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media is studied. It is shown that, in contrast to the case of uniaxial magnets, when the scattered wave is evanescent,

in this case, emission of a propagated wave is possible, the amplitude of which is determined by the difference

between the biaxial anisotropy constants.
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1. Introduction

Nowadays, the possibilities to use exchange spin waves

(ESW) as potential carriers of information and signals have

grown significantly. In addition to the low propagation

speed, ESWs, as opposed to other waves, have an important

feature, i.e. the direction of magnetic moment rotation

(chirality) dependent on its equilibrium orientation. Hence,

conditions of ESW propagation in opposite directions can

be different. This fact can be taken as a basis for the

functioning of logical magnonic devices at frequencies of

femtosecond range — isolators, phase shifters, etc. [1], that
use the nonreciprocity caused by the presence of selected

direction of rotation.

It is well known that due to the quadratic law of disper-

sion the propagation of pure exchange waves is reciprocal

in an unbounded medium. However, this condition may not

be valid for magnetostatic waves [2]. At the same time,

adjoining magnetic moments during ESW propagation can

not have different chirality of precession tending to save

their mutual orientation during rotation. This circumstance

has not been taken into account in [3] when considering

the ESW scattering by a plane boundary. At the same

time, in [4,5] it is noted that with scattering by a plane

boundary, in addition to bulk ESWs (EWs), surface waves

(or evanescent waves, EVW) with an opposite bulk chirality

can arise as well. Saving of the chirality at scattering is

ensured by the fact that such waves necessarily arise at

the boundary in pairs and scattered into different media.

At the same time, the scattered waves inherit chirality of

the incident wave. Therefore, it would appear reason-

able that if equilibrium magnetizations in the bordering

media are antiparallel, then the same chirality in them

is possessed by different types of waves: EWs in one

medium and EVW in another medium, which in fact

means their unidirectional propagation. This is true for

both scattering and generating the ESW [6]. In the latter

case, chirality is defined by the uniform pumping field,

which orientation can be varied, thus switching the direction

of ESW propagation.

In recent studies [7,8], the problem of scattering and

generating of ESWs with antiferromagnetic mutual orien-

tation of bordering media was considered for the case of

uniaxial ferromagnets (FM). In such a model, waves are

generated unidirectionally, because if in one of media waves

are of EW type, then in the other medium waves must

be of EVW type. At the same time, with scattering a

complete reflection of waves with a phase shift takes place.

Therefore, in a similar problem with biaxial magnetic media

effects can be expected that are related to disturbance of

the axial symmetry, in particular, the simultaneous existence

of EVW and EW and their emission into the bordering

medium.

2. Wave types in biaxial magnetic
structure

Let us consider ESW scattering by a boundary of two

semi-infinite biaxial magnetic media A and B with a rigid

interlayer antiferromagnetic exchange bond. We assume

that ESW propagates along the normal to the boundary

(z axis), while the equilibrium magnetization in layers is

oriented along the x axis. Fig. 1 illustrates the geometry

of the problem.

In a uniaxial FM with an antiferromagnetic bond in

layer A, incident and reflected bulk ESWs are propagated,
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Figure 1. Geometry of the problem of scattering by an isolated boundary, wave types and their polarization.

and in layer B the transmitted evanescent wave is prop-

agated [7], so in layer A there are no EVWs, while in

layer B there are no EWs. However, in the case of

disturbance of the axial symmetry the latter will have an

amplitude determined by the difference between anisotropy

constants along y and z directions.

When there is no attenuation and external pumping field,

the dynamics of magnetization in each medium is described

by the Landau–Lifshitz equation (LLE) linearized by small

deviations of magnetization from the equilibrium state:

ṁn − γ

[

M0n ×
δwn

δmn

]

= 0. (1)

The energy density of a biaxial FM quadrated by small

deviations has the following form:

w =
1

2

(

λ2
(dm2

dz

)

+ βy m2
y + β2m

2
2

)

. (2)

By substituting it into the LLE we get the following

system:

{

σω0(λ
2k2 + βy )my + iωmz = 0

σω0(λ
2k2 + βz )mz − iωmy = 0

, (3)

where ω0 = γM0, σ = ±1 — the polarization marker. By

zeroing the determinant of (3), we get a dispersion equation

without the σ marker:

ω2 = ω2
0(λ

2k2 + βy )(λ
2k2 + βz ). (4)

Let us represent solutions to system (3) in the following

form

my = Cei(kz−ωt), mz = iDei(kz−ωt) (5)

and determine the ellipticity as η = D/C . Then, from

system (3) we obtain

η = σ
ω2
0(λ

2k2 + βy )

ω
. (6)

From dispersion equation (4) follow frequency dependen-

cies of wave numbers:

λ2k2
p/e = ±

√

�2 + δβ2 − β,

where

β =
βz + βy

2
, δβ =

βz − βy

2
, � =

ω

ω0

, (7)

one of which is a real number (that corresponds to EW),
and another is an imaginary number (EVW).

By substituting (7) into the expression for ellipticity, we

get

ηp/e = σ
λ2k2

p/e + β − δβ

�
= σ

±
√

�2 + δβ2 − δβ

�

= ±σ
�

√

�2 + δβ2 ± δβ
, (8)

with in particular the implication of orthogonality of polar-

ization ellipses of EW and EVW: ηpηe = −1.
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Figure 2. Frequency dependencies: a — reflection and

transmission amplitude coefficient of EW (solid lines) and EVW

(dotted lines); b — their phases at β = 1, δβ = 0.3 for an isolated

boundary; c — dependencies of the bulk wave transmission

coefficient for δβ specified in the insert.

Thus, with σ = +1 EW is a right-hand polarized wave

(with positive ellipticity), while EVW is a left-hand polar-

ized wave. If, however, σ = −1, then the situation is the

opposite: EW has a left-hand polarization and EVW has a

right-hand polarization.

Let us represent the system of boundary conditions for

the normalized magnetization











MA ×MB = 0,

MA

AA

M2
A

M0A ×
dµA
dz

= MB

AB

M2
B

M0B ×
dµB
dz

(9)

in the following form:











σAµB± − σBµA± = 0

σAAA

dµA±
dz

− σBAB

dµB±
dz

= 0
,

which results in the following equations in the case when

σA = +1, σB = −1:

µAy/z + µBy/z = 0,

AA

dµAy/z

dz
+ AB

dµBy/z

dz
= 0. (10)

Components of the magnetization in each medium are

µAy = 1 · eikApz + r pe−ikApz + ree|kAe |z ,

µAz = i
(

ηAp

(

1 · eikApz + r pe−ikApz ) + ηAeree|kAe |z
)

,

µBy = tpeikBpz + tee−|kBe|z ,

µBz = i(ηBptpeikBpz + ηBetee|kBe |z ). (11)

Note, that in this case

ηAp = ηA, ηAe = −η−1
A ,

however

ηBp = −ηB, ηBe = +η−1
B , (12)

where

ηn =
�

√

�2 + δβ2
n + δβn

.

With consideration to (11) and (12), let us represent the
system of boundary conditions as follows:



























































r p + re + tp + te = −1,

ηAr p − η−1
A re − ηBtp + η−1

B te = −ηA,

AA(−ikApr p + |kAe|re) + AB(ikBptp

− |kBe |te) = −iAAkAp,

AA(−ikApηAr p − η−1
A |kAe|re)

+AB(−ikBpηBtp − η−1
B |kBe |te) = −iAAηAkAp.

(13)

Let us consider a special case when magnetic parameters

of A and B media are the same. Then subscripts of media

can be omitted and the system of boundary conditions can
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be obtained in a matrix form:











1 1 1 1

η2 −1 −η2 1

ξ 1 −ξ −i

ξη2 −i ξη2 −i





















r p

re

tp

te











=











−1

−η2

ξ

ξη2











, (14)

where

ξ =
k p

|ke|
=

√

√

�2 + δβ2 − β
√

�2 + δβ2 − β
,

η =
�

√

�2 + δβ2 + δβ
. (15)

The amplitude coefficients following from system (14)
can be represented as follows:

r p =
η2(1 + ξ2)

(ξη2 + i)(ξ + iη2)
, re =

ξη2(η2 − 1)(ξ − i)
(ξη2 + i)(ξ + iη2)

,

tp =
iξ(η4 − 1)

(ξη2 + i)(ξ + iη2)
, te = −

ξη2(η2 + 1)(ξ + i)
(ξη2 + i)(ξ + iη2)

.

(16)

It can be seen from (16), that within uniaxial media,

when η → 1, for the coefficients it is true that re , tp → 0.

This is explained by the fact that in the case of uniax-

ial FM with antiparallel equilibrium orientation of their

magnetization, in one of the media only EWs exist, and

in another medium only EVW exist. A disturbance

of the magnetic axial symmetry, however, results in

the situation when EWs can propagate in the medium

with the opposite saturation magnetization, at the same

time their amplitude is determined by the value of δβ

(Fig. 2, c).

As it follows from Fig. 2, the maximum ESW transmission

coefficient n has an order of magnitude of δβ . It is worth to

note that for the frequency where ESW polarization ellipses

of the same type in the bordering media are reciprocal,

the solution to system (13) is re = 0 and tp = 0, similar

to the case of uniaxial media. In addition, the condition

of ηAηB = 1 for δβA = −δβB, when ellipses of anisotropy

constants are the same, but rotated by 90◦, is fulfilled for all

frequencies.







































1 1 1 1 1 1 0 0

η2 −1 −η2 −η2 1 1 0 0

ξ i −ξ ξ −i i 0 0

ξη2 −i ξη2 −ξη2 −i i 0 0

0 0 eik pL e−ik pL e−|ke|L e|ke|L 1 1
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Figure 3. a — Absolute amplitude reflection R p (dotted lines)
and transmission Tp (dashed lines) coefficients and b — their

phases for EW at β = 1, δβ = 0.3 for the layer.

In the case when the ESW is scattered by an antifer-

romagnetically ordered (in relation to the environmental

structure) layer with a thickness of L, the calculation results

in the following system for scattering coefficients:

Corresponding dependencies (amplitudes and phases of

the scattered bulk waves) are shown in Fig. 3.

As it follows from Fig. 3, profiles of reflection and

transmission coefficients are different due to the influence

of EVW. Maxima of the incident wave absorption corre-

Physics of the Solid State, 2023, Vol. 65, No. 3



414 V.D. Poimanov

spond to the interferential amplification of direct and reverse

waves in the layer and are observed at the frequencies where

corresponding wavelength is a multiple of the film thickness.

3. Conclusion

The main feature of biaxial ferromagnets is the possibility

to control the amplitude of bulk ESWs in them in the case of

scattering of these waves. This is related to the simultaneous

existence of both EVWs and EWs in them. The effect

manifests to the extent of the difference between the

anisotropy constants of axes in the plane of magnetization

precession and the elliptical polarization arising due to it.

Concurrently, in uniaxial ferromagnets where magnetization

precession is circular, only one type of waves can exist

and the scattered wave is EVW. Thus, the controllable

mechanism of ESW emission is the possibility to change

the axial symmetry of both the magnetic structure and the

shape of the specimen, for example, due to a mechanical

impact. In other respects, the properties of waves are

similar to properties of uniaxial ferromagnets. In particular,

this applies to frequency dependencies of the scattering

coefficient [4].
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