glass transition temperature vkin ∼ 5 · 10−2 eV per

the atom. Therefore, if the imparted energy is uniformly

distributed across the system volume, then the increase of

the system temperature is insignificant (approximately by

0.2vel ∼ 0.34 · 10−3 eV, i.e. by 5K). But the energy of

plastic deformation is heterogeneously distinguished in the

glide bands. The width of the glide band is of the order of

l ∼ 10−8 m, whereas the average distance between the glide

planes is of the order of l ∼ 10−6 m. Therefore, the local

increase of the temperature within the glide band is of the

order of the glass transition temperature ∼ 100 · 5 ∼ 500K.

However, the amorphous metal alloys (due to presence

of conductivity electrons) have high thermal diffusivity. In

fact, for AMA the thermal diffusivity is of the order of

a ∼ 10−6 m2·s−1 and the width of the glide band is of the

order of l ∼ 10−8 m, so the time of temperature relaxation

for this subsystem (l2/a) is of the order of 10−10 s.

Assuming that during the quasi-static single-axis defor-

mation with ε̇ = 3 · 10−4 s−1 the glide band completely

passes across the whole width of the sample, we obtain

a rate of motion of the glide band front V ∼ 10−4 m·s−1.

In order to evaluate the time of an elementary event of

plastic deformation, we divide the width of the glide band

l ∼ 10−8 m by the speed of motion of the glide band front

V = 10−4 m·s−1 to obtain the time of the elementary event

l/V = 10−4 s.

Hence, for the low deformation rates, when the time of

the elementary event of plastic deformation is much bigger

than the time of temperature relaxation (l/V ≫ l2/a), the
energy dissipation of the quasi-static plastic deformation

does not result in substantial increase of the temperature

within the glide band due to the high thermal diffusivity.

It is obvious that the physical mechanism of the plastic

deformation process is determined by the deformation rate.

Therefore, it is possible to use the transformations only of

the potential energy of the system atoms to qualitatively

describe the process of the low-rate AMA’s quasi-static

deformation.

Thus, it is justly hypothesized that the AMA’s quasi-

static deformation is a complex multi-phase relaxation

process, which is a time-ordered hierarchial sequence of

interrelated structural transitions of the first kind at the

various scaled space&time levels, which are accompanied

by the transformations of the various kinds of the potential

energy into each other. Based on this hypothesis, it is

possible to construct the mathematical model of the AMA’s

quasi-static deformation.

2. Mechanism and model of the
non-equilibrium transition

”
the elastic

mechanical state–the state with the
shear transformation zones“

The absence of long-range order in the mutual ar-

rangement of atoms is a defining feature of amorphous

bodies [1–3], so the description of their complex structure

based on the conception of a long-range order parameter

only, like for the crystals, is insufficient. It is experimentally

found that the metal glasses with strong topological disorder

often exhibit a rather perfect local order with accuracy to

elastic distortions, coinciding with the local order in stable

or metastable crystalline bodies of the same composition [1–
3].

The spatial structure of the metal glass is formed of

structural units, which are connected so as to avoid

formation of the crystal structure, but elements of some

order exist. The structural unit defines the near order (from
a selected atom), has the radius of up to ∼ 3−5 Å and

includes about 1−1.5 of the tetrahedron, whose vertices

comprise the atoms [1–3].

The mid order means the radius from ∼ 3−5

to 10 Å [1–3]. In this region the AMA atoms are slightly

displaced in relation to the positions of the ideal crystal,

but there is still correlation the positions of the atoms.

At the distances above ∼ 15 Å the displacements of the

atoms in relation to the positions of the ideal crystal

increase, the correlation in the atomic positions disappears,

so there is no long-range order in AMA. The near- and

mid-order is well defined from the experimental data

and numerical calculations using the method of molecular

dynamics [1–3,22–24]. The changes of the near- and mid-

order well correlate to the changes of an atomic structure at

the transitions of the various type [1–3,22–24].

When mechanically loaded, AMA is subjected to homo-

geneous inelastic deformation [1–3], which at an atomic

level results in the anisotropic change of the distances

between the atoms, i.e. to the change of the near- and

mid-order.

In order to describe the relaxation of an amorphous struc-

ture from the elastic mechanical state into the inelastic state,

let us introduce a dimensionless magnitude characterizing

the structural state of the medium that is called the mid-

order parameter η. Physically, the parameter of the order η

is a volume fractions (normalized to the volume fraction

of saturation) of inelastically-deformed atoms with the near

order within a unit volume. In the elastic state the order

parameter η is zero, while in the inelastic state the order

parameter η is unity. The process of structural relaxation

is viewed as a time sequence of the structural states of

the medium described by the order parameter variation

in time, i.e. η = η(t) [26]. We assume that in terms of

the parameter η the elastic state is locally stable, i.e. it

is separated from the locally stable inelastic state by the

energy barrier. The structural relaxation of the deformed
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non-equilibrium homogeneous structure from the elastic

to inelastic state is described by the Landau-Khalatnikov

equation [20,26,27] for the order parameter η:

∂η

∂t
= −αη(T, σ )η(η − η2)(η − 1), η2 = 1− Eel

E∗

el

, (1)

αη(T, A) = ω0

[

e−
(Eη−σVη )

kT + 2(σ − σ1)e
−

a
adB

]

, (2)

where αη(T, σ ) is the relaxation rate containing two terms

of a different physical nature. The first,
”
thermal“ one is

related to the local thermal fluctuation of the first nearest

neighbours from the initial near order (the elastic deformed

one) to the new inelastically-deformed near order. The

second
”
athermal“ one is related to two-well potential’s

tunneling of the first nearest neighbours from the initial

near order (the elastic deformed one) to the inelastically-

deformed near order (as stimulated by the local stress).
Eη — the energy of activation of atomic rearrangement,

σ — the mechanical stress, Vη — the activation volume

of the atomically-rearranged cluster. Here adB(σ ) — the de

Broglie wavelength, a — the width of the potential barrier in

the two-well potential [20,21], ω0 ≈ 1013 Hz. 2(σ − σ1) —
the theta-function, which is non-zero when the value of

the stress σ causes the inelastic deformation, σ1 — the

proportionality limit. Eel(σ ) — the density of the energy

of elastic deformation, E∗

el(σ2) — the critical value of the

energy density of elastic deformation, σ2 — the elastic

limit. In the poorly-deformed state of the medium
Eel

E∗

el

≪ 1
2

the elastic state of the medium is globally stable, while

the inelastic state of the medium is locally stable. When

attaining the proportionality limit
Eel

E∗

el

≈ 1
2

the elastic and

the inelastic states of the medium are locally stable and

they are around an indifferent equilibrium. When attaining

the elastic limit
Eel

E∗

el

= 1 the elastic state of the medium

becomes absolutely unstable, and the inelastic state of the

medium is globally stable. If the density of the energy of

elastic deformation attains the value E∗

el, and the time of

mechanical impact exceeds the time of relaxation α−1
η , then

the medium completely relaxes to the inelastic state.

The classical phase transition of the first kind gas-liquid is

implemented through the formation of a critical nucleus of a

new phase directly in the initial phase [26,27]. However, the
STZ formation within the volume of the amorphous phase

is greatly hampered by additional factors. For example,

the density of the STZ structure differs from that of the

amorphous matrix, so the STZ formation requires taking

into account the elastic stresses occurring in both the STZ

and the amorphous structure. At the room temperature, the

AMA are characterized by low mobility, thereby slowing

down the STZ formation.

So, the elastic energy and other factors increase the

energy of the STZ formation directly in the amorphous

structure, and this heterogeneous state ceases to play the

role of the activated complex for the structural transition

of the first kind. Therefore, during the process of load-

stimulated relaxation, the medium first passes to another

homogeneous state (the inelastic state), which is a pre-

transition state, from which the STZ state will be formed

thereafter.

To describe the process of non-equilibrium transition of

the first kind from the elastic state of the medium to the

STZ state, let us introduce another dimensionless magnitude

characterizing the structural state of the medium that is

called the mid-order parameter ϕ. In case of the STZ

state, the order parameter is selected to be the normalized

volume fraction of the STZ-located atoms (normalized to

the volume fraction of saturation) within a unit volume.

In the elastic state the order parameter is zero, while in

the STZ state the order parameter is unity. The process

of structural transformation is viewed as a time sequence

of the structural states of the medium described by the

order parameter variation in time, i.e. ϕ = ϕ(t). We

assume that in terms of the parameter ϕ the elastic state

is locally stable and it is separated from the locally stable

STZ state by the energy barrier. In deformation, the

structure first relaxes from the elastic to inelastic state in

terms of the order parameter η, while the potential energy

of local displacements of the first nearest neighbours is

accumulated in the medium (the potential energy of inelastic

deformation of the medium). Therefore, the energy barrier

separating the elastic state and the STZ state in terms of

the parameter ϕ decreases. If the density of the energy

of elastic deformation attains the value E∗

el, and the tie

of mechanical impact exceeds the time of relaxation α−1
η ,

then the medium completely relaxes to the structure in the

inelastic state. At η → 1, the energy barrier in terms of the

parameter ϕ becomes very small or even zero. The medium

becomes unstable with respect to the STZ formation.

The structural relaxation of the deformed non-equilibrium

amorphous medium from the elastic to the STZ state is

described by the Landau–Khalatnikov equation [20,26,27]
for the order parameter ϕ:

∂ϕ

∂t
= −αϕ(T, σ )ϕ(ϕ − ϕ2)(ϕ − 1), ϕ2 = [1− η], (3)

αϕ(T, σ ) = ω0

[

e−
(Eϕ−σVϕ )

kT + 2(σ − σ1)e
−

a
adB

]

, (4)

where αϕ(T, σ ) is the relaxation rate containing two terms

of a different physical nature. The first,
”
thermal“ one

is related to the local thermal fluctuation of the medium,

while the second,
”
athermal“ one is related to two-well

potential’s tunneling of the atom group, as stimulated by

the local stress σ . Eϕ — the energy of activation of

STZ emergence, Vϕ — the activation volume of the cluster

atomically rearranged with the STZ formation. If the time

of the mechanical impact exceeds the time of relaxation

α−1
η , the medium completely relaxes to the structure in

the inelastic state η → 1, while the energy barrier in terms

of the parameter ϕ becomes zero and the STZ formation

starts. If the time of mechanical impact exceeds the time of
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relaxation α−1
ϕ , the medium completely relaxes to the STZ

state.

As the formation of the STZ state is suppressed directly in

the amorphous structure, then the non-equilibrium transition

of the first kind has to pas through the pre-transition

state — the inelastic state and is described by the two

parameters (η, ϕ) obeying the equations (1), (3). From

the inelastic state, the system enters the STZ state via a

saddle point in the space of the coordinates of the structural

transition (η, ϕ).
Let us construct a model potential of this phase transition

F(η, ϕ) in the space of the coordinates of the structural

transition (η, ϕ). The analysis conducted (1), (3) shows

that the transition with the two coordinates (η, ϕ) can

be described by the following dependence of the model

potential:

F(η, ϕ) =
η2

2
η2 − (1 + η2)

3
η3 +

η4

4
+

1

2
ϕ2ϕ

2

− (1 + ϕ2)

3
ϕ3 +

ϕ4

4
, (5)

η2(Eel) = 1− Eel

E∗

el

, ϕ2(η) = 1− η. (6)

With
Eel

E∗

el

= 1
2
and ϕ = 0 the potential F(η, 0) — is double-

well and symmetric. With η = 1
2

and ϕ2(
1
2
) = 1

2
, the

potential F(0, ϕ) — is double-well and symmetric.

Let us consider the transition only along the coordinate η,

and ϕ = 0. Then the potential takes the form

F(η, 0) =
η2

2
η2 − (1 + η2)

3
η3 +

η4

4
. (7)

With the fixed parameter 0 < η2 <
1
2
, the function F(η, 0)

has two minimums (η1 = 0), (η3 = 1) and one maximum

at (η = η2), whereas F(0, 0) = 0, F(η2, 0) =
η3
2

6
(1− η2

2
),

F(1, 0) = − (1−2η2)
12

, i.e. F(1, 0) < F(0, 0). Thus, using

the potential F(η, 0) makes it possible to describe the

structural transformation of the first kind from the elastic

state (η1 = 0) to the inelastic state (η3 = 1) through the

potential barrier of the height F(η2, 0).
Let us consider the transition only along the co-

ordinate ϕ, and η = 0. With the fixed parame-

ter 0 < η2 <
1
2

the function F(0, ϕ) has one mini-

mum (ϕ1 = 0) and an inflection point (ϕ2 = ϕ3 = 1),

whereas F(0, 0) = 0, F(0, ϕ2 = 1) =
ϕ3
2

6
(1− ϕ2

2
) = 1

12
,

F(0, 1) = − (1−2ϕ2)
12

= 1
12
, i.e. F(0, 1) > F(0, 0). Thus, it

follows from the form of the potential F(0, ϕ) that the direct
structural transformation of the first kind from the elastic

state (ϕ1 = 0) to the STZ state (ϕ3 = 1) is impossible.

With the fixed parameter 0 < η2 <
1
2

the func-

tion F(η, ϕ) within the area of determination of

the variables 0 ≤ η ≤ 1, 0 < ϕ < 1 has nine special

points: the four minimums (0, 0), (1, 0), (0, 1), (1, 1);

one maximum (η2, 1− η2); and the four saddle points

(η2, 0), (η2, 1− η2), (0, 1− η2), (1, 1− η2). The potential

F(η, ϕ) in the points of minimum takes the following

values: F(0, 0) = 0, F(1, 0) = − (1−2η2)
12

, F(0, 1) = 1
12
,

F(1, 1) = − 1
6
(1− η2). It is obvious that the global mini-

mum is in the state (1, 1).

When attaining η = 1 ,the function F(1, ϕ) has one

inflection point (ϕ1 = ϕ2 = 0) and the point of mini-

mum (1, 1). The potential barrier separating the elastic state

(ϕ1 = 0) and the STZ state (ϕ3 = 1) disappears.

With the fixed small deviation η from zero, it is possible

to leave the initial state (η, 0) and to directly enter the final

state (η, 1), whereas it has to overcome the quite large

barrier (almost equal to the maximum), which separates

these states. This is a classical mechanism of the structural

transition of the first kind.

In the direct transformation
”
the elastic state–the STZ

state“, the transition barrier is too large due to the elastic

energy of the STZ formation. But it is possible to make

a transition over the pre-transition state (η → 1, 0). In this

state ϕ2 = [1− η] tends to zero, therefore the barrier to be

overcome to get to the STZ state tends to zero as well.

It is much more beneficial to first make a transition along

the coordinate η from 0 to 1, thereby resulting in a sharp

decrease of the barrier along the coordinate ϕ. And only

afterwards to make the transition along the coordinate ϕ

from 0 to 1.

Now, it is possible to construct the synergetic model of

the localized plastic deformation (formation of the shear

band, the new higher structural level of deformation),
in which the mid order ϕ or, which is the same, the

STZ concentration (the number of the areas within a unit

volume) n plays the role of a control parameter.

3. Mechanism and synergetic model of
the localized plastic deformation in
the amorphous metal glass

The relaxation behavior of the deformed amorphous

metal glass can be described within a linear model of

the viscoelastic medium [28]. The evolution of the

deformation ε under the constant stress σ is described by

the Kelvin–Voigt equation, which can be integrated

∂ε

∂t
= − 1

τ
ε +

σ

η
=

1

η

[

−µε + σ ],

ε(t) =
σ

µ

[

1− exp

(

− t
τ

)]

, µ =
η

τ
. (8)

Here, the first summand characterizes the relaxation of the

shear component of deformation in time τ , the second

one — the flow of the viscous liquid under impact of the

shear component of the stresses σ , η — the dynamic shear

viscosity, µ — the shear modulus.
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During system unloading, when the stress σ is zero,

the equation (8) is integrated to output an expression for

deformation relaxation

ε(t) = ε(0) exp
(

− t
τ

)

. (9)

Thus, the linear model of the viscoelastic medium (8)
predicts a deformation nature which is undergoing in time,

i.e. relaxing. As ε relaxes to zero, the deformation obtained

is reversible in time, hence, it is not plastic. It is caused by

the fact that the shear stress in included in the deformation

relaxation equation as an external constant parameter. The

phenomenon of plastic deformation is complex, so the

process of transition of the mode of inelastic deformation

to the mode of plastic deformation is ensured by self-

organization of the shear component of deformation, the

shear component of stresses on the one hand and STZ on

the other hand.

Let us formulate the synergetic model of plastic defor-

mation (formation and propagation of the glide band), in
which the STZ concentration n plays the role of the control

parameter [25].
The change rate of the control parameter n is specified,

on the one hand, by the intensity of dissipation processes

characterized by the time of relaxationτn, so is on the other

hand by impact of the collective mode, which is determined

by its amplitude ε and the conjugate field σ :

ṅ = − 1

τn
(n − ne) − gnεσ, (10)

where ne = ne(T, σ̂ext) — the equilibrium value n specified

by the external conditions, σ̂ext — the tensor of external

stresses, gn — the coupling constant, T — the temperature.

The last summand in (10) describes the decrease of the

concentration n during plastic deformation in the stress field.

Due to the viscous friction in the medium, the shear stress

obeys the relaxation equation

σ̇ = − 1

τσ
σ + gσ εn, (11)

where τσ , gσ — the constants. The first summand in (11)
describes the process of relaxation of the shear stress to

the equilibrium value σ = 0. The second summand in (11)
takes into account a positive feedback between the shear

deformation and STZ, which results in the rise of the shear

stress and, thus, it causes the self-organization process.

The order parameter is selected to be a value of the shear

plastic deformation ε, while the conjugate field is selected

to be a shear component of the tensor of stresses σ .The

equation defining the behavior of the collective mode ε is

reduced to the Kelvin–Voigt equation for the viscoelastic

medium (8). Thus, in the simplest case the change rates

of the magnitudes ε, σ, n are described by the Lorentz

system (8), (10), (11) [25].
The obtained system is featured by a linear character

of the equation (8) for the change rate of the order

parameter ε and non-linearity of the equations (10), (11)
for the values n, σ , whose change obeys the behavior

of ε. The negative nature of the non-linear coupling in

the equation (10) means reduction of the concentration n
when the collective mode ε increases. Accordingly, the

non-linear summand in the equation (11) describes the

positive feedback, which is exactly the reason resulting in

the qualitative rearrangement of the system as a result of

the self organization in the STZ ensemble.

The said equalities form the full system of the equations,

which determined a self-consistent behavior of the collective

mode of plastic deformation and STZ. The dissipation

nature of plastic deformation is implemented at the ratio

of the relaxation times τσ , τn ≪ τ , which governs that the

slow order parameter ε(t)
”
dominates“ the fast magnitudes

σ (t), n(t). Then, the equations (10), (11) can use an

adiabatic approximation ṅ = 0, σ̇ = 0. As a result, the

magnitudes σ, n are expressed through ε as follows:

n = ne

[

1 +
( ε

εm

)2
]

−1

, ε−2
m = AnAσ ,

An = τngn, Aσ = τσ gσ , σ = Aσ neε

[

1 +
( ε

εm

)2
]

−1

. (12)

Taking into account that in the stationary state ε̇ = 0 the

equality (12) in the limit (ε2 ≪ ε2m) must pass in the

Hooke’s law σ = µε, we obtain the critical value of the

parameter nc :

n−1
c =

Aσ

µ
= τ τσ

gσ

η
. (13)

The time dependence of the order parameter ε(t) is

determined by the Landau–Khalatnikov relaxation equa-

tion [26,27]

τ ε̇(t) = −∂V
∂ε

, (14)

where the synergetic potential V in the dependence on

the order parameter ε(t) is determined by inserting the

equalities (12) into the evolution equation (8). With the

constant values of τ , η the dependence V in the limit

(ε2 ≪ ε2m) is reduced to the Landau expansion [26]:

V (ε) =
A
2
ε2 +

B
4
ε4, A = 1− ne

nc
, B = ε−2

m = AnAσ .

(15)
As per (14), (15), the nature of the stationary state

conforming to the condition
∂V
∂ε

= 0 is determined by a

ratio between the value of the parameter ne as specified

by the external states and the critical value nc determined

by the equality (13). In the sub-critical mode ne < nc

we have the stationary values ε0 = σ0 = 0, and there is

no plastic deformation. In case of ne > nc , when in

the dependence (15) the parameter A < 0, the synergetic

potential V (ε) has the minimum ε0 = (
|A|
B )

1
2 , and the

system spontaneously passes into the excited state with

plastic deformation ε0:

ε0 = εm

√

ne

nc
− 1,
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σ0 = µεm

√

ne

nc
− 1, ne = nc , at ne > nc . (16)

It is clear that the increase of ε results in the decrease of n
and the increase of σ as per the dependence (16) looking

like the Hooke at ε ≫ εm and outputting to saturation when

reaching the limit degree of plastic deformation εm. In

this regard, we can say that the transition of the system

to the excited state as defined by the spontaneous plastic

deformation ε 6= 0 results in transformation of a part of the

STZ potential energy to the work done by the shear stress

component εσ .

At the low loads σext, when ne(σext, T ) is below the

critical value nc , the STZ concentration is so small that there

no collective coupling (interaction) therebetween. V (ε) (15)
is monotonically increasing and the system is relaxing to the

stationary values ε0 = σ0 = 0, n = ne . With the increase

of the load σext the condition ne > nc is ensured, there

is attraction appearing between the STZes and the STZ

condensate is formed — a new structural state of the

medium with plastic deformation. V (ε) (15) gets the

minimum in the point ε0 = εm

√

ne
nc

− 1, which corresponds

to the stationary value of plastic deformation, which occurs

at the new scaled (structural) level (the formation of the

glide plane). As per (16), the time of formation of this new

structural level of deformation τ̃ and the value of partial

viscosity η(τ̃ ) = µτ̃ defined thereby look as follows

τ̃ = τ

[

ne

nc
− 1

]

−1

, η(τ̃ ) = η

[

ne

nc
− 1

]

−1

, η = µτ . (17)

As the viscosity is determined by the equality η−1 = ∂ε̇
∂σ

and the include of the new structural level of deformation

results in contribution of ε̇ = εm
τ

to the rate of plastic defor-

mation, then the effective viscosity is η−1
eff = η−1 + η(τ̃ )−1.

Taking into account (17), at ne > nc we obtain therefrom:

ηeff = nc
ne

η < η, i.e. the formation of the new structural

level of deformation reduces the effective viscosity of the

medium.

Above, we have considered the plastic deformation as

continuous non-equilibrium structural transformation. But

in reality it proceeds as per the mechanism of the first

kind [1,2]. For this we will take into account a non-

linear nature of the dissipation process, which includes

reduction of the shear modulus µ(ε) with increase of the

plastic deformation. It is convenient to use the simplest

approximation:

µ(ε) =
µ

1 + ( ε
ετ

)
, (18)

where the positive parameter ετ determines a characteristic

scale of the plastic deformation at which the dispersion

exhibits. At the same time, the dependence V (ε) exhibits

a barrier separating the initial and the new stationary state,

which characterizes the transitions of the first kind [25]. As
a result, the synergetic potential (15) and the relaxation

equation (14) look as follows:

V (ε) =

(

1− ne

nc

)

ε2

2
− 1

ετ

ε3

3
+

(

1

ε2τ
− ne

ncε2m

)

ε4

4
,

τ ε̇(t) = −∂V (ε)

∂ε
= −(ε − ε1)(ε − ε2)(ε − ε3), (19)

ε1 = 0, ε2 =
1
ετ

−
√

D

2
(

1
ε2τ

+ ne
ncε2m

) , ε3 =
1
ετ

+
√

D

2
(

1
ε2τ

+ ne
ncε2m

) ,

D =
1

ε2τ
− 4

(

1− ne

nc

)(

1

ε2τ
+

ne

ncε2m

)

. (20)

It is clear from (19), (20) that at the small ne the

discriminant D(ne) < 0, so there is only one physical stable

state with the plastic deformation ε1 = 0, the complex roots

ε2, ε3 — non-physical. When attaining the critical value

ne = n∗

c ( the discriminant D(n∗

e ) = 0) the physical state

with the plastic deformation ε1 = 0 is still absolutely stable,

but the physical (noncomplex) roots ε2, ε3 appear:

ε2 = ε3 =

[

2ετ

(

1

ε2τ
+

ne

ncε2m

)]

−1

, n∗

c ≃ 7

8
nc, (21)

whereas the new physical state with non-zero plastic defor-

mation ε2 = ε3 is absolutely unstable. With further increase

of ne , it is clear from (20),(21) that the root ε2 decreases

and starts tending to the root ε1 = 0. When attaining the

supercritical value ne = nc , the discriminant D(nc) = 1

ε2τ
,

and the physical state with the plastic deformation ε1 = 0

becomes absolutely unstable.

ε1 = ε2 = 0, ε3 =

[

ετ

(

1

ε2τ
+

1

ε2m

)]

−1

, nc =
µ

Aσ

. (22)

The new physical state with non-physical ε3 becomes

absolutely stable.

In other words, if the parameter ne does not exceed the

critical value n∗

c , then V (ε) is of a monotonically increasing

nature. At ne = n∗

c the plateau appears to be transformed

to a minimum with increase of ne . The state with plastic

deformation becomes synergetically beneficial starting from

the value ne = n∗∗, at which the condition V (0) = V (ε3)
is attained to ensure the equality of the potential values

without deformation ε = 0 and at the stationary value

ε = ε3. When attaining the supercritical value nc , the barrier

separating the states ε = 0 and ε = ε3, disappears and V (ε)
takes the form inherent to the transitions of the second kind.

Let us discuss some important properties of the deformed

medium. It is non-linear which is manifested by a com-

plex nature of the dependence
”
stress–deformation“ [1,2].

During loading the deformed medium changes its structure,

i.e. it is structurally unstable [20,25], for example, in

relation to the STZ formation. The deformed medium is

active [20,25], as it contains local sources of potential energy
and shear (STZ), which are distributed across the volume.

As per conceptions of the nature of self organization in open
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systems [25], such an active non-linear structurally-unstable

medium can generate autowave processes.

The medium non-linearity results in emergence of non-

uniqueness of stationary homogeneous solutions of the

relaxation equation of plastic deformation (the deforma-

tion modes). In the transition region n∗

c > n > nc , the

distributed system can originate a running autowave [25],
which transfers the sample from one (inelastic) mode of

deformation to another (plastic) one.

The heterogeneity of the amorphous medium results in

heterogeneous STZ distribution, so in some area of the

sample surface the STZ concentration can become above

the critical one n∗

c . The STZes start interacting, attracting

and, finally, condense to a nucleus of the new structure

with plastic deformation. It is followed by an undergoing

relay process of propagation of plastic deformation along a

direction of maximum tangential stress (propagation of the

shear band) selected along the direction of the axis x , which

obeys the autowave equation [25]:

ε̇(t) = − 1

τ
(ε − ε1)(ε − ε2)(ε − ε3) + D

∂2ε

∂x2
, (23)

where D — the mobility coefficient of plastic deformation.

For the initial conditions, let us set a deformation profile

changing in some arbitrary point of the X by hopping from

ε1 = 0 to ε3. During the transition period, the initial profile

will be rearranged to become a stationary front of the wave

propagating along the axis x with the constant speed V .

The coordinate system related to the moving front of the

wave from right to left will have the equation (23) of the

autowave propagation process as follows:

D
d2ε

dx2
−V

dε
dx

+ 8(ε) = 0,

8(ε) = − 1

τ
(ε − ε1)(ε − ε2)(ε − ε3). (24)

Here ε(x) — the deformation, x — the coordinate along the

axis x , V — the linear speed of movement of deformation

modes. The boundary conditions will be specified as

ε(+∞) = ε3, ε(−∞) = ε1. (25)

Here, ε1 and ε3 — stationary deformations of the samples,

which correspond to the mode with inelastic deformation

and plastic deformation, respectively. The problem is solved

by finding the value V , which is an eigenvalue of the

equation (24), (25), which corresponds to the stationary

solution of the autowave equation.

The autowave speed can be obtained by inserting to

reduce the order of the equation (24), (25) and integrating

within the limits from ε1 to ε3:

V =

[

ε3
∫

ε1

8(ε)dε

][

ε3
∫

ε1

P(ε)dε

]

−1

, P(ε) =
dε
dx

. (26)

This expression can not exactly calculate V until solving the

equations (24), (25) and finding the function P(ε). But the

expression (26) describes the main qualitative relationships

of the phenomenon we are considering. The function P(ε)
has a constant plus sign across the entire width of the

front, so the expression (26) provides the information about

the direction of the wave motion (i.e. about the sign of

V ). Furthermore, the expression(26) can also be used to

determine a condition at which the direction of this motion

can change. If the integral
∫ ε3

ε1
8(ε)dε > 0, then the wave

moves towards the filling the sample with the mode of

the plastic deformation ε3. The equality
∫ ε3

ε1
8(ε)dε = 0

is a critical condition of a changed direction of the front

motion, at which the speed of wave propagation becomes

zero. This condition corresponds to the stationary state of

the system, at which the sample can stably and stationarily

have coexisting areas with plastic deformation and inelastic

deformation. There is a critical value of the concentration

n∗∗, at which the speed of autowave motion is zero. The

medium part subjected to the non-equilibrium transition

to the state with the plastic deformation (formation and

propagation of the glide band) is a quasi-static structural

defect of the new scaled level with large time of relaxation.

The plastic deformation is irreversible, so the autowave front

can not propagate toward the opposite side.

Using a specific form of 8(ε) (24), we obtain the

expression for
dε
dx :

dε
dx

=

√

1

2Dτ
(ε3 − ε)(ε − ε1). (27)

Using (27), we obtain the expression for the wave

speed V :

V =

√

2
D
τ

(

[ε3 + ε1]

2
− ε2

)

. (28)

It is clear from (28) that the speed of autowave propagation

of the plastic deformation is proportional to the square root

of the product of the mobility coefficient to the inverse time

of relaxation of plastic deformation.

The width of the autowave front can be determined as

the ratio of the maximum drop of plastic deformation to the

maximum gradient of deformations Pmax at the front

δ =
(ε3 − ε1)

Pmax

√
2Dτ 1

(ε3−ε1)

. (29)

Thus, the width of the front is proportional to the square

root of the product of the mobility coefficient to the time of

relaxation of plastic deformation.

Then, the equation (24) is solved by as follows:

ε(x) =

[

ε3 + ε1 exp

(

4x
δ

)][

1 + exp

(

4x
δ

)]

−1

. (30)

It follows from (30) that the deformation profile is symmet-

rical and Pmax corresponds to the value of deformation equal

to
[ε3+ε1]

2
. It should be noted that as δ,V, ε3 are macro-

magnitudes which can be measured experimentally, then the

relationships (28), (29) provide a means of calculating the
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mobility coefficient, the time of relaxation and the maximum

gradient of plastic deformation, which are important physi-

cal properties of the plastic deformation. The characteristic

experimental values are δ ∼ l ∼ 10−8 m, V ∼ 10−4 m·s−1,

ε3 ∼ 10−2 [1,2,5,6], then it is possible to use (28), (29) to

calculate τ ∼ 10−8 s, D ∼ 10−12 m2·s−1, P6maxm
−1.

Thus, the process of formation (on the free surface),
progression and surfacing of the shear band to another

free surface of the sample is a process of nucleation and

propagation of the autowave of the plastic deformation.

4. Findings and conclusion

The results obtained in Sections 2−4 can be used to make

the following conclusions:

– the AMA’s quasi-static deformation is a complex re-

laxation multi-step process, which is a time-ordered hierar-

chial sequence of interrelated structural transitions of the

first kind. These non-equilibrium processes consequently

undergo at the various scaled – space&time levels, starting

from the lowest level — the cluster of the first nearest

neighbours with the time of relaxation τη , then the mid

level — the nanocluster of the fifth coordination sphere

atoms with the relaxation time τϕ , and, finally, the highest

level — the atoms of the glide band with the space scale of

10 nm and the time of relaxation τ , whereas τ ≫ τϕ ≫ τη ;

– when stressing from the proportionality limit to the

elastic limit, the process of formation of the STZ state

directly in the amorphous structure is suppressed, as the

elastic energy and other factors substantially increase the

energy of STZ formation.

– the non-equilibrium structural transition of the first

kind from the elastic state to the STZ state undergoes

through the pre-transition state (the inelastic state) and is

described by the two parameters: of the near order and

the mid order, which obey the related Landau-Khalatnikov

relaxation equations;

– the relaxation rate contains two terms of a different

physical nature. The first,
”
thermal“ is related to local

thermal fluctuation of the cluster atoms from the elastic

deformed state to the new state with inelastic deformation.

The second,
”
athermal“ is related to two-well – potential’s

tunneling (as stimulated by the local stress) of the cluster

atoms from the elastic deformed state to the new state with

inelastic deformation;

– the physical cause and the condition of instability

of the state with the initial near order in relation of

transition to the STZ state is accumulation of the density

of potential energy of elastic deformation to the critical

value of vel ∼ 1.7 · 10−3 eV per the atomic volume, and

it also requires the loading time which exceeds the time of

relaxation of the mid order;

– when stressing from the elastic limit to the yield point,

the process of formation of the STZ state directly in the

amorphous structure is suppressed, as the elastic energy

and other factors substantially increase the energy of its

formation;

– the non-equilibrium structural transition of the first kind

from the STZ state to the state of plastic deformation is

ensured by self organization of the shear component of

deformations, the shear component of stresses, on the one

hand, and STZ, on the other hand, and described by the

system of the Lorentz equations;

– if during load increase the STZ concentration exceeds

the critical value, the behavior of the STZes exhibits

collective effects (attraction interaction), and they can

condense;

– due to attraction of the STZes with accumulated poten-

tial energy, an elementary shear and excessive free volume,

a condensed nucleus of plastic deformation is forming. The

collective mode of plastic deformation spontaneously occurs

to result in a
”
plastic“ addition to the initial value of the

elastic and inelastic deformation;

– a new structure level of deformation appears, i.e.

macroscopic plastic deformation. At the same time, the

collective component is added to the initial shear stress,

and the STZ concentration decreases. With increase of

the value of plastic deformation, the shear stress and the

time of relaxation of the new structural level of deformation

increase, while the STZ concentration and the effective

viscosity of the medium decrease;

– the physical cause and the condition of instability of

the STZ state in relation of transition to the state of plastic

deformation is additional accumulation of the density of

potential energy of inelastic deformation (the STZ energy)
to the critical value of vel ∼ 1.7 · 10−3 eV per the atomic

volume, and it also requires the loading time which exceeds

the time of relaxation of plastic deformation;

– as the AMA is a heterogeneous medium [1,2], then the

STZes are characterized by non-homogeneous distribution.

It results in localization of establishment of the collective

coupling (attraction) in the STZ ensemble and in auto-

localized formation– the autowave. Its nucleation and

propagation forms a structural defect (the glide band) at

the higher scaled – space&time level [1,2];
– only the structurally unstable, active non-linear medium

can generate autowave processes. During loading the AMA

medium changes its structure, i.e. it is structurally unstable

in relation to the STZ formation. The deformed AMA

medium is active, as it contains local sources of potential

energy, shear and excessive free volume (i.e. STZes), which

are distributes across the volume. The AMA medium

non-linearity results in emergence of non-uniqueness of

stationary homogeneous solutions of the relaxation equation

of plastic deformation.

The theoretical consideration has been carried out to

disclose an autowave nature of the effect of plastic deforma-

tion and to analytically calculate the speed of propagation

of the autowave of switching from the mode of inelastic

deformation to the mode with plastic deformation. In

response to the locally imparted disturbance, the interval

of non-uniqueness originates the running autowave forming
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the glide band. As the experimental value of the front width

δ ∼ l ∼ 10−8 m, the front speed, V ∼ 10−4 m·s−1, plastic

deformationε3 ∼ 10−2 are determined [1,2,5,6], then it is

possible to calculate the important physical properties of

the plastic deformation: the time of relaxation τ ∼ 10−8 s,

the mobility coefficient D ∼ 10−12 m2·s−1, the maximum

gradient P6max m
−1.

Thus, the proposed hypothesis, the kinetic and synergetic

models can formulate the physical picture, cause, condition,

macroscopic mechanism of the quasi-static inelastic and

plastic deformation as the complex relaxation multi-step

process, which is the time-ordered hierarchial sequence of

interrelated structural transitions of the first kind. They

explain the localized nature of the plastic deformation

appearing in AMA and qualitatively and quantitatively

describe the results and the relationships obtained exper-

imentally [1–9]. The space&time structures (autowaves)
of localization of microscopically-scaled deformation, which

originate in the sample at this time, are spontaneously

generated in deformation with the low constant speed.

During the plastic deformation, the deformed medium is

spontaneously delaminated into small (in terms of the width

of the glide plane) and large (in terms of the width)
plastically undeformed areas between the glide planes.
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