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Anomalous response of a stratified medium to volume heat release
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A linear stationary problem of the response of a semi-bounded stably stratified fluid/gaseous medium to

volumetric spatially inhomogeneous heat release in the Boussinesq approximation is theoretically investigated.

The most important similarity parameters are the analogue of the Rayleigh number and the aspect ratio of the

source of buoyancy. For a perturbation in the form of a single horizontal harmonic, an analytical solution has been

found that makes it possible to analyze a number of significant regularities. The nontrivial possibility of an intense

hydrothermodynamic response to a weak heat release at a certain ratio of the mentioned parameters is found.
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Introduction

In this paper, attention is drawn to the substantive

possibility of an intense hydrothermodynamic response of a

stably stratified liquid/gaseous medium to a weak volumetric

heat release.

A rather extensive publications relate to the theory of

convection (density flows) over a thermally inhomogeneous

horizontal surface in a gravity field (see, for example, [1–5]
and the bibliography in these editions). Such problems

have, in particular, well-known geophysical applications (for
example, local winds in the atmosphere associated with

thermal inhomogeneities of the underlying surface). To a

lesser extent, similar problems with volumetric sources of

heat (buoyancy) were studied. They also have extensive

applications. For example, in the same problems of

atmosphere dynamics an important role is played by heat

sources due to phase transitions of water vapor. Another

close example — admixtures that affect the radiation

balance of the medium (see, for example, [6–8]). The

related mathematical problems are very complex even in

the linear approximation (for small perturbation amplitudes)
and are usually studied numerically. In this note, we solve

a problem that admits a transparent analytical solution.

This makes it possible to detect a substantive effect

that would be more difficult to notice during numerical

simulations.

1. Problem formulation

We consider a semi-bounded stably stratified in temper-

ature (in the atmosphere — by potential temperature [1,2])
medium bounded from below by a horizontal surface.

For simplicity, we restrict ourselves to a two-dimensional

problem with a volumetric heat source whose intensity Q
depends on the horizontal coordinate x and the vertical

coordinate z (axis z is directed upwards).

In the absence of the mentioned source (background
state), there is a static solution with a constant vertical

temperature gradient γ > 0 (stable background stratifica-

tion). The presence of a horizontally inhomogeneous source

Q(x , z ) leads to perturbations of this background state —
to the appearance of horizontal thermal inhomogeneities,

horizontal variations in the weight of the medium column

and the occurrence of flows. The assumed relative smallness

of the volumetric heat release amplitude gives the grounds

to consider linear perturbations.

The linearized system of equations of hydrothermody-

namics for a two-dimensional stationary problem in the

Boussinesq approximation has the form [3,4,9,10]:

0 = − 1

ρ̄

∂ p
∂x

+ ν12u, 0 = − 1

ρ̄

∂ p
∂z

+ ν12w + gαθ, (1)

∂u
∂x

+
∂w

∂z
= 0, γw = κ12θ + Q(x , z ). (2)

Here u, w are the components of the perturbation of the

velocity field of the occurring flow along the axes x , z ,
respectively; p, θ — pressure and temperature pertur-

bations; α — coefficient of thermal expansion, ρ̄ —
average (reference) density of the medium; g — free

fall acceleration; 12 — symbol of the two-dimensional

Laplacian; κ, ν — exchange coefficients.

On the lower horizontal boundary (surface z = 0) it is

assumed that the impermeability and non-sliping conditions

are satisfied, as well as fixed temperature (the absence of
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temperature perturbations):

u = w = 0, θ = 0 at z = 0. (3)

It is assumed that the volumetric heat release intensity

is nonzero in the region of finite thickness near the

lower boundary. Correspondingly, at z → ∞, perturbation

damping is assumed.

2. Solution

Eliminating from the system of equations all unknowns,

except for one, the following equation can be easily obtained

13
2w +

N2

νκ

∂2w

∂x2
=

αg
νκ

∂2Q
∂x2

. (4)

Here N = (αgγ)1/2 — buoyancy frequency (Brunt–
Väisälä frequency). It is convenient to analyze a model with

a harmonic dependence of heat release on the horizontal

coordinate:

Q(x , z ) = q(z ) cos kx . (5)

In this case, we also look for the solution in the form of a

horizontal harmonic:

u(x , z ) = U(z ) sin kx , w(x , z ) = W (z ) cos kx ,

θ(x , z ) = 2(z ) cos kx , p(x , z )/ρ̄ = P(z ) cos kx .

Equation (4) takes the form

(

d2

dZ2
− 1

)3

W − RW = −R
q
γ
, R ≡ N2

κνk4
. (6)

Here we introduce the dimensionless variable Z = kz and

the dimensionless parameter R, which is some analogue of

the Rayleigh number [3,10].
We seek the solution of the last equation in the standard

way as the sum of the general solution of the homogeneous

equation and the particular solution of the inhomogeneous

equation. The mentioned general solution can be repre-

sented as a linear combination of exponents of the type

exp(σ j kz ), where σ j —-the roots of the characteristic

equation

(σ 2 − 1)3 − R = 0. (7)

Taking into account the damping of perturbations at z → ∞,

three of the six roots σ j are selected with negative real parts

(here it is assumed that these roots are different):

Wh(z ) =

3
∑

j=1

C j exp(kσ j z ), (8)

where C j are constants of integration.

As an example, consider a model with a source of

heat (buoyancy) that dampens with height according to an

exponential law:

q = q0 exp(−z/h), (9)

where h — some vertical scale, q0 > 0. In this case, it

is easy to find a particular solution of the inhomogeneous

equation (6): Wi = W0 exp(−z/h), where the vertical

velocity scale

W0 =
q0

γ[1− (1− δ2)3/(δ6R)]
, (10)

dimensionless parameter δ = hk . Taking into account (1)
and the continuity equation, the solution can be represented

in the form

w =

[ 3
∑

j=1

C j exp(kσ j z ) + W0 exp(−z/h)

]

cos kx ,

u =

[

−
3

∑

j=1

C jσ j exp(kσ j z ) + (W0/hk) exp(−z/h)

]

sin kx ,

θ =
νk2

αg

[ 3
∑

j=1

C j (σ
2
j − 1)2 exp(kσ j z )

+
W0

δ4
(1− δ2)2 exp(−z/h)

]

cos kx . (11)

Taking into account the boundary conditions (3), we obtain

the system of equations for determining the integration

constants C j :

3
∑

j=1

C j = −W0,

3
∑

j=1

σ jC j = W0/δ,

3
∑

j=1

(σ 2
j − 1)2C j = −W0

δ4
(1− δ2)2. (12)

As can be seen from (7), the value σ 2
j − 1 can take three

values: R1/3, R1/3 exp(±2πi/3). The expressions for the

roots σ j are somewhat cumbersome in the general case. It

makes sense to use the limiting case of large values of the

parameter R. For example, if in the surface layer of the

atmosphere N = 10−2 s, K = 3m2/s (rather characteristic

values), then for k = 10−2 m−1 (half-wavelength about

300m) R = 103. In the specified limit |σ j | ≫ 1, the values

of roots are with negative real parts:

σ1 ≈ −R1/6,

σ2 ≈ −R1/6

(

1

2
+

√
3

2
i

)

= R1/6 exp(−2πi/3),

σ3 ≈ −R1/6

(

1

2
−

√
3

2
i

)

= R1/6 exp(2πi/3). (13)

The approximate solution of the system (12) has the form:

C1 ≈
1

2
(W1 −W2),
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C2 ≈
1√
3

[

W0 exp

(

− 5

6
πi

)

+
1

2
W1 exp

(

5

6
πi

)

+

√
3

2
W2 exp

(

πi
3

)]

,

C3 ≈
1√
3

[

W0 exp

(

5

6
πi

)

+
1

2
W1 exp

(

−5

6
πi

)

+

√
3

2
W2 exp

(

−πi
3

)]

. (14)

Here the velocity scales are introduced

W1 = −W0

b4
(1− δ2)2, W2 = W0/b; (15)

dimensionless parameter b = δR1/6. Below it will also be

convenient to use the vertical scale H = 1/kR1/6. Explicit

form of the solution taking into account (14)

w =

{

1

2
(W1 −W2) exp

(

− z
H

)

+
2√
3
exp

(

−1

2

z
H

)

×
[

W0 cos

(

√
3

2

z
H

+
5

6
π

)

+
1

2
W1 cos

(

√
3

2

z
H

− 5

6
π

)

+

√
3

2
W2 cos

(

√
3

2

z
H

− π

3

)]

+ W0 exp

(

− z
h

)}

cos kx ,

u = R1/6

{

1

2
(W1 −W2) exp

(

− z
H

)

− 2√
3
exp

(

−1

2

z
H

)

×
[

W0 sin

(

√
3

2

z
H

)

+
1

2
W1 cos

(

√
3

2

z
H

− π

6

)

+

√
3

2
W2 cos

(

√
3

2

z
H

+
π

3

)]

+
W0

b
exp

(

− z
h

)}

sin kx ,

θ =
νk2

αg
R2/3

{

1

2
(W1 −W2) exp

(

− z
H

)

+
2√
3
exp

(

−1

2

z
H

)

×
[

W0 sin

(

√
3

2

z
H

)

+
1

2
W1 cos

(

√
3

2

z
H

− π

6

)

+

√
3

2
W2 cos

(

√
3

2

z
H

+
π

3

)]

−W1 exp

(

− z
h

)}

cos kx ,

p
ρ̄

= kνR1/2

{

−1

2
(W1 −W2) exp

(

− z
H

)

+
2√
3

× exp

(

−1

2

z
H

)[

W0 cos

(

√
3

2

z
H

+
5

6
π

)

+
1

2
W1 cos

(

√
3

2

z
H

− 5

6
π

)

+

√
3

2
W2 cos

(

√
3

2

z
H

− π

3

)]

− W0

R1/2δ3
(1− δ2) exp

(

− z
h

)}

cos kx .

3. Solution analysis

For certainty we consider the solution near the vertical

x = 0. In this region, the heat source is Q > 0. Therefore,

one can expect generally positive temperature deviations,

negative density deviations, a decrease in pressure (a
decrease in the weight of the medium column), converging
horizontal flows and (due to continuity) upward movements.

This is what Fig. 1 prepared according to the obtained

solution demonstrates. Two thin curves correspond to a

set of parameter values typical for the surface layer of atmo-

sphere: q0 = 3 · 10−4 K/s (about 1K/hour), κ = ν = 3m2/s,

h = 50m, k = 2 · 10−3 m−1, γ = 3 · 10−3 K/m. Moreover,

R ≈ 7 · 105, δ = 0.1, H ≈ 50m.

At sufficiently large spatial scales of the source (in
particular, large values of the parameter R) and far from

the lower boundary, the diffusion terms in the equations are

insignificant, and, as can be seen already from (4), there is

an approximate solution

w ≈ Q/γ. (16)

Its physical meaning is quite clear: each heated element

of the medium moves vertically at such velocity that the

increase in buoyancy due to heat release is approximately

compensated by a decrease in buoyancy due to ascent into

less dense layers of the medium. The temperature and

pressure deviations are small in this case, so this solution

can be called a neutral buoyancy mode. But near the lower

boundary, due to the impermeability condition, the vertical

velocity is small, and the upward motions are not able to

carry away all the released heat. Therefore, the buoyancy

deviations there are relatively large, and diffusion terms are

significant.

It is interesting to note that here, in principle, there is

the possibility of an unusually intense response to heat

0.15

0.10

0.05

0

100 200 300 400 500 6000 
z, m

, 
θ

Figure 1. Examples of vertical profiles of temperature per-

turbations (solid lines, normalized to 2νk2R2/3/αg) and vertical

velocity (dashed lines, [m/s] ) on the axis of the heat release

region (on the vertical x = 0). The thin lines correspond to the

situation in general position (h = 50m). Thick lines (h ≈ 52.82m)
correspond to the range of parameter values near the relationship

δ = (1 + R1/3)−1/2, when the denominator (10) close to zero.
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release. The denominator of the expression (10) can,

generally speaking, pass through zero. This happens with

the following (quite actual) relationship of dimensionless

parameters:

δ = (1 + R1/3)−1/2. (17)

For R ≫ 1 this corresponds to close values of the vertical

scale h of the source and the vertical scale H due to

the stable stratification of the medium. The values of the

velocity scales W0,W1,W2 when executing (17) obviously

turn to infinity. The linear model considered in this paper, of

course, allows us to consider only not too large perturbation

amplitudes. Fig. 1 (thick lines) demonstrates that as

the values of the parameters approach (17) (compared to

the accepted above parameter values, the scale h is only

slightly changed), the amplitude of temperature and velocity

perturbations sharply increases (increases by several times

in comparison with thin lines corresponding to typical

amplitudes far from relationship (17)). Note that the

discovered effect is very sensitive to the values of the

parameters near relationship (17).

The possibility of an intense response to weak heat

release means the existence of a linear instability of the

considered background state with respect to perturbations

of a certain structure. The instability of stably stratified

(heated from above) shearless viscous medium looks, at first

glance, paradoxical. But for a two-layer system heated from

above, similar possibilities were theoretically discovered

earlier [9,11]; even the term
”
anticonvection“appeared [11].

This non-trivial effect is schematically illustrated in Fig. 2.

Let the heat source (shaded in the figure) be distributed

near the interface between two media (the lower medium is

assumed to be much denser than the upper one, so that the

interface deformations are insignificant). In both media near

the region of heat release the convective flows arise, which

carry away the released heat. (We emphasize that since

the heat release against the background of sufficiently stable

stratification is assumed to be weak, we are not talking

about the occurrence of convective instability. Flows arise

for a different reason: due to the horizontal inhomogeneity

of the hydrostatic pressure — the occurrence of horizontal

gradients of the weight of the medium column. Using

another terminology, these flows can be called density

flows). As can be seen from the Figure, near the interface

the occurring horizontal flows are directed towards each

other. Rigorous calculations based on a linear model

show that under certain ratios of media parameters, the

interaction of these two counterflows can lead to violation of

”
natural ventilation“ of the heat release area. For example,

a converging horizontal flow over the interface can, due

to viscosity, also entrain the lower medium in the same

direction. The latter thus stops to carry heat out of the

region of heat release, so that when the interaction of the

media is taken into account, the direction of flow in the

lower medium shown in Fig. 2 changes, heat accumulates,

and the perturbations increase.

z

x

2

1

Figure 2. Scheme of flows arising near the heat release region

(shaded) in a two-layer medium: 1 — lower boundary of the

medium, 2 — interface between two media, dotted lines —
streamlines.

Until now, it was believed that such amplification of

perturbations is possible only in certain two-layer media

with very special relations between the parameters of two

media [11]. The above calculations show for the first time

that a similar effect is, in principle, also possible in a single-

layer semi-bounded continuously stratified medium. In such

medium, some analogue of the horizontal interface is the

level z ∼ H = 1/kR1/6. The region of heat release located

below this level leads to the appearance of flows that are

qualitatively close to the flows in the lower medium in

Fig. 2. Indeed, in the paper [4] it is shown that perturbations

from the source concentrated on the lower boundary reach

a height of about H (movements cannot penetrate above

because of stable stratification). The flow pattern obtained

in [4] is qualitatively close to the flow pattern below the

interface in Fig. 2. It is obvious that the heat release

in the region 0 < z ≤ H also cannot induce perturbations

penetrating much higher than z = H . At higher levels,

solution (16) is approximately satisfied, it is qualitatively

close to the structure of perturbations above the interface in

Fig. 2. Thus, a physical mechanism is seen that is similar to

the previously studied situation in a two-layer medium.

Conclusion

As mentioned above, convection over a thermally in-

homogeneous horizontal surface was studied in detail

earlier in the literature. It was shown that perturbations

penetrate from the lower boundary into a stably stratified

medium up to a height of about H ≈ (νκL2/N2)1/6, where

L — horizontal scale of thermal inhomogeneity (see, for

example, [4]). If the source of buoyancy is volumetric, but

concentrated relatively close to the lower boundary (in the

region z < H), then it could be expected that the result will

not change qualitatively, and this indeed follows from the

obtained solution. But, as can be seen from the solution,

the results change qualitatively when the vertical scales of

the source of buoyancy reach and exceed the value H . Far

from the lower boundary, a mode with neutral buoyancy

arises, in which w ≈ Q/γ . And at parameter values close

to condition (17) despite stable background stratification the

3 Technical Physics, 2023, Vol. 68, No. 2
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intense hydrothermodynamic response to weak heat release

is possible. Note that this is a rigorously proven result,

since it can already be seen from the easily reproduced and

analyzed formula (10), where the denominator can be zero.

The discovered possibility of intense response to weak heat

release means the presence of the linear instability of stably

stratified medium with respect to perturbations of a certain

structure. Previously, this possibility was shown only for

some two-layer media.
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