10,11

Структурные превращения в $La_{1-x}Ba_xMn_{0.98}^{57}Fe_{0.02}O_{3+\delta}$ (x=0.05-0.20)

© В.Д. Седых¹, В.С. Русаков², И.И. Зверькова¹, А.В. Дубовицкий¹, В.И. Кулаков¹

1 Институт физики твердого тела РАН,

Черноголовка, Московская обл., Россия

² Московский государственный университет им. М.В. Ломоносова,

Москва, Россия

E-mail: sedykh@issp.ac.ru

(Поступила в Редакцию 27 июля 2011 г.)

Методами мессбауэровской спектроскопии и рентгеновской дифрактометрии проведено систематическое исследование структурных превращений в $\text{La}_{1-x}\text{Ba}_x\text{Mn}_{0.98}^{57}\text{Fe}_{0.02}\text{O}_{3+\delta}$ (x=0.05-0.20) в зависимости от содержания Ва и условий термообработки (отжиг в вакууме и на воздухе). Образцы синтезированы методом золь-гель на воздухе при температуре 1100°C . Для исследуемого интервала концентраций бария при синтезе формируется ромбоэдрическая структура с пространственной группой $R\bar{3}c$. Показано, что при отжиге в вакууме ромбоэдрическая фаза переходит в смесь фаз PnmaII, $PnmaII^*$ и PnmaII для всех концентраций бария. С ростом содержания бария растет количество фазы PnmaI. Но даже при 20 at.%Ва остается небольшое количество фаз PnmaII и $PnmaII^*$.

Работа выполнена при поддержке РФФИ, грант 09-02-00767-а и Программы РАН "Свойства конденсированных сред".

1. Введение

Перовскитное семейство манганитов лантана обладает уникальными свойствами. Соединения, легированные примесью двухвалентных элементов (Ca, Sr), являются материалами с колоссальным магнетосопротивалением и находят широкое применение в разных областях современной техники. Легирование манганита лантана двухвалентными элементами (Ca, Sr, Ba) существенно влияет на физические свойства манганитов, при этом система проходит ряд фазовых переходов с разными типами структурного, магнитного, зарядового и орбитального упорядочения. Особенностью манганитов лантана является наличие ян-теллеровских ионов Mn^{3+} [1]. В этих соединениях существует сильная корреляция между решеточной и электронной подсистемами, поэтому изменения в структуре приводят к значительным изменениям физических свойств (транспортным, магнитным).

В нелегированном LaMnO $_{3+\delta}$ в зависимости от условий синтеза и термообработки можно получить серию структурных модификаций, основными из которых можно назвать две орторомбические PnmaI и PnmaII (общая пространственная группа Pnma(62)) и ромбоэдрическую (пространственная группа $R\bar{3}c$ (167)) модификации [2,3]. Марганец в манганитах находится в смешанной валентности: Mn^{3+} и Mn^{4+} . При окислении часть Mn^{3+} переходит в Mn^{4+} . Каждой модификации соответствует определенная доля Mn^{4+} . При термообработке в разных атмосферных условиях происходят обратимые фазовые переходы [4,5]. Поэтому при небольшом варьировании условий синтеза и термообработки можно получать ту или иную структурную модификацию.

В настоящей работе методами мессбауэровской спектроскопии и рентгеновской дифрактометрии выполне-

но систематическое исследование изменения структуры манганита лантана, легированного барием, в зависимости от концентрации легирующего компонента и условий термообработки (отжиг в вакууме и на воздухе). Проведено сравнение особенностей структурных превращений в соединении, легированном барием, и в нелегированном базовом соединении $LaMnO_{3+\delta}$.

2. Эксперимент

Поликристаллические образцы $La_{1-x}Ba_xMn_{0.98}Fe_{0.02}O_{3+\delta}$ (x = 0.05, 0.10, 0.20) получены золь-гель-методом из нитратов лантана и бария, водного раствора нитрата мессбауэровского изотопа ⁵⁷Fe и ацетата марганца: $La(NO_3)_3$, $6H_2O$, $Ba(NO_3)_2$, $Mn(CH_3COO)_24H_2O$. Bce соли предварительно анализировались на содержание основных элементов, затем растворялись в стехиометрическом соотношении в водном растворе (2 wt.%) поливинилового спирта с добавлением лимонной кислоты в избытке до полного растворения образовавшихся осадков. Полученный раствор осторожно выпаривался при температуре 160–180°C до разложения органическх компонентов смеси. Предварительный отжиг проводился при температуре 800°C. Основной синтез происходил на воздухе при 1100° С в течение 10-20 h. Соотношение валентных состояний марганца Mn³⁺ и Mn⁴⁺ определялось методом иодометрического титрования.

Поскольку в соединении $\text{La}_{1-x}\text{Ba}_x\text{Mn}_{0.98}\text{Fe}_{0.02}\text{O}_{3+\delta}$ существуют обратимые фазовые переходы, то для получения необходимых модификаций образцы отжигались при $T=650-700^{\circ}\text{C}$ в вакууме или на воздухе в зависимости от экспериментальной задачи.

Съемка дифрактограмм порошковых образцов проводилась на дифрактометре Siemens D-500 ($CuK_{\alpha 1}$ -

x	Фаза	a, Å	b, Å	c, Å	V, Å ³	Доля фазы,%
0	$R\bar{3}c$	5.514(2)		13.298(4)	350.2(3)	
0	PnmaI	5.523(2)	7.788(3)	5.537(2)	238.1(3)	
0	PnmaII [6]	5.736(2)	7.700(3)	5.534(2)	244.4(3)	
0	PnmaI [6]	5.587(2)	7.814(3)	5.484(2)	239.4(3)	
	$PnmaII^*$ [6]	5.642(2)	7.730(2)	5.521(2)	240.8(3)	
0.05	$R\bar{3}c$	5.531(2)	. ,	13.369(4)	354.2(3)	100
0.05	PnmaI	5.555	7.818	5.575	242.1	47
	$PnmaII^*$	5.641	7.757	5.551	242.9	53
0.10	$R\bar{3}c$	5.541(2)		13.413(4)	356.8(3)	100
0.10	PnmaI	5.552	7.844	5.571	242.6	97
	$PnmaII^*$	5.635	7.757	5.561	243.1	3
0.20	$R\bar{3}c$	5.541(2)		13.488(4)	358.7(3)	100
0.20	PnmaI	5.525(2)	7.844(3)	5.560(2)	241.0(3)	100

Таблица 1. Параметры решетки фаз $R\bar{3}c$, PnmaI и PnmaII* соединения $La_{1-x}Ba_xMn_{0.98}Fe_{0.02}O_{3+\delta}$ и данные для базисного соединения $LaMn_{0.985}Fe_{0.015}O_{3+\delta}$ [6]

и $\mathrm{Co}K_{\alpha}$ -излучение). Расчет параметров решетки выполнен по программе PowderCell (Werner Kraus & Gert Nolze, BAM Berlin).

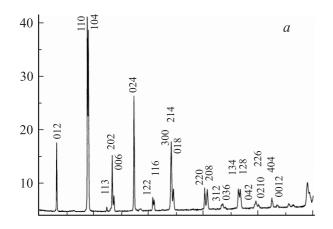
Мессбауэровские измерения проведены при комнатной температуре на керамических образцах на спектрометре, работающем в режиме постоянного ускорения. При анализе спектров поглощения использовалось приближение тонкого поглотителя.

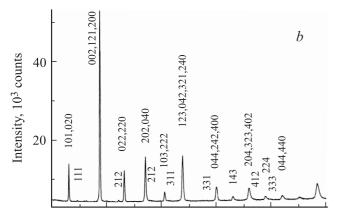
3. Результаты и обсуждение

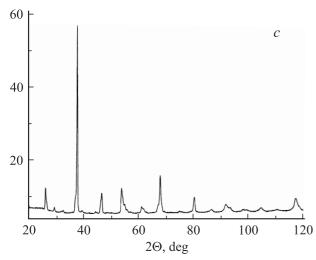
Синтезированные образцы $La_{1-x}Ba_xMn_{0.98}Fe_{0.02}O_{3+\delta}$ (x=0.05,0.10,0.20) согласно рентгеновским данным являются однофазными и имеют ромбоэдрическую структуру (пространственная группа $R\bar{3}c$). Поскольку в манганитах лантана существуют обратимые фазовые переходы [14], то, варьируя условия синтеза и термообработки (отжиг на вохдухе или в вакууме), можно получать ту или иную фазу, независимо от того, какая фаза синтезируется: $R\bar{3}c$, PnmaI или PnmaII. При этом меняется количество ионов Mn^{4+} и междоузельного кислорода. Фазы PnmaI, $PnmaII^*$ и PnmaII для исследуемого нами соединения, легированного барием, получены отжигом в вакууме синтезированных образцов с ромбоэдрической структурой.

Параметры решетки всех полученных фаз для разного содержания бария приведены в табл. 1.

Для сравнения в табл. 1 также приведены параметры решетки базового соединения LaMnO $_{3+\delta}$ для фаз $R\bar{3}c$, Pnma I, Pnma II* и Pnma II, в которой присутствуют только ионы Mn^{3+} ($\delta=0$) [6]. Из табл. 1 следует, что для стехиометрического состава базового соединения LaMnO $_{3+\delta}$ (фаза Pnma II) разница в параметрах a и c составляет порядка 0.2 Å. При окислении (отжиг на воздухе) базового соединения стехиометрического состава с ростом содержания Mn^{4+} (и, следовательно, кислорода) начинает локально формироваться фаза Pnma I,


при этом в фазе PnmaII разница в параметрах a и c уменьшается до $0.1\,\text{Å}$ (табл. 1) [6]. Ранее из мессбауэровских исследований базового соединения нами было обнаружено, что фаза PnmaII с такой уменьшенной разницей в параметрах имеет симметрию локального окружения, отличную от обычной фазы PnmaII, иначе говоря, фаза PnmaII переходит в так называемую промежуточную фазу, которую мы назвали PnmaII* [6].


В соединении $La_{1-x}Ba_xMn_{0.98}Fe_{0.02}O_{3+\delta}$ для исследуемых концентраций бария фаза PnmaII в чистом виде не формируется. Для x=0.05 и 0.10 при термообработке исходных образцов (отжиг в вакууме) синтезированная ромбоэдрическая фаза переходит в смесь фаз $PnmaII^*$ и PnmaI, причем с ростом содержания бария количество фазы PnmaI увеличивается (табл. 1). Для x=0.20 после вакуумного отжига формируется только фаза PnmaI. На рис. 1 приведены типичные дифрактограммы всех полученных фаз в легированных барием образцах $La_{1-x}Ba_xMn_{0.98}Fe_{0.02}O_{3+\delta}$.


С ростом содержания бария параметры решетки и объем ячейки фаз увеличиваются (табл. 1). Это связано с тем, что ионный радиус $\mathrm{Ba^{2+}}$ (1.35 Å) (по Полингу [7]) значительно больше ионного радиуса $\mathrm{La^{3+}}$ (1.15 Å). На рис. 2 показана зависимость объема ячейки от концентрации бария для ромбоэдрической фазы. Увеличение объема ячейки при легировании должно приводить к увеличению количества междоузельного кислорода и, соответственно $\mathrm{Mn^{4+}}$. Наши данные по титрованию показывают следующие количества $\mathrm{Mn^{4+}}$ в разных фазах: $\mathrm{La_{0.80}Ba_{0.20}Mn_{0.98}Fe_{0.02}O_{3+\delta}}$ (ромбоэдрическая фаза) — 32 at.% $\mathrm{Mn^{4+}}$; $\mathrm{La_{0.95}Ba_{0.05}Mn_{0.98}Fe_{0.02}O_{3+\delta}}$ (орторомбическая фаза, вакуумный отжиг) — 5 at.% $\mathrm{Mn^{4+}}$.

Для мессбауэровских исследований в соединение ${\rm La}_{1-x}{\rm Ba}_x{\rm MnO}_{3+\delta}$ было введено 2 at% $^{57}{\rm Fe}$. Из оценки величин изомерных сдвигов следует, что железо в соединении находится в трехвалентном состоянии с высоким спином S=5/2. Катион ${\rm Fe}^{3+}$ замещает

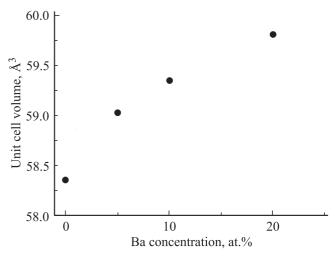
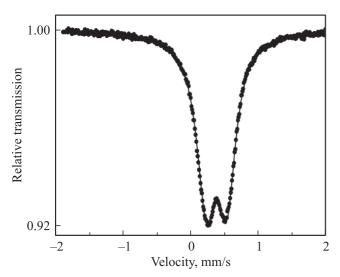

 ${
m Mn^{3+}}$. Поскольку ${
m Fe^{3+}}$ и ${
m Mn^{3+}}$ имеют близкие ионные радиусы, то такое замещение не вносит какихлибо структурных изменений в решетку [8]. Параметры мессбауэровских квадрупольно-расщепленных спектров, снятых при комнатной температуре, для соединения ${
m La_{1-x}Ba_xMn_{0.98}Fe_{0.02}O_{3+\delta}}$ в зависимости от содержания бария для фазы ${\it R\bar{3}c}$ и смеси фаз ${\it PnmaII}$, ${\it PnmaII}$

Рис. 1. Типичные дифрактограммы фаз в образце $\text{La}_{1-x}\text{Ba}_x\text{Mn}_{0.98}\text{Fe}_{0.02}\text{O}_{3+\delta}$: a — ромбоэдрическая фаза, b — фаза PnmaI для $x=0.20,\ c$ — смесь фаз PnmaI и $Pnma\text{II}^*$ для образца с x=0.05; $\text{Cu}K_{\alpha 1}$ -излучение.

Рис. 2. Зависимость объема ячейки ромбоэдрической фазы от содержания бария.

и Pnma II* (Pnma mix) приведены в табл. 2. Для смеси фаз Pnma приведены параметры интегрального спектра. В таблице также приведены данные для базисного соединения LaMn $_{0.985}$ Fe $_{0.015}$ O $_{3+\delta}$ [6]. В последнем столбце указан процент интенсивности линий для данной фазы.

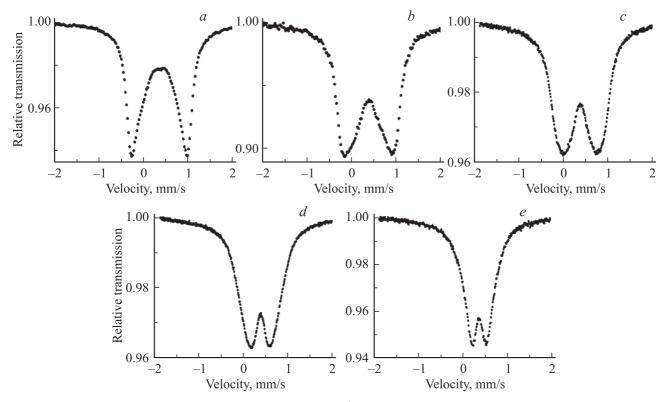

Таблица 2. Параметры мессбауэровских спектров, полученных при комнатной температуре, для фазы $R\bar{3}c$ и смеси фаз PnmaII, PnmaII и PnmaII * (Pnma mix) соединения $La_{1-x}Ba_xMn_{0.98}Fe_{0.02}O_{3+\delta}$

x	Фаза	Δ , mm/s	IS, mm/s	Γ, mm/s	<i>I</i> , %
0	$R\bar{3}c$	0.33(1)	0.37(1)	0.33(1)	
0	PnmaI	0.25(1)	0.37(1)	0.34(1)	
0	PnmaI [6]	0.31(2)	0.36(1)		12
	$PnmaII^*$ [6]	0.68(2)	0.37(1)		27
	PnmaII [6]	1.17(2)	0.37(1)		61
0.05	$R\bar{3}c$	0.32(1)	0.36(1)	0.33(1)	
0.05	Pnma mix.	0.78(2)	0.37(1)	0.59(2)	
0.10	$R\bar{3}c$	0.32(1)	0.36(1)	0.33(1)	
0.10	Pnma mix.	0.54(2)	0.37(1)	0.53(2)	
0.20	$R\bar{3}c$	0.32(1)	0.36(1)	0.33(1)	
0.20	Pnma mix.	0.38(2)	0.37(1)	0.42(2)	

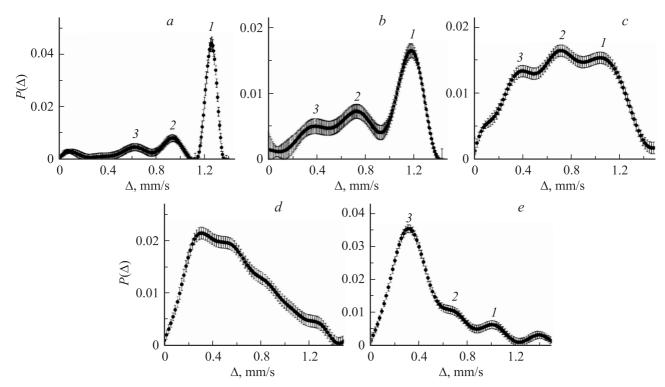
Примечание. Δ , IS, Γ — величины квадрупольного расщепления, изомерного сдвига (относительно ОЦК Fe при комнатной температуре) и ширины линий.

Мессбауэровские спектры фазы $R\bar{3}c$ для соединения, легированного барием, имеют относительно узкие линии, как и в нелегированном барием соединении [4], и обрабатываются одним дублетом (рис. 3). Небольшая асимметрия линий спектра может быть связана с незначительной текстурой образцов [3].

Рассмотрим теперь, что происходит со структурой после вакуумного отжига. Мессбауэровские спектры образцов $La_{1-x}Ba_xMn_{0.98}Fe_{0.02}O_{3+\delta}$ после вакуумного


Рис. 3. Типичный мессбауэровский спектр фазы $R\bar{3}c$ в La_{1-x}Ba_xMn_{0.98}Fe_{0.02}O_{3+ δ} (в качестве примера приведен спектр для образца с x=0.05).

отжига в течение 4h представляют собой сильно уширенные квадрупольно-расщепленные дублеты (рис. 4). Уширение линий спектра означает, что он состоит из нескольких подспектров. Поскольку спектры гладкие, т.е. форма линий не проявляет каких-либо специфических особенностей, то при обработке спектров более корректно определять распределение квадрупольных расщеплений Δ (рис. 5), которое рассчитывалось по программе FISTRI из комплекса программ MSTools [9].


Из распределения Δ на рис. 5, a-e следует: (1) для всех концентраций бария получаются дискретные распределения Δ , имеющие три максимума, (2) с ростом концентрации бария происходит перераспределение интенсивности максимумов Δ .

Первый максимум в распределении на рис. 5 с большим значением Δ мы приписываем фазе Pmna II (максимальное количество ян-теллеровского иона Mn^{3+}), в которой максимальные искажения решетки связаны с эффектом Яна–Теллера. Можно предположить, что не ян-теллеровская примесь Mn^{4+} имеет концентрационный разброс, который приводит к образованию областей с разной степенью искажения и, следовательно, к распределению величин квадрупольного расщепления.

На рис. 5 для образца базового соединения без бария в распределении Δ появляется небольшой максимум 3, который по величине Δ соответствует фазе PnmaI [6,10]. Это связано со следующим. Как уже упоминалось, для мессбауэровских исследований в образцы вводится небольшое количество (2 at.%) изотопа 57 Fe. Железо входит в соединение в трехвалентном состоянии и замещает Mn^{3+} . Поскольку Fe^{3+} не ян-теллеровский ион, как и Mn^{4+} , то в месте расположения железа начинает разрушаться орбитальный порядок и кроме фазы PnmaII может локально зарождаться фаза PnmaII

Рис. 4. Мессбауэровские спектры для смеси фаз PnmaII, PnmaII в La_{1-x}Ba_xMn_{1-y}Fe_yO_{3+ δ}: a-x=0, y=0.015; b-x=0, y=0.05; c-x=0.05, y=0.02; d-x=0.10, y=0.02; e-x=0.20, y=0.02.

Рис. 5. Распределение квадрупольных расщеплений, соответствующее мессбауэровским спектрам, приведенным на рис. 4. Состав образцов (a-e) тот же, что на рис. 4.

В образцах, легированных барием, уже при синтезе с ростом содержания бария автоматически растет содержание $\mathrm{Mn^{4+}}$, и третий максимум в распределении на рис. 5 с минимальным значением Δ мы связываем с появлением фазы Pnma I.

В работе [6] по исследованию базового соединения LaMnO_{3+ δ} нами было показано, что в образце стехиометрического состава LaMnO₃ (фаза *Pnma*II) при окислении с ростом содержания Mn⁴⁺ начинает локально формироваться фаза *Pnma*I, а фаза *Pnma*II с максимальным значением квадрупольного расщепления Δ переходит в промежуточную фазу *Pnma*II*, для которой значение Δ уменьшается. Фазы *Pnma*I и *Pnma*II* базового соединения имеют параметры решетки, приведенные в табл. 1. Из анализа полученных в настоящей работе данных для легированного барием соединения можно предположить, что второй максимум в распределении Δ связан с промежуточной фазой *Pnma*II*. Именно эта фаза, а не *Pnma*II, проявляется на рентгеновских дифракционных спектрах.

Из распределения Δ следует, что при вакуумном отжиге с ростом содержания бария количество фазы PnmaII уменьшается, а фазы PnmaI растет (рис. 5). При 20 at.%Ва количество фазы PnmaI достигает максимума, но остается еще незначительное количество фаз PnmaII и PnmaII*, которое не удается выявить рентгенографически. Таким образом, для легированного барием манганита лантана в области концентраций бария до 20% при термообработке (вакуумный отжиг) исходная ромбоэдрическая фаза переходит в смесь фаз

 $PnmaII, PnmaII^*$ и PnmaI, причем с ростом содержания бария количество фазы PnmaI увеличивается.

При отжиге на воздухе происходит обратный фазовый переход от орторомбических фаз к ромбоэдрической фазе. То есть при разных условиях термообработки (отжиг в вакууме и на воздухе) для всех исследуемых концентраций бария от 5 до 20 at.% существуют обратимые фазовые переходы.

На рис. 4, 5 для сравнения приведены мессбауэровские спектры и распределения Δ для образцов без бария с 1.5 и 5 at.%Fe [11], из которых следует, что с ростом содержания железа начинает расти интенсивность линий максимумов I и 2. Позиции максимумов для образцов с 5 at.%Ba (рис. 5, c) и 5 at.%Fe (рис. 5, b) практически одинаковые, тогда как их интенсивности сильно отличаются. Для образцов с 5 at.%Ba интенсивность максимума I значительно ниже (т. е. уменьшилось количество фазы Pnma II), а интенсивности максимумов 2 и 3 стали выше (т. е. увеличилось количество фаз Pnma II* и Pnma I).

Рассмотрим, какие изменения происходят в структуре легированного манганита лантана в зависимости от концентрации бария и условий термообработки.

В манганитах лантана марганец имеет смешанную валентность: Mn^{3+} и Mn^{4+} . Если в соединении присутствует только Mn^{3+} (ABO_3), то при окислении (отжиг на воздухе или в кислороде) часть Mn^{3+} переходит в Mn^{4+} до предельного содержания (и предельного содержания избыточного кислорода) ($ABO_{3+\delta}$). Каждая фаза имеет определенный интервал концентраций Mn^{4+} [4], поэтому

при окислении с ростом содержания ${\rm Mn}^{4+}$ наблюдается определенная последовательность фазовых переходов. Поскольку фазовые переходы обратимы, то справедлив и обратный процесс: при вакуумном отжиге ${\rm Mn}^{4+}$ переходит в ${\rm Mn}^{3+}$, и фаза с максимальным содержанием ${\rm Mn}^{4+}$ (и максимальным содержанием избыточного кислорода) переходит в конечном итоге в фазу с наличием только ионов ${\rm Mn}^{3+}$ (и отсутствием избыточного кислорода, $\delta=0$).

Ионы трехвалентного марганца Mn^{3+} относятся к ян-теллеровским ионам с вырожденным орбитальным состоянием электронов. Важной особенностью соединений с ян-теллеровскими ионами является орбитальное упорядочение, обусловленное кооперативным эффектом Яна—Телера, которое вызывает зарядовое упорядочение. За счет данного эффекта октаэдры MnO_6 значительно искажены [12]. Появление не ян-теллеровского иона Mn^{4+} разрушает орбитальный порядок, подавляется динамический эффект Яна—Теллера, искажения решетки уменьшаются [6,13,14], и фаза PnmaII переходит в фазу PnmaI. При этом симметрия локального окружения повышается, и величина Δ мессбауэровских спектров для фазы PnmaII уменьшается в несколько раз по сравнению с фазой PnmaIII.

В базовом нелегированном соединении LaMnO_{3+δ} стехиометрического состава ($\delta = 0$, фаза PnmaII) присутствуют только ян-теллеровские ионы Mn³⁺, и решетка сильно искажена за счет эффекта Яна-Теллера, соответственно величина Δ мессбауэровских спектров большая [14,15]. Все позиции решетки заняты. При окислении, когда часть Mn^{3+} переходит в Mn^{4+} , кроме фазы Pnma II начинает локально формироваться Pnma I. Ее количество растет с ростом доли Mn⁴⁺. Приходящий с Mn⁴⁺ дополнительный кислород занимает междоузельные позиции и искажает решетку [4], но не так сильно, как при эффекте Яна-Теллера. Влияние дополнительного кислорода хорошо прослеживается на фазе $R\bar{3}c$, в которой количество ионов Mn^{4+} и, следовательно, междоузельного кислорода максимальное. Для модельной ромбоэдрической структуры, в которой нет междоузельного кислорода, марганец имеет симметричное кислородное окружение. В этом случае мессбауэровский спектр должен представлять монолинию или дублет с очень малой величиной Д. В действительности эксперимент показывает, что величина Δ для фазы $R\bar{3}c$ достаточно большая [4]. Это может быть обусловлено наличием большого количества междоузельного кислорода, приводящего к заметным искажениям локального окружения.

Таким образом, в нелегированном соединении $LaMnO_{3+\delta}$ с ростом доли не ян-теллеровского иона Mn^{4+} искажения решетки, связанные с динамическим эффектом Яна–Теллера, уменьшаются, но появляются искажения, связанные с кислородом, занимающим междоузельные позиции.

Легирование лантана двухвалентными ионами приводит к изменению структурных параметров: увеличению

длины связи Mn-O и угла связи Mn-O-Mn [1,16,17]. Поскольку ионные радиусы катионов лантана и бария существенно различаются, возникают локальные искажения и напряжения в кристаллической структуре.

Из анализа полученных данных можно сделать следующие предположения о структурных превращениях в легированном барием соединении $La_{1-x}Ba_xMn_{0.98}Fe_{0.02}O_{3+\delta}$. При легировании трехвалентного лантана двухвалентным барием в решетке образуются вакантные килородные позиции, поэтому уже во время синтеза часть Mn^{3+} переходит в Mn^{4+} . При этом дополнительный кислород, приходящий с Mn⁴⁺, будет в первую очередь занимать вакантные кислородные места в решетке, образуя стехиометрический состав по кислороду ($\delta = 0$). При определенных условиях синтеза или окисления (отжиг на воздухе) можно повысить количество Mn⁴⁺ и дополнительного кислорода до предельного значения (формируется фаза $R\bar{3}c$), при этом приходящий с Mn^{4+} кислород будет занимать теперь междоузельные позиции. Увеличение концентрации бария приводит к уменьшению количества междоузельного кислорода. С ростом количества Мп⁴⁺ происходят фазовые переходы, которые обратимы при изменении условий термообработки: $Pnma \coprod \leftrightarrow Pnma \coprod^* \leftrightarrow Pnma \coprod \leftrightarrow R\bar{3}c.$

4. Заключение

работе проведено систематическое исследование особенностей структурных превращений в $La_{1-x}Ba_xMn_{0.98}Fe_{0.02}O_{3+\delta}$ (x = 0.05-0.20) B мости от содержания бария и условий термообработки. Синтезированные образцы $La_{1-x}Ba_xMn_{0.98}Fe_{0.02}O_{3+\delta}$ (x = 0.05, 0.10, 0.20) являются однофазными и имеют ромбоэдрическую структуру для всех исследуемых концентраций бария. Для легированного манганита лантана в исследуемой области концентраций бария до 20 at.% при термообработке (вакуумный отжиг) фаза *Pnma* II в чистом виде не формируется, исходная синтезированная ромбоэдрическая фаза переходит в смесь фаз Pnma II, PnmaII* и PnmaI, причем с ростом содержания бария количество фазы Рпта І увеличивается. В отличие от базового соединения LaMnO $_{3+\delta}$, в котором фазы Pnma II и $PnmaII^*$ подавляются при 10 at. %Mn⁴⁺, в легированном барием соединении даже при 20 at. %Ва их остается небольшое количество.

При разных условиях термообработки (отжиг в вакууме и на воздухе) в манганите лантана, легированном барием, для всех исследуемых концентраций бария от 5 до 20 at.% существуют обратимые фазовые переходы $Pnma \Pi \leftrightarrow Pnma \Pi^* \leftrightarrow Pnma \Pi \leftrightarrow R\bar{3}c$.

Список литературы

- [1] К.И. Кугель, Д.И. Хомский. УФН 136, it 4, 621 (1982).
- [2] Q. Huang, A. Santoro, J.W. Lynn, R.W. Erwin, J.A. Borchers, J.L. Peng, R.L. Greene. Phys. Rev. B 55, 14987 (1997).

- [3] В.Д. Седых, И.С. Смирнова, Б.Ш. Багаутдинов, И.Ш. Шехтман, А.В. Дубовицкий. Поверхность 12, 9 (2002).
- [4] V. Sedykh, V.Sh. Shekhtman, I.I. Zver'kova, A.V. Dubovitskii, V.I. Kulakov. Physica 433, 189 (2006).
- [5] В.Д. Седых, В.Ш. Шехтман, И.И. Зверькова, А.В. Дубовицкий, В.И. Кулаков. Изв. РАН. Сер. физ. **71**, *9*, 1275 (2007).
- [6] V. Sedykh, G.E. Abrosimova, V.Sh. Shekhtman, I.I. Zver'kova, A.V. Dubovitskii, V.I. Kulakov. Physica C 418, 3–4, 144 (2005).
- [7] Краткий справочник физико-химических величин / Под ред. К.П. Мищенко и А.А. Равделя. Химия, Л. (1974). 200 с.
- [8] H. Ahn, X.W. Wu, K. Liu, C.L. Chien. J. Appl. Phys. 15, 5505 (1997).
- [9] В.С. Русаков. Изв. РАН. Сер. физ. 7, 1093 (1999);
 V.S. Rusakov, К.К. Kadyrzhanov. Heperfine Interactions 164,
 87 (2005); В.С. Русаков. Мессбауэровская спектроскопия локально неоднородных систем. Отпечатано в ОПНИ ИЯФ НЯЦ РК, Алматы (2000). 431 с.
- [10] V. Sedykh, V.S. Rusakov. AIP (American Institute of Physics) Proc. Conf. Mossbauer Spectroscopy in Materials Science-2010, 978-0-7354-0806-7/10, (2010). P. 108.
- [11] В.Д. Седых, В.Ш. Шехтман, А.В. Дубовицкий, И.И. Зверькова, В.И. Кулаков. ФТТ 51, 2, 351 (2009).
- [12] Q. Huang, A. Santoro, J. W. Lynn, R.W. Erwin, J.A. Borchers, J.L. Peng, K. Ghosh, R.L. Greene. Phys. Rev. B 59, 2684 (1998).
- [13] J. Rodriguez-Garvajal, M. Hennion, F. Moussa, L. Pinsard, A. Revcolevschi. Physica B 234–236, 848 (1997).
- [14] M. Kopcewicz, V.A. Khomchenko, I.O. Troyanckuk, H. Szymczak, J. Phys.: Cond. Matter 16, 4335 (2004).
- [15] M. Pissas, A. Simopoulos. J. Phys.: Cond. Matter **16**, 7419 (2004).
- [16] Ю.Г. Чукалин, А.Е. Теплых. ФММ 104, 1, 105 (2007).
- [17] B. Dabrovski, K. Rogacki, X. Xiong, P.W. Klamut, R. Dybzinski, J.Shaffer, J.D. Jirgensen. Phys. Rev. B 58 5, 2716 (1998).