Высокая чувствительность пленок оксида индия, полученных методом хлоридной газофазной эпитаксии, к аммиаку

© Д.А. Алмаев 1 , А.В. Алмаев 1,2 , В.И. Николаев 3,4 , П.Н. Бутенко 1,3 , М.П. Щеглов 3 , А.В. Чикиряка 3 , А.И. Печников 3

248009 Калуга, Россия

194021 Санкт-Петербург, Россия

194223 Санкт-Петербург, Россия

E-mail: almaev001@mail.ru

Поступила в Редакцию 14 марта 2023 г. В окончательной редакции 13 апреля 2023 г. Принята к публикации 13 апреля 2023 г.

Исследовано влияние H_2 , NH_3 , CO и O_2 на электропроводящие свойства пленок In_2O_3 , полученных методом хлоридной газофазной эпитаксии. В интервале температур $200-550^{\circ}C$ пленки In_2O_3 демонстрируют газовую чувствительность ко всем рассмотренным газам, имея относительно высокое быстродействие и повторяемость циклов. Наибольший отклик был получен при воздействии NH_3 , который при температуре $400^{\circ}C$ и концентрации газа 1000 млн $^{-1}$ превысил 33 отн.ед. Предложен качественный механизм газовой чувствительности пленок In_2O_3 . Полученные газочувствительные характеристики сопоставлены с известными сенсорами NH_3 на основе различных материалов. Показано, что метод хлоридной газофазной эпитаксии позволяет получать пленки оксида индия с высокой газовой чувствительностью.

Ключевые слова: пленки In_2O_3 , хлоридная газофазная эпитаксия, газочувствительные свойства, отклик.

DOI: 10.21883/FTP.2023.03.55626.4704

1. Введение

Оксид индия — металлооксидный полупроводник п-типа проводимости, который за счет оптической прозрачности в видимой области спектра (ширина запрещенной зоны $E_g = 3.5 - 3.7 \, \mathrm{эB} \, [1 - 5])$, низкой эффективной массы электронов $(m_n = 0.16 - 0.25 \,\mathrm{m} \, [3,6,7]),$ высокой каталитической активности и проводимости, вызванной наличием дважды ионизированных вакансий кислорода, получил широкое распространение и может быть использован в газовых сенсорах, солнечных элементах, сенсорных и жидкокристаллических дисплеях, тонкопленочных транзисторах, оптоэлектронных и фотоэлектрических устройствах, контактах и диодах Шоттки [1–5,8–18]. Столь обширные и разнообразные области применения чаще относят к In_2O_3 : Sn [1,3,5,8], в то время как свойства нелегированного In₂O₃ наиболее активно исследуют для газовой сенсорики [1,2,11-18]. In₂O₃ обладает полиморфизмом и в качестве основных полиморфных модификаций выделяют три: объемоцентрированный кубический c-In₂O₃; ромбоэдрический rh- In_2O_3 и орторомбический o- In_2O_3 . c- In_2O_3 является единственным термостабильным полиморфом, что привлекает наибольший исследовательский интеpec [1,3,5,8,9,11–16,19–21].

В табл. 1 представлены газочувствительные свойства структур на основе In_2O_3 , которые демонстрируют высокий отклик (S) на воздействие различных газов при

относительно низких температурах (T) и концентрациях газа (n_g) . Из приведенных данных следует, что In_2O_3 привлекателен в качестве газовых сенсоров NO_2 , O_3 , этанола, NH_3 и ацетона. Структуры на основе In_2O_3 демонстрируют высокую чувствительность к NO_2 и O_3 при $n_g < 1$ млн $^{-1}$ [10,12,14]. Воздействие этанола и ацетона не всегда приводит к высоким значениям S, но исследования чувствительности именно к этим газам чаще встречаются в литературе [2,13,15,16]. Отдельно стоит отметить сенсоры NH_3 на основе иерархических структур In_2O_3 , так как газочувствительные характеристики rh- In_2O_3 превосходят WO_3 , который является самым распространенным материалом для обнаружения NH_3 [11].

Детальное изучение газочувствительных свойств In_2O_3 ограничено из-за отсутствия качественных кристаллов этого материала. В литературе [3,4,17–19] есть информация о следующих методах роста пленок In_2O_3 : атомно-слоевое осаждение (ALD), импульсное лазерное осаждение (PLD), молекулярно-лучевая эпитаксия (MBE), осаждение металлорганических соединений из газовой фазы (MOCVD), ВЧ магнетронное распыление (RFMS), электронно-лучевое испарение (EBE), химическое газофазное осаждение с участием паров воды (mist-CVD), химическое газофазное осаждение при низком давлении (LPCVD). Метод хлоридной газофазной эпитаксии (HVPE) является достаточно новым для получения In_2O_3 . На данный момент доступно не так

2 145

 $^{^1}$ Национальный исследовательский Томский государственный университет, 634050 Томск. Россия

² ООО "Фокон".

³ Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

⁴ ООО "Совершенные кристаллы",

Материал	Метод получения	T, °C	<i>T</i> , °С Газ/ <i>n</i> _g		Источник	
Пленки <i>c</i> -In ₂ O ₃	Золь-гель	300	$NO_2/100 \text{ млн}^{-1}$	31.3	[1]	
Тонкие пленки c -In $_2$ O $_3$	D	370	$H_2/3000 \mathrm{млн}^{-1}$ 25		[10]	
	Распылительный пиролиз	270	$ m O_3/1 mлh^{-1}$	2000	[10]	
Нанопроволоки c -In $_2$ O $_3$	Химическое газофазное осаждение	300	Этанол/ 80млн^{-1}	1.46	[2]	
Иерархические структуры c -In $_2$ O $_3$	Отжиг порошка InOOH	300	$ m NH_{3}/5 mл H^{-1}$	17	[11]	
Пленки c -In $_2$ O $_3$	2	350	$CO/1000\mathrm{млн}^{-1}$	1.14	[12]	
	Золь-гель	250	$ m NO_2/900 mлрд^{-1}$	1.7		
Наноструктуры c -In ₂ O ₃	Гидротермальный	90	$O_3/100 \text{млрд}^{-1}$	7.5	[14]	
Нанопроволоки c -In $_2$ O $_3$	Золь-гель	400	Этанол/5 млн ⁻¹	4	[15]	
Микроцветы <i>c</i> -In ₂ O ₃	Гидротермальный		A цетон/ 50 млн $^{-1}$	4.1	[16]	
Иерархические структуры <i>rh</i> -In ₂ O ₃	Отжиг порошка InOOH	300	${ m NH_{3}/5}{ m MJH}^{-1}$	1.9	[11]	
Пленки <i>rh</i> -In ₂ O ₃	Золь-гель	350	$CO/1000\mathrm{млн}^{-1}$	1.17	[12]	
	30/16-1 C/16	250	$ m NO_2/900 mлрд^{-1}$	1.5		
Наноцветы <i>rh</i> -In ₂ O ₃	Отжиг порошка InOOH	280	Этанол/ 50млн^{-1}	22	[13]	
Наноструктуры <i>rh</i> -In ₂ O ₃	Evanozon vo za vez	90	$O_3/100$ млрд $^{-1}$	12	[14]	
Наноструктуры $c + rh$ -In ₂ O ₃	Гидротермальный		O3/100 млрд	5.5		
Нанопроволоки $c + rh$ -In ₂ O ₃	Золь-гель	300	Этанол/5 млн ⁻¹	40	[15]	
Микроцветы $c + rh$ -In ₂ O ₃	Гидротермальный	250	A цетон/ 50 млн $^{-1}$	12	[16]	

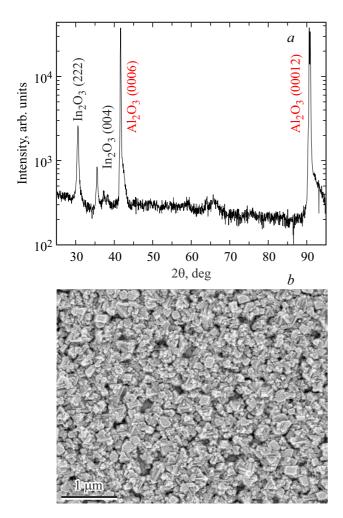
Таблица 1. Газочувствительные свойства структур на основе In₂O₃

много сведений [17-21] о росте пленок In_2O_3 методом HVPE, при этом отсутствует подробная информация о свойствах получаемых кристаллов. Известно, что HVPE является недорогим методом, позволяющим достигать очень высокие скорости роста, а в отдельных случаях он позволяет получать развитую поверхность, что особенно важно в случае газовых сенсоров [22]. Кроме этого, известно большое количество работ по получению пленок металлооксидных полупроводников (МОп/п) [3,19–28] высокого структурного качества методом HVPE.

Данная работа посвящена исследованию газочувствительных свойств пленок $c\text{-In}_2\mathrm{O}_3$, полученных методом HVPE.

2. Методика эксперимента

Пленки In_2O_3 толщиной $0.5\,\mathrm{mkm}$ были выращены методом (HVPE), используя газообразные хлорид индия и кислород в качестве прекурсоров. Рост проходил на сапфировых подложках базисной ориентации (0001) толщиной $430\,\mathrm{mkm}$ при $T=600^{\circ}\mathrm{C}$. Специального легирования пленок не проводилось. На поверхности пленок через маску были сформированы плоскопараллельные контакты методом магнетронного распыления мишени Pt с межэлектродным расстоянием $150\,\mathrm{mkm}$.


Фазовый состав образцов исследовался методом рентгенодифракционного анализа (РДА), с использованием дифрактометра АО ИЦ "Буревестник" с источником $\mathrm{Cu}K_{\alpha}$ -излучения ($\lambda=1.5406~\mathrm{\AA}$) в режиме $\theta-2\theta$ сканирования. Исследования микрорельефа поверхности пленок проведены методом сканирующей электронной микроскопии с полевым эффектом (ПЭСЭМ), с использованием установки Аргео 2 при ускоряющем напряжении 2 кВ.

Перед измерением газочувствительных характеристик пленок проводился их предварительный прогрев до $T = 550^{\circ}$ С в потоке чистого сухого воздуха для стабилизации свойств контактов и регенерации поверхности. Исследования газовой чувствительности проводены при помощи микрозондовой установки фирмы Nextron и источника-измерителя Keithley 2636A. Процесс измерений был автоматизирован при помощи программ, разработанных в среде Lab View. Измерения проведены в темновых условиях, в потоке чистого сухого воздуха или в газовой смеси чистый сухой воздух+целевой газ. В качестве целевых газов были выбраны Н2, NH3, СО и О2. Чтобы исключить влияние предыстории образца на результаты эксперимента, каждый образец подвергался воздействию только одного газа. Величина потока газовых смесей через измерительную камеру поддерживалась на постоянном уровне и составляла 1000 см³/мин. При исследовании чувствительности пленок к кислороду использовали смесь $N_2 + O_2$, а величина потока газовой смеси составляла 500 см³/мин. Источником чистого сухого воздуха являлся генератор ГЧВ-1.2-3.5 фирмы "НПП Химэлектроника". Поток целевого газа в смеси с воздухом задавался с точностью $\pm 0.5\%$ при помощи генератора газовых смесей Микрогаз Ф-06 фирмы "Интера". Газочувствительные характеристики измерены в широком интервале T от 30 до 550°C при постоянном смешении $U=2\,\mathrm{B}$.

Результаты и обсуждение

Структурные свойства пленок In₂O₃

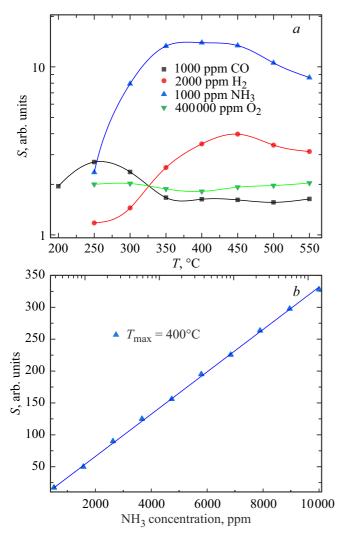
Анализ РДА спектра пленок In_2O_3 (рис. 1, a) в логарифмическом масштабе показал наличие пиков при $2\theta = 30.6$ и 35.5° , соответствующих отражениям от плоскостей (222) и (004) c-In₂O₃. Кроме этого, на дифрактограмме присутствуют отражения с высокой интенсивностью от сапфировой подложки, соответствующие семейству плоскостей (0001). На снимке ПЭСЭМ (рис. 1, b) видно, что пленки In_2O_3 имеют зернистую

Рис. 1. РДА спектр (*a*) и снимок ПЭСЭМ (*b*) пленок In_2O_3 на сапфировой подложке.

структуру с огранкой, близкой к форме квадрата и характеристическим размером зерен $D_g = 100-200$ нм.

3.2. Газочувствительные свойства пленок In₂O₃

Воздействие целевых газов приводило к обратимому изменению сопротивления (R), для восстановительных газов H₂, NH₃ и CO значения R уменьшались, а для O_2 — увеличивались. В таком случае для определения значений отклика Ѕ были выбраны следующие отношения:


$$S_{\rm r.g.} = R_{\rm air}/R_{\rm g},\tag{1}$$

$$S_{\text{o.g.}} = R_{\text{O}}/R_{\text{N}},\tag{2}$$

где $S_{\rm r.g.}$ — отклик на восстановительные газы; $S_{\rm O}$ отклик на O_2 ; R_{air} , $R_{r.g.}$, R_O и R_N — квазистационарные значения сопротивлений образцов в чистом сухом воздухе, при воздействии восстановительных газов, при воздействии O_2 и в атмосфере N_2 соответственно. Для оценки быстродействия пленок In₂O₃ проведен анализ временных зависимостей R и определены значения времени отклика (t_{res}) и восстановления (t_{rec}) . В качестве $t_{\rm res}$ при воздействии H_2 , NH_3 и CO брали временной интервал между началом действия на пленку соответствующей газовой смеси и моментом установления ее сопротивления на уровне $1.1R_{\rm rg}$, а при воздействии O_2 временной интервал между началом действия на пленку смеси $N_2 + O_2$ и установлением ее сопротивления на уровне $0.9R_{\rm O}$. В качестве $t_{\rm rec}$ при воздействии H_2 , NH_3 и СО был выбран временной интервал между началом продувки через камеру с образцами чистого воздуха и установления их сопротивления на уровне $0.9R_{\rm air}$, а при воздействии О2 — временной интервал между началом продувки N_2 через камеру и установлением сопротивления пленок In_2O_3 на уровне $1.1R_N$.

На температурных зависимостях отклика (рис. 2, a) показано, что пленки In2O3 начинают чувствовать CO только при $T \ge 200$ °C, для остальных газов эта температура выше на 50° С. На кривых S(T) достаточно четко видны значения температуры максимального отклика (T_{max}) , до достижения которых значения Sрастут, а после — уменьшаются. Так как наличие в газовой смеси NH₃ приводило к наибольшему отклику, воздействие NH₃ на пленки In₂O₃ будет рассмотрено более подробно. Концентрационные зависимости отклика пленок In₂O₃ были измерены при уже известных значениях $T_{\rm max}$. Данные зависимости при воздействии NH_3 (рис. 2,b) оказались линейными, а для других газов (см. табл. 2) значения S при увеличении n_g возрастают по степенному закону. Газовая чувствительность пленок In2O3 к NH3 возрастает по мере проведения измерений, при одних и тех же условиях значение S сначала не превышало 14 (рис. 2, a), а в конце измерений составило 33.3 (рис. 2, b). Значения сопротивления в отсутствии целевых газов в атмосфере воздуха при $T_{\rm max}$ находились в промежутке $R = 0.1 - 2.5 \, \Gamma$ Ом.

На рис. 3 представлены температурные зависимости $t_{\rm res}$ и $t_{\rm rec}$ пленок ${\rm In_2O_3}$ при воздействии ${\rm CO,\ H_2,\ NH_3}$

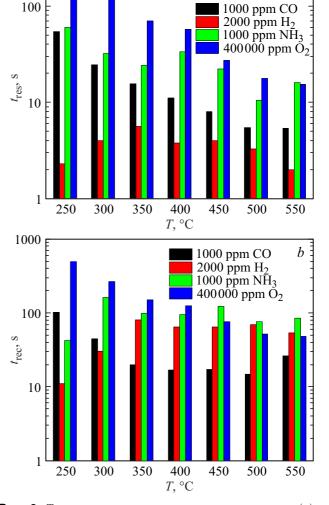
Рис. 2. Температурные (a) и концентрационные (b) зависимости отклика пленок In_2O_3 при воздействии целевых газов и NH_3 соответственно.

и O_2 . Полученные значения $t_{\rm res}$ и $t_{\rm rec}$ могут служить только для оценки быстродействия пленок ${\rm In}_2O_3$ в указанных условиях эксперимента и включают в себя время, необходимое для установления стационарного состояния атмосферы в измерительной камере. Сумма $t_{\rm res}$ и $t_{\rm rec}$ при воздействии целевых газов во всем диапазоне T возрастает в следующем порядке: ${\rm O}_2 \to {\rm NH}_3 \to {\rm CO} \to {\rm H}_2$, чем меньше $t_{\rm res} + t_{\rm rec}$, тем выше быстродействие. При

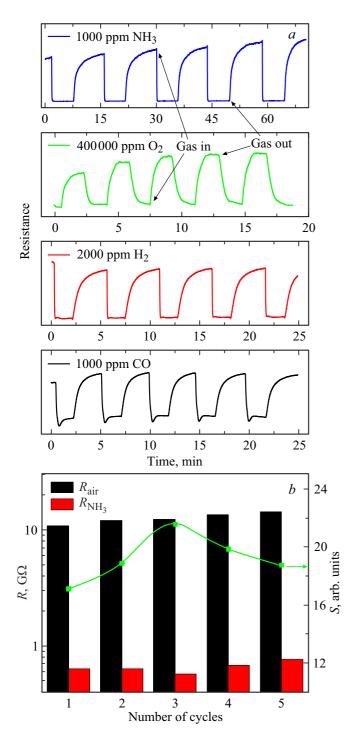
Таблица 2. Значения, полученные из анализа концентрационных зависимостей отклика пленок In_2O_3 при воздействии CO, H_2 и O_2

Газ	C	O	H_2		O_2	
T _{max} , °C	30	00	450		550	
n_g , млн $^{-1}$	600	10^{4}	580	10^{4}	$4 \cdot 10^4$	10^{6}
S, отн.ед.	1.7	3.3	4.1	9.5	1.3	4.2

повышении T наблюдалось характерное уменьшение значений $t_{\rm res}$ и $t_{\rm rec}$ по экспоненциальному закону. Исключением является H_2 , при его воздействии на участке $T=250-350^{\circ}{\rm C}$ присутствует рост значений $t_{\rm res}$ и $t_{\rm rec}$. При $T_{\rm max}$ сумма $t_{\rm res}$ и $t_{\rm rec}$ пленок ${\rm In_2O_3}$ при воздействии ${\rm CO},\ H_2,\ {\rm NH_3}$ и ${\rm O_2}$ составила 69.5, 68.1, 129.1 и 182 с соответственно.


На рис. 4, a показаны временные зависимости сопротивления пленок In_2O_3 при циклическом воздействии целевых газов. Участки спада сопротивления при воздействии NH_3 , H_2 , CO и нарастания сопротивления пленок In_2O_3 после воздействия этих газов аппроксимируются следующими формулами соответственно:

$$R(t) = R_{rg.} + A \exp(-t/\tau_1),$$


$$R(t) = R_{air} - B_1 \exp(-t/\tau_2) - B_2 \exp(-t/\tau_3)$$

$$- B_3 \exp(-t/\tau_4),$$
(4)

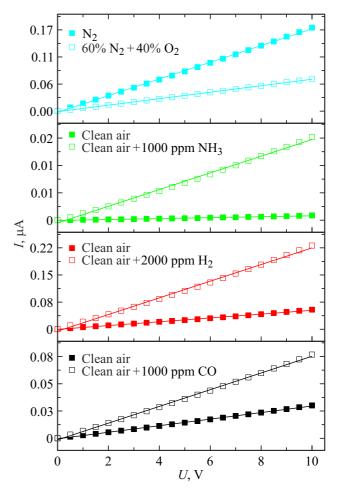
где t — время; A, B_1, B_2 и B_3 — константы; τ_1, τ_2, τ_3 и τ_4 — постоянные времени. Постоянная времени τ_1

Рис. 3. Температурные зависимости времени отклика (a) и восстановления (b) пленок ${\rm In_2O_3}$ при воздействии целевых газов.

Рис. 4. Временны́е зависимости сопротивления при пятикратном воздействии целевых газов (a) и зависимость $R_{\rm air}$, $R_{\rm NH_3}$ и S от i (b) для пленок In_2O_3 при $T=400^{\circ}{\rm C}$.

связана со временем релаксации адсорбции соответствующих газовых молекул на поверхности полупроводника, а τ_2 , τ_3 и τ_4 — со временами релаксаций десорбции этих газовых молекул на поверхности полупроводника. Для исследуемых образцов при воздействии NH₃, CO и H₂ выполняются следующие условия: $\tau_3 = \tau_4 \ll \tau_2$ и $\tau_2 = \tau_3 \ll \tau_4$, соответственно. Участки нарастания со-

противления при воздействии O_2 и спада сопротивления пленок In_2O_3 после его воздействия аппроксимируются следующими формулами соответственно:


$$R(t) = R_{\rm O} - C \exp(-t/\tau_5), \tag{5}$$

$$R(t) = R_{\rm N} + D \exp(-t/\tau_6), \tag{6}$$

где C и D — константы; τ_5 и τ_6 — постоянные времени. Временные зависимости сопротивления пленок In_2O_3 могут быть использованы для определения дрейфа отклика ΔS . Количественная оценка значений ΔS проведена при помощи следующего выражения:

$$\Delta S = |(S_i/S_{av} - 1) \cdot 100|,$$
 (7)

где S_i — значения отклика при i-м воздействии газа; $S_{\rm av}$ — среднее значение отклика. Относительно высокие значения ΔS наблюдались при воздействии ${\rm CO}$, ${\rm NH_3}$ и ${\rm O_2}$, которые не превышали 12%. Наибольший дрейф наблюдался при первом воздействии целевых газов, что характерно при проведении подобных измерений, а увеличению порядкового номера i соответствует нелинейный спад значений ΔS . Наибольшую

Рис. 5. ВАХ при воздействии целевых газов на пленки ${\rm In_2O_3}$ при $T_{\rm max}$.

повторяемость в условиях одного эксперимента демонстрируют пленки In_2O_3 при воздействии H_2 , среднее значение ΔS составило 0.7%. Динамика изменения отклика пленок In_2O_3 при циклическом воздействии NH_3 показана на рис. 4,b, где R_{NH_3} — квазистационарные значения сопротивлений образцов в смеси чистый сухой воздух $+1000\,\mathrm{млh}^{-1}$ NH_3 .

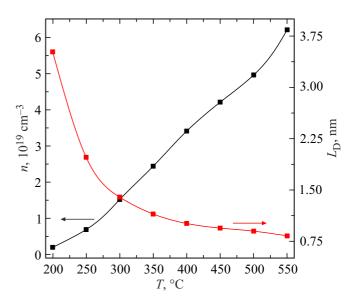
Вольт-амперные характеристики (BAX) исследуемых образцов при $T_{\rm max}$ в воздухе, N_2 и при воздействии CO, H_2 , NH_3 и O_2 (рис. 5) являются линейными и симметричными. Воздействие газов приводило к изменению наклона BAX. Зависимость отклика от напряжения практически отсутствует до $U=10\,\mathrm{B}$. Слабый спад отклика наблюдался только при воздействии NH_3 до $U=2\,\mathrm{B}$, что скорее всего связано с низким током в атмосфере чистого воздуха.

3.3. Механизм газовой чувствительности пленок In₂O₃

При известном значении подвижности электронов ($\mu=60\,\mathrm{cm^2/(B\cdot c)}$ [3,5–7,17,29–31]) была получена температурная зависимость концентрации электронов (n) и дебаевской длины экранирования (L_D) (рис. 6). Для расчета значений L_D использовано следующее выражение [32]:

$$L_D = \left[\varepsilon_0 \varepsilon_r kT / (e^2 n)\right]^{0.5},\tag{8}$$

где ε_0 — электрическая постоянная; ε_r — статическая диэлектрическая проницаемость, которая равна 10.7 для c-In₂O₃ [6,7,33]; k — постоянная Больцмана; e — заряд электрона. Согласно нашим оценкам $L_D \ll D_g$, что свидетельствует о надбарьерном механизме проводимости, согласно которому на границе раздела зерен существуют потенциальные барьеры для электронов высотой $e\varepsilon_s$, где ε_s — поверхностный потенциал. В атмосфере воздуха молекулярный кислород хемосорбируется на поверхности пленок In_2O_3 , захватывая электроны из зоны проводимости, что приводит к образованию приповерхностного слоя, обедненного электронами, и увеличению изгиба энергетических зон вверх, $e\varphi_s \propto N_i^2$, где N_i — поверхностная плотность хемосорбированных ионов кислорода. Сопротивление в таком случае описывается следующим выражением [32]:


$$R = R_0 \exp[e\varphi_s/(kT)],\tag{9}$$

где R_0 — параметр, определяемый свойствами полупроводника, который слабо зависит от изменения состава атмосферы.

При $T > 150^{\circ}$ С на поверхности In_2O_3 преобладает атомарная форма хемосорбированного кислорода O^- , которая образуется следующим образом [34]:

$$O_2 + S_a \to O_2^-,$$

 $O_2^- + e \to 2O^-,$ (10)

где S_a — центр адсорбции. При воздействии O_2 с поверхностью пленок In_2O_3 увеличивается N_i и, согласно выражению (9), увеличивается R. Наличие в

Рис. 6. Температурные зависимости концентрации электронов и дебаевской длины экранирования для пленок In_2O_3 .

газовой смеси восстановительных газов приводит к уменьшению N_i в результате их взаимодействия с О на поверхности пленок In_2O_3 . Взаимодействие восстановительных газов с О на поверхности пленок In_2O_3 может быть описано следующими химическими уравнениями [21,35–37]:

$$H_2 + O^- \rightarrow H_2O + e,$$

 $2NH_3 + 3O^- \rightarrow N_2 + H_2O + 3e,$ (11)
 $CO + O^- \rightarrow CO_2 + e.$

В результате этих реакций уменьшаются поверхностная плотность хемосорбированных ионов кислорода N_i , величина $e\phi_s$ и ширина области пространственного заряда ОПЗ, в зону проводимости пленок In_2O_3 поступают электроны, а продукты реакций десорбируются с поверхности в виде молекул H_2O , N_2 и CO_2 .

3.4. Сравнение газовой чувствительности к NH₃ структур на основе In₂O₃ с другими МОп/п

Пленки In_2O_3 , полученные методом HVPE, демонстрируют очень высокую чувствительность к NH_3 . Значения T_{max} и соответствующие им значения максимального отклика (S_{max}) при фиксированных n_g представлены и сопоставлены с другими работами [11,38–44] в табл. 3. Наиболее интересные результаты показали сенсоры NH_3 на основе In_2O_3 [11,41,42]. Несмотря на не столь высокую чувствительность, значения S оказались относительно высокими при существенно меньших n_g и T_{max} , что вероятно связано с особенностями структур, которые приводят к высокой чувствительности, но существенно ограничивают быстродействие [35,45,46]. Пленки на основе других MOn/n отличаются значительно

Структура	Метод роста	n_g , млн ⁻¹	T _{max} , circ C	$S_{ m max}$, отн.ед	Ссылка
Пленки In ₂ O ₃	HVPE	1000 520	400	33.3 17.3	Данная работа
Иерархические структуры In_2O_3 Нанопроволоки In_2O_3	Отжиг порошка InOOH CVD	5 200	300 25	1.9 12	[11] [41]
Тонкие пленки In_2O_3 Тонкие пленки In_2O_3+CuO	Распылительный пиролиз	71	150 200	1.07 1.75	[42]
Пленки Ga ₂ O ₃	Совместное осаждение	100	500	1.9	[38]
Пленки SnO ₂	PEALD	1000	400	2.8	[39]
Толстые пленки ZnO	Трафаретная печать	1000	350	7.1	[40]
Пленки МоО3	RFMS	1000	250	10	[43]
Толстые пленки WO ₃	Золь-гель	4000	450	15	[44]

Таблица 3. Сравнение газочувствительных характеристик In₂O₃ с другими материалами при воздействии NH₃

меньшей чувствительностью, чем In_2O_3 при достаточно близких условиях измерения. Значения отклика, полученные при минимальной исследуемой концентрации газа, все еще остаются достаточно высокими, что вызывает интерес для проведения дальнейших исследований при меньших n_g . Результаты, представленные в табл. 3, свидетельствуют о перспективе использования In_2O_3 для детектирования NH_3 и возможности использования метода HVPE для создания структур с высокой газовой чувствительностью на основе этого материала.

4. Заключение

Исследованы газочувствительные характеристики пленок In_2O_3 толщиной $0.5\,\text{мкм}$, полученных методом HVPE, при воздействии H2, NH3, O2 и CO в широком интервале температур. Чувствительность к газам начинает проявляться при температурах > 200°C. Наибольшее быстродействие и отклик характерны при воздействии H₂, CO и NH₃ соответственно. Пленки In₂O₃ отличались высокой стабильностью при многократном воздействии газов, а наименьший дрейф наблюдался для Н2. Наибольшая газовая чувствительность наблюдалась при воздействии NH₃. Максимальный отклик был получен при температуре 400° С и составил 33.3 при воздействии $1000\,\mathrm{млн}^{-1}$ $\mathrm{NH_3}$, а значения времени отклика и восстановления не превышали 34 и 96 с. Полученные результаты были сопоставлены с другими работами, сравнение показало возможность использования данного материала в качестве газовых сенсоров NH₃. Предложен качественный механизм газовой чувствительности. Показано, что взаимодействие газов с хемосорбированным кислородом на поверхности пленок In₂O₃ приводит к изменению высоты потенциального барьера на границе зерен.

Благодарности

Авторы благодарят центр коллективного пользования "Нанотех" ИФПМ СО РАН за предоставление ПЭСЭМ-снимков.

Финансирование работы

Работа выполнена при поддержке Российского научного фонда (грант № 20-79-10043).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- B. Lu, P. Chen, J. Zou, B. Yao, H. Chen. Phys. Status Solidi A, 215 (21) 1800401 (2018).
- [2] G. Domenech-Gila, J. Samaa, P. Pellegrinoa, S. Barthb, I. Graciac, C. Canec, A. Romano-Rodrigueza. Sensors Actuators B: Chem., 238, 447 (2016).
- [3] J.A. Spencer, A.L. Mock, A.G. Jacobs, M. Schubert, Y. Zhang, M.J. Tadjer. Appl. Phys. Rev., 9 (1), 011315 (2022).
- [4] S.H. Babu, S. Kaleemulla, N.M. Rao, C. Krishnamoorthi. J. Magn. Magn. Mater., 416, 66 (2016).
- [5] P.D.C. King, T.D. Veal, F. Fuchs, Ch.Y. Wang, D.J. Payne, A. Bourlange, H. Zhang, G.R. Bell, V. Cimalla, O. Ambacher, R.G. Egdell, F. Bechstedt, C.F. McConville. Phys. Rev. B, 79, 205211 (2009).
- [6] M. Stokey, R. Korlacki, S. Knight, A. Ruder, M. Hilfiker, Z. Galazka, K. Irmscher, Y. Zhang, H. Zhao, V. Darakchieva, M. Schubert. J. Appl. Phys., 129, 225102 (2021).
- [7] K.H.L. Zhang, V.K. Lazarov, T.D. Veal, F.E. Oropeza, C.F. McConville, R.G. Egdell, A. Walsh. J. Phys.: Condens. Matter, 23, 334211 (2011).
- [8] A. Walsh, D.O. Scanlon. Phys. Rev. B, 88, 161201 (2013).
- [9] T. de Boer, M.F. Bekheet, A. Gurlo, R. Riedel, A. Moewes. Phys. Rev. B, 93, 155205 (2016).
- [10] V. Golovanova, M.A. Maki-Jaskari, T.T. Rantalab, G. Korotcenkovc, V. Brinzaric, A. Cornetd, J. Moranted. Sensors Actuators B: Chem., 106 (2), 563 (2005).
- [11] H. Jiang, L. Zhao, L. Gai, L. Ma, Y. Maa, M. Lib. CrystEngComm., (35), 7003 (2013).
- [12] A. Gurlo, R. Riedel. IEEE Sensors, 4, 1505 (2008).
- [13] L. Gao, F. Ren, Z. Cheng, Y. Zhang, Q. Xiangc, J. Xu. CrystEngComm., (17), 3268 (2015).

- [14] N. Sui, S. Cao, P. Zhang, T. Zhou, T. Zhang. J. Hazardous Mater., 418, 126290 (2021).
- [15] L. Song, K. Dou, R. Wang, P. Leng, L. Luo, Y. Xi, C.C. Kaun, N. Han, F. Wang, Y. Chen. ACS Appl. Mater. & Interfaces, 12 (1), 1270 (2019).
- [16] F. Chen, M. Yang, X. Wang, Y. Song, L. Guo, N. Xie, X.Kou, X. Xu, Y. Sun, G. Lu. Sensors Actuators B: Chem., 290, 459 (2019).
- [17] R. Togashi, S. Numata, M. Hayashida, T. Suga, K. Goto, A. Kuramata, S. Yamakoshi, P. Paskov, B. Monemar, Y. Kumagai. Jpn. J. Appl. Phys., 55 (12), 1202B3 (2016).
- [18] H. Nakahata, R. Togashi, K. Goto, B. Monemar, Y. Kumagai. J. Cryst. Growth, 563, 126111 (2021).
- [19] S.I. Stepanov, V.I. Nikolaev, A.I. Pechnikov, M.P. Scheglov, A.V. Chikiryaka, A.V. Chernykh, M.A. Odnobludov, V.D. Andreeva, A.Y. Polyakov. Phys. Status Solidi A, 218 (3), 2000442 (2020).
- [20] В.И. Николаев, А.В. Алмаев, Б.О. Кушнарев, А.И. Печников, С.И. Степанов, А.В. Чикиряка, Р.Б. Тимашов, М.П. Щеглов, П.Н. Бутенко, Е.В. Черников. Письма ЖТФ, **48** (14), 37 (2022).
- [21] N.N. Yakovlev, A.V. Almaev, V.I. Nikolaev, B.O. Kushnarev, A.I. Pechnikov, S.I. Stepanov, A.V. Chikiryaka, R.B. Timashov, M.P. Scheglov, P.N. Butenko, D.A. Almaev, E.V. Chernikov. Materials Today Commun., 34, 105241 (2023).
- [22] X. Hou, Y. Zou, M. Ding, Y. Qin, Z. Zhang, X. Ma, P. Tan, S. Yu, X. Zhou, X. Zhao, G. Xu, H. Sun, S. Long. J. Phys. D: Appl. Phys., 54, 043001 (2020).
- [23] S.J. Pearton, Jiancheng Yang, Patrick H. Cary, F. Ren, Jihyun Kim, Marko J. Tadjer, Michael A. Mastro. Appl. Phys. Rev., 5 (1), 011301 (2018).
- [24] D. Kaur, M. Kumar. Adv. Optical Mater, 9 (9), 2002160 (2021).
- [25] A.V. Almaev, V.I. Nikolaev, N.N. Yakovlev, P.N. Butenko, S.I. Stepanov, A.I. Pechnikov, M.P. Scheglov, E.V. Chernikov. Sensors Actuators B: Chem., 364, 131904 (2022).
- [26] A.V. Almaev, V.I. Nikolaev, P.N. Butenko, S.I. Stepanov, A.I. Pechnikov, N.N. Yakovlev, I.M. Sinyugin, S.V. Shapenkov, M.P. Scheglov. Phys. Status Solidi B, 259 (2), 2100306 (2021).
- [27] A.V. Almaev, V.I. Nikolaev, S.I. Stepanov, A.I. Pechnikov, A.V. Chikiryaka, N.N. Yakovlev, V.M. Kalygina, V.V. Kopyev, E.V. Chernikov. J. Phys. D: Appl. Phys., 53 (41), 414004 (2020).
- [28] N.N. Yakovlev, V.I. Nikolaev, S.I. Stepanov, A.V. Almaev, A.I. Pechnikov, E.V. Chernikov, B.O. Kushnarev. IEEE Sensors J., 21 (13), 8 (2021).
- [29] Z. Galazka, R. Uecker, R. Fornari. J. Cryst. Growth, 388, 61 (2014).
- [30] H. Kostlin, R. Jost, W. Lems. Phys. Status Solidi A, 29 (1), 87 (1975).
- [31] P. Thilakan, J. Kumar. Thin Sol. Films, **292** (1-2), 50 (1997).
- [32] В.И. Гаман. Физика полупроводниковых газовых сенсоров (Томск, Изд-во НТЛ, 2012).
- [33] A. Walsh, C.R.A. Catlow, A.A. Sokol, S.M. Woodley. Chem. Mater., 21, 4962 (2009).
- [34] K.K. Makhija, A. Ray, R.M. Patel, U.B. Trivedi, H.N. Kapse. Bull. Mater. Sci., **28** (1), 9 (2005).
- [35] H. Kim, C. Jin, S. An, C. Lee. Ceramics International, 38 (5), 3563 (2012).
- [36] N. Yamazoe, K. Shimanoe. J. Sensors, 21 (2009).
- [37] V.I. Gaman. Russian Phys. J., 51 (4), 425 (2008).

- [38] N. Vorobyeva, M. Rumyantseva, V. Platonov, D. Filatova, A. Chizhov, A. Marikutsa, I. Bozhev, A. Gaskov. Nanomaterials, 11 (11), 2938 (2021).
- [39] D.H. Kim, W-S. Kim, S.B. Lee, S-H. Hong. Sensors Actuators B: Chem., 147 (2), 653 (2010).
- [40] M.S. Wagh, G.H. Jain, D.R. Patil, S.A. Patil, L.A. Patil. Sensors Actuators B: Chem., 115 (1), 128 (2006).
- [41] C. Li, D. Zhang, B. Lei, S. Han, X. Lie, C. Zhou. J. Phys. Chem., 107 (45), 12451 (2003).
- [42] A.A. Hameed, S. Hamid, A.L. Jumaili. Iraqi J. Sci., 62 (7), 2204 (2021).
- [43] W-C. Chang, X. Qi, J-C. Kuo, S.L. Lee, S-K. Ng, D. Chen. CrystEngComm., (16), 5125 (2011).
- [44] V. Srivastava, K. Jain. Sensors Actuators B: Chem., 133 (1), 46 (2008).
- [45] Z. Liu, T. Yamazaki, Y. Shen, T. Kikuta, N. Nakatani, Y. Li. Sensors Actuators B: Chem., 129 (2), 666 (2008).
- [46] N.D. Cuong, Y.W. Park, S.G. Yoon. Sensors Actuators B: Chem., **140** (1), 240 (2009).

Редактор Г.А. Оганесян

High sensitivity of halide vapor phase epitaxy grown indium oxide films to ammonia

D.A. Almaev¹, A.V. Almaev^{1,2}, V.I. Nikolaev^{3,4}, P.N. Butenko^{1,3}, M.P. Scheglov³, A.V. Chikiryaka³, A.I. Pechnikov³

 National Research Tomsk State University, 634050 Tomsk, Russia
 "FOKON" LLC, 248009 Kaluga, Russia
 loffe institute, 194021 St. Petersburg, Russia

⁴ "Perfect Crystals" LLC,
 194223 St. Petersburg, Russia

Abstract The effect of H₂, NH₃, CO and O₂ on the electrically conductive properties of In₂O₃ films grown by halide vapor phase epitaxy has been studied. In the temperature range of 200–550°C, In₂O₃ films demonstrate gas sensitivity to all considered gases, a relatively high operation speed and repeatability of cycles. The greatest response to NH₃ was obtained, which exceeded 33 arbunits at a temperature of 400°C and a gas concentration of 1000 ppm. A qualitative mechanism of gas sensitivity of In₂O₃ films is proposed. The obtained gas-sensitive characteristics are compared with known NH₃ sensors based on various materials. It is shown that the method of halide vapor phase epitaxy makes it possible to obtain indium oxide films with high gas sensitivity.