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Organic macromolecule on graphene with structural defects:

Estimations of charge transfer and adhesion energy
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1. Introduction

The unique ability to detect absorption of individual

molecule found in [1] made graphene one of the most

attractive material for resistive gas sensors [2–5], and then

for biosensors as well [6–10]. Typical objects for studying

in the latter case are macromolecules (MM), which are

systems (plaques) with large number of atoms and linear

dimensions about hundreds of Å. And neither geometry of

such a plaque nor the area of its contact with the substrate

are known, yet are strictly fixed. It is clear that direct

application of DFT (density functional theory) methods is

unacceptable in this case. Therefore, in [11], to describe

the energy of interaction (adhesion) of a MM with a single-

layer graphene (SLG) a broken bond model was suggested

with these bonds considered responsible for the stitching

of the MM with the SLG (see Fig. 1 in [11]). Thanks

to the simplified scheme of the problem consideration, the

authors succeeded in obtaining analytical expressions for

the charge transfer between the MM and SLG and for the

energy of adhesion. This study makes use of the same

MM model, however the graphene substrate is considered

non-ideal. Two causes of the deviation from ideal SLG are

considered. These are, first, the presence of inclusions of

the bilayer graphene (BLG), when a portion of (1− x) of

the substrate area is SLG, and a portion of x is BLG. In the

following test this structure will be denoted as S1−xBx . The

second cause is the amorphous inclusions in the ordered

monolayer of graphene.

2. Macromolecule on the S1−xBx

substrate

Let us consider a substrate composed of SLG and BLG,

or a S1−xBx structure. It is worth to note that the situation

like this indeed takes place in real device structures (see,

for example, [6]). Summarizing the results of [11], where

the broken bond model was introduced to describe the

interaction between MM and SLG, now we shall take into

account that broken bonds of the MM interact not only

with the SLG, but also with the BLG. Therefore, instead of

Hamiltonian (1) for the MM/SLG system of [11], we write

the Hamiltonian for the MM/S1−xBx system as follows

H =
∑

k,J

εJ(k)c+
k ck +

∑

i

εi a
+
i a i +

∑

i,k,J

V 2
iJ(c

+
k a i + a+

i ck)

ω − εJ(k) + i0+
,

(1)
where ω is the energy variable, εi is the energy of the

i-th broken (vacant) bond of the MM, εJ(k) is the law

of electron dispersion in J = SLG or J = BLG, ViJ is

the energy of interaction between the i-th bond and the

electronic spectrum of SLG or BLG, c+
k (ck) is the operator

of nucleation (annihilation) of SLG or BLG electron in the

|k〉 state, a+
i (a i) are similar operators for the i-th broken

bond of the MM. It is easy to show that, due to the

adsorption at SLG or BLG the density of states (DOS) of

electron on the i-th bond (per one spin projection) is

ρiJ =
1

π

ŴiJ(ω)

(ω − εi − 3iJ(ω))2 + Ŵ2
iJ(ω)

, (2)

where the functions of broadening and shift of the εi quasi-

level are respectively equal to

ŴiJ(ω) = πV 2
iJρJ(ω, 3i j(ω) =

1

π

∞
∫

−∞

ŴiJ(ω
′)dω′

ω − ω′
. (3)

Let us represent the ρsub(ω, x) DOS of electrons for a

S1−xBx substrate as follows

ρsub(ω, x) = (1− x)ρSLG + xρBLG(ω). (4)

The expression for the ρSLG DOS of SLG in a low-

energy approximation, when εSLG(k) ≈ ±(3t/2)|k|a , where
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a being the distance between the nearest neighbors (n. n.)
in the graphene, t being the energy of electron hopping

between n. n., is well-known [12] and has the following form:

ρSLG(ω) = |ω|/ζ 2, |ω| < ζ, (5)

where ζ =

√

π
√
3/4t ∼ t is the cutting energy. In the case

of AB packing BLG in the same low-energy approximation

for l-bands nearest to the Dirac point (where l means

”
lower“) we have

εl
BLG(k) ≈ ±ε2SLG(k)/t⊥,

where t⊥ ∼ 0.4 eV is the energy of electron hopping

between the planes of the BLG [12,13]. Using the result

of [14], we can represent the ρl
BLG(ω) as

ρl
BLG(ω) = t⊥/2ζ

2, |ω| < ζ, (6)

where we made use of the same energies of Dirac point

εD = − and cutting ζ , as in the case of SLG. For u-bands
(where u means

”
upper“):

εu
BLG(k) ≈ ±

√

t2
⊥

+ ε2SLG. (7)

Then, by an analogy with [11], the expression for the

corresponding DOS can be written as follows:

ρu
BLG(ω) =

{

|ω|/ζ 2, t⊥ ≤ |ω| < ζ,

0, |ω| < t⊥.
(8)

The DOS on the i-th bond (per one spin projection) is

ρi(ω, x) = (1− x)ρiSLG(ω) + xρiBLG(ω), (9)

where

ρBLG(ω) = ρl
BLG(ω)2(ζ − |ω|)

+ ρu
BLG(ω)2(|ω| − t⊥)2(ζ − |ω|),

where 2(. . .) — Heaviside function, and

ρiJ(ω) =
1

π

ŴiJ(ω)

(ω − εi − 3iJ(ω))2 + Ŵ2
iJ(ω)

. (10)

According to [11],

ŴiSLG(ω) = πV 2
iSLGρiSLG(ω),

3iSLG(ω) = (ωV 2
iSLG/ζ

2) ln |ω2/(ζ 2 − ω2)|. (11)

Using expressions (6), (7) and (3), for |ω| < ζ we get

Ŵl
iBLG = π(V l

iBLG)2ρl
BLG = const,

3l
iBLG(ω) = (Ŵl

iBLG/π) ln

∣

∣

∣

∣

ζ − ω

ζ + ω

∣

∣

∣

∣

, (12)

Ŵu
iBLG(ω) = π(V u

iBLG)2ρu
BLG(ω),

3u
iBLG(ω) =

(V u
iBLG)2ω

ζ 2
ln

∣

∣

∣

∣

t2
⊥
− ω2

ζ 2 + t2
⊥
− ω2

∣

∣

∣

∣

. (13)

By making use of the simplification described in [11], and
replacing DOS (10) with

ρiJ(ω) ≈ 1

π

Ŵ̄iJ

(ω − ε̄iJ)2 + Ŵ̄2
iJ

, (14)

where ε̄oiJ = εi + 3iJ(εi ) and Ŵ̄iJ = πV 2
iJρJ(εi), we get the

following for the charge of the i-th bond Zi(x):

Zi(x) = (1− x)ZiBLG + xZiBLG. (15)

For an undoped graphene, when the Fermi level is

εF = εD = 0, the charge is ZiJ ≈ (2/π) arctan(ε̄iJ/Ŵ̄iJ). It is
worth noting that a more rigorous treatment of the problem

of individual atom adsorption on BLG is presented in [15].
The sum charge transferred from the MM to the substrate

is Z(x) = −
∑

i Zi(x), so in an initially undoped hetero-

geneous film charge carriers arise with a concentration of

n(x) = |Z(x)|/S. With Z(x) < 0 the charge carriers are

electrons, and with Z(x) > 0 the carriers are holes. Thus,

the SLG conductivity becomes σ (x) = en(x)µint(x), where

µint(x) being integral mobility of carriers in the S1−xBx

structure.

As in the case of SLG, the energy of adhesion Eads on

the BSL can be represented as a sum of the ion E ion
adh and

metal Emet
adh components determined by formulae (10)−(15)

from [11]. For a substrate formed by SLG and BLG, we can

write the following:

E ion(met)
adh (x) =

∑

i

E ion(met)
i (x)Ni ,

E ion(met)
i (x) = (1− x)E ion(met)

iSLG + xE ion(met)
iBLG , (16)

where Ni = mi/S is the concentration of mi broken i-bonds
per a lattice cell of graphene with an area of S = 3

√
3a2/2

(a = 1.42 Å is the distance between the nearest neighbors

in the graphene).
Turning now to numerical estimates, we use the same val-

ues of εi , di = d = 2.5 Å, V l,u
iBSL = ViSLG = 2.7 eV, εst = 3,

ζ = 3 eV, as in [11]. Results of calculations of charges

and components of adhesion energy are summarized in

the table below. The main issue that is worth noting as

a result of comparing the characteristics of BLG and SLG

is the proximity of these characteristics to each other for

all considered fragments of the MM, except for the ratio of

z = ZiBLG/ZiSLG for NO and NH. The point is that for NO

and NH ε2i ∼ t2
⊥
, while for other MM fragments ε2i ≫ t2

⊥
.

In this case ρiSLG(ω) ∼ ρu
iBLG(ω), and the contribution of

ρl
iBLG(ω) can be ignored, so that ŴiSLG(ω) ∼ ŴiBLG(ω) and

3iSLG(ω) ∼ 3iBLG(ω). By rewriting expression (15) as

follows

Zi(x) = ZiSLG[1 + x(z − 1)], (17)

and taking into account that the typical value x ∼ 0.1 [6],
with a good accuracy we get Zi(x) ≈ ZiSLG. Then
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Characteristics of the AB packing BLG: energies of broken bonds εi , charges Zi , adsorption energies E ion
iBLG, Emet

i1BLG, Emet
i2BLG, Eads

iBLG (all
energy parameters are given in eV) and ratios z = ZiBLG/ZiSLG, emet = Emet

iBLG/Emet
iSLG and eads = Eads

iBLG/Eads
iSLG

Fragment of
O2 NO NH CH2 NH2 CH3

MM→

εi −1.78 −0.47 −0.32 −1.02 −0.96 −0.96

ZiBLG −0.125 0.45 −0.33 0.16 0.19 0.19

E ion
iBLG 0.015 0.19 0.10 0.02 0.04 0.04

Emet
i1BLG 0.30 1.10 0.80 0.39 0.46 0.46

Emet
i2BLG 1.60 1.01 1.23 1.54 1.48 1.48

Eads
iBLG 1.92 2.30 2.13 1.95 1.98 1.98

z 1.04 0.67 −0.62 0.80 0.83 0.83

emet 1.00 0.94 1.015 0.99 0.99 0.99

eads 1.015 0.86 0.94 0.98 0.98 0.98

the conductivity of initially undoped graphene induced

by the MM adsorption is σ (x) ≈ enSLGµint(x). It is

worth to note the high mobility of carriers in the BLG:

thus, for example, in [13] the authors report a value

of µBLG = 40000 cm2V−1 s−1. If µSLG ≈ µBLG, then the

minimum µint(x) arising in the S1−xBx structure due to the

additional scattering on the boundaries of SLG and BLG

regions should be expected at intermediate concentrations

of x . On the other hand, we have x |eads − 1| ≪ 1 (see
the table), so the BLG inclusions have a low effect on the

adhesion energy.

Noe let us consider the inclusion of an AA packing

BLG [16], for which in the low-energy approximation the

law of dispersion and the DOS are, respectively:

ε′BLG(k) = ±
[

|εSLG|/
√
3± t⊥

]

,

ρ′

BLG(ω) = [|ω − t⊥| + |ω + t⊥|]/(ζ ′)2. (18)

Here ζ ′ =

√

π/4
√
3t, that takes into account the Fermi

speed of ν ′

FBLG = νFSLG/
√
3 (primed symbols correspond

to the AA packing). In the (−t⊥, t⊥) energy inter-

val the DOS of ρ′

BLG(ω) = 2t⊥/(ζ ′)2 is an analogue

of ρl
BLG(ω) = t⊥/2ζ 2 for the AB packing (6); with

|ω| ≥ t⊥ we get ρ′

BLG(ω) = 2|ω|/(ζ ′)2 — an analogue

of the ρu
BLG(ω) = |ω|/ζ 2 DOS (7). With considera-

tion to these correspondences, it is easy to rewrite ex-

pressions (12)−(16) for the AA packing. The scheme

proposed herein allows considering the trilayer graphene

(TLG) as an inclusion in the SLG [16,18,19], by assuming

ρ(x , y) = (1− x − y)ρSLG + xρBLG + yρTLG .

3. Macromolecule on the SLG
with amorphous inclusions

Amon various deviations of graphene from the ideal

structure [20], we shall consider the amorphous SLG, or the

a -SLG, that, as known [21], contains pentagons, hexagons

and heptagons of carbon atoms [21]. It is worth noting that

the a -SLG, which is interpreted here as a defect inclusion,

is of immediate interest for applications as an interphase

coating or an inoculum for the processes of atomic layer

deposition [21]. In the following text we use the model

of [22,23], according to which the DOS ρam(ω) for a -SLG
in the low-energy approximation has the following form:

ρam(ω) =
√

ω2 + 12/ζ 2, |ω| < ζ, (19)

where the 1 energy characterizes the amorphization and

the Dirac point is adopted as the energy zero. It can be

easily seen that DOS (19) at 1 = 0 becomes equal to (5).
The dependence (19) in the range of (−t, t) is qualitatively

matched with the results of numerical calculations (see, for
example, Fig. 2 in [21], Fig. 3 in [24], Fig. 6 in [25]). Here,
for ρam(ω) (as well as for ρSLG(ω)) we use a simplified

expression as compared to [22,23], the background for

which is presented in section 2 of the Annex to [11]. It is

worth to emphasize that DOS (19) reflects the main feature

of the a -SLG, i.e. the increase in the density of states in the

neighborhood of the Dirac point. It is interesting to note that

the graphene disordered as a result of high concentration of

vacancies has its DOS form similar to (19) [26–28].

By making use of (19), we get the functions of broade-

ning Ŵam(ω) = πV 2
amρam(ω) and shift

3iam(ω) =
V 2

iam

ζ 2

[

√

ω2 + 12

(

Arsh
ωζ + 12

1|ζ − ω|

+ Arsh
ωζ − 12

1|ζ + ω|

)

− 2ωArsh
ζ

1

]

, (20)

where Viam is the matrix element of interaction between

the i-th bond of the MM and the a -SLG. With 1 = 0,

the 3iam(ω) becomes the function of shift for SLG (see
formula (5) in [11]). By using the same simplifications as
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above for the charge on the i-th bond, we get

Ziam ≈ 2

π
arctan

ε̄iam − εF

Ŵiam(εi )
, (21)

where ε̄iam = εi + 3am(εi ). For further estimates we

assume Viam = VSLG = V , εF = 0 and use the same values

of other parameters, as above. Let us introduce as a

dimensionless characteristic of the amorphism degree the

parameter δ = 1/ζ and relative units ei = εi/ζ , υ = V/ζ

and consider the special cases.

With |ei | ≪ δ2 ≪ 1 we get λam(ei ) ≡ 3iam(εi)/ζ
≈ −2eiυ

2 ln(2/δ) [22] and γam(ei ) ≡ Ŵam(εi )/ζ = πυ2δ

× (1 + e2i /2δ
2). Then, in the first order for ei the charge on

the i-th MM bond is

Ziam ≈ 2

π
arctan

ei [1− υ2 ln(2/δ)]

πυ2δ
. (22)

In the mode of weak bond of the MM with the

a -SLG, when υ ≪ 1 and L(δ) ≡ 1− υ2 ln(2/δ) > 0, an

increase in δ leads to a decrease in |Ziam| and with

δ0 = 2 exp(−1/υ2) we get Zam = 0. In the mode

of strong bond, when υ ≫ 1 and L(δ) < 0, sign of

the charge changes, but again: the growth of δ

decreases the |Ziam|. In the case when ei → ∓1

remaining within the interval of (−1, 1), we have

λam(ei ) → ∓υ2
√
1 + δ2 ln[2/δ(1± ei)] [11], so

Ziam ≈ ± 2

π
arctan

ln[2/δ(1 ± ei)]

π
. (23)

It follows therefrom that an increase in the amorphism

degree a -SLG results in a decrease in the charge on the

MM. Since the ion component of the adsorption energy

E ion
i ∝ Z2

i and metal component Emet
i ∝ |Zi | [11], then for

the considered cases the adhesion energy decreases with

growth of the amorphism degree a -SLG. It should be noted

that the dependence Ziam(δ) is non-monotonous, because

the 3iam(ω) function in the (−ζ , ζ ) interval has positive

and negative extremes, respectively, in the intervals of

−ζ < ω∗ < 0 and 0 < ω∗ < ζ (see Fig. 1 in [11,12]).
As in [11], our understanding is that the charge trans-

ferred from the MM to the substrate is Zam = −∑

i Zi ,

so the conductivity of a -SLG is σam = enamµam, where

nSLG = |Zam|/S (S is the area of the lattice cell of

graphene) and µam are concentration and mobility of

charge carriers, respectively. Currently, it is known [21]
that µam ∼ 1−10 cm2 V−1 s−1 (in the air at room tem-

perature) and a length of Anderson localization [29] of

about ℓ ∼ 10 nm, i.e. a -SLG is an insulator. Thus, the

resulting conductivity of SLG with inclusions of a -SLG
is approximately equal to σ (x) ≈ enSLGµSLG(1− x). It

is worth noting that free-standing a -SLG was obtained in

2020 [30].
To estimate the energy of MM adhesion on a -SLG,

formulae (11)−(13) of [11] can be used. Actually, in (12)
and (13) the r 2

ai term should be replaced with (r−2
ai − ℓ−2).

However, since r−2
ai ≫ ℓ−2, the results of [11] can still be

used.

4. Conclusion

In this study within the model of broken bonds εi

we have proposed a scheme to take into account defect

inclusions in the SLG. This scheme allowed us to estimate

the transfer of charge Z = −∑

i Zi between the MM and

the substrate, and the adhesion energy determined by Zi

and delocalization of electrons of initially broken i-bonds.
Unfortunately, to the best of our knowledge, there is no

corresponding experimental information. Moreover, it is

worth to emphasize that experimental data even for gas

molecules composed of a few atoms adsorbed on real

carbon structures are contradictory to a great extent (see
discussion of this situation in [31]). Even more questions are

caused by the description of carrier mobility on substrates

with defect inclusions. The development of appropriate

theoretical schemes is just beginning [32,33]. Thus, to

create rather a simple (working) model of a graphene-based

biosensor, additional experimental and theoretical studies

are needed.
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