01

Теория аксиальной томографии на основе обратного преобразования Радона для высокоапертурной мягкой рентгеновской микроскопии

© К.П. Гайкович, И.В. Малышев, Д.Г. Реунов, Н.И. Чхало

Институт физики микроструктур РАН, 603950 Нижний Новгород, Россия e-mail: ilya-malyshev@ipmras.ru

Поступило в Редакцию 2 мая 2023 г. В окончательной редакции 2 мая 2023 г. Принято к публикации 2 мая 2023 г.

Для мягкой рентгеновской микроскопии в приближении геометрической оптики построена теоретическая модель формирования принимаемого изображения — найдена зависимость между записываемым на детекторе изображением и 3D-распределением показателя поглощения образца с использованием высокоапертурного зеркального объектива (NA > 0.3) с глубиной фокуса, близкой к дифракционному ограничению. Получено решение обратной задачи томографии определения этого 3D-распределения по данным измерений в высокоапертурном зеркальном микроскопе мягкого рентгеновского излучения.

Ключевые слова: мягкая рентгеновская микроскопия, обратная задача микроскопии, формирование изображения в абсорбционном контрасте.

DOI: 10.21883/JTF.2023.07.55739.106-23

Введение

Для детального изучения клеток в современной биологии и медицине требуется получить их изображение с нанометровым разрешением [1]. Оптическая микроскопия, работающая в видимом свете, не позволяет напрямую исследовать наноструктуру живых клеток с деталями менее 200 nm из-за дифракционного размытия [2]. Различные методы повышения разрешения оптической микроскопии, например STED-микроскопия [3], позволяют существенно превысить дифракционный предел и добиться разрешения на уровне десятков нанометров. Однако, как и в случае классической флуоресцентной микроскопии, метод позволяет видеть только подкрашенные органеллы в отрыве от окружения, что затрудняет понимание протекающих в клетках процессов.

Электронная микроскопия обладает высоким, вплоть до нанометров, пространственным разрешением [4]. Однако для проведения таких исследований исследуемые образцы приходится замораживать и резать на пленки толщиной 100—500 nm, т. е. данный метод является разрушающим и не может быть применен для изучения живых клеток [5]. Атомно-силовая и сканирующая туннельная микроскопия позволяют изучать лишь поверхность образцов.

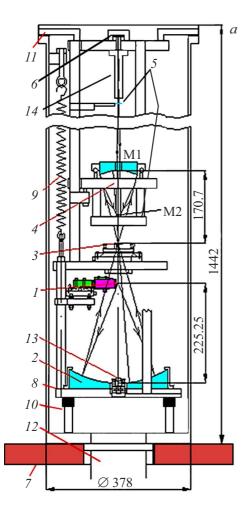
С другой стороны, уже более тридцати лет развивается мягкая рентгеновская микроскопия (МР микроскопия) в спектральной области "окна прозрачности воды", длины волн $2.3-4.4\,\mathrm{nm}$ [6–10], а также в экстремально ультрафиолетовой (ЭУФ) области на длинах волн

13.4—13.8 nm [11–15]. Основными преимуществами этого метода в "водном окне" являются следующие:

- маленькая длина волны в дифракционном пределе обеспечивает нанометровое пространственное разрешение;
- естественный на порядок и более величины абсорбционный контраст между углеродсодержащими структурами и водой позволяет исследовать образцы без использования контрастируюущих и/или флуоресцируюших веществ:
- \bullet относительно высокое пропускание и практически отсутствующее рассеяние излучения позволяет исследовать клетки и срезы тканей толщиной до $10-15\,\mu\mathrm{m}$ в их нативном, потенциально в живом, состоянии;
- существенно упрощается пробоподготовка образцов по сравнению с существующими методами наноскопии.

1. МР микроскоп на длину волны 13.84 nm

На рис. 1 показаны схема и фотография разработанного в ИФМ РАН микроскопа [16]. Работает он следующим образом. Лазерно-плазменный источник (ЛПИ) состоит из Nd: YAG-лазера Ekspla ($\lambda=1064\,\mathrm{nm},\,E_{impulse}=0.4\,\mathrm{J},\,$ длительность 5 ns, частота $10\,\mathrm{Hz}$), излучение которого фокусируется на аргоновой газовой мишени I на рис. 1. Импульсная газовая мишень формировалась с помощью электромагнитного клапана, описанного в [17]. Оптимальное давление газа на входе клапана — 3 atm. Используется яркая линия иона ArVIII на длине волны $\lambda=13.84\,\mathrm{nm}.$



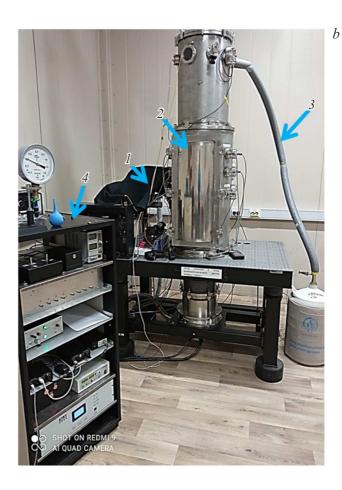


Рис. 1. a — схема зеркального ЭУФ микроскопа: I — лазерно-плазменный источник на основе импульсной газовой мишени и ИК лазера, 2 — многослойное эллиптическое зеркало-коллектор, 3 — исследуемый образец на 5D-столике с возможностью z-скана в вакууме, 4 — двухзеркальный объектив 46 крат с полем зрения $300 \times 300\,\mu\mathrm{m}$ и асферическим зеркалом М1, 5 — фильтры для подавления длинноволнового излучения, 6 — СМОS-детектор обратной засветки, 7 — оптический стол, 8 — этажерка с оптикой, 9 — пружины, 10 — опоры с резиновыми вставками, 11 — держатели этажерки, 12 — сильфон к турбомолекулярному насосу, 13 — юстировочный лазер; b — фотография ЭУФ микроскопа: 1 — ИК лазер под мантией, 2 — вакуумная камера с оптикой, 3 — система охлаждения детектора, 4 — стойка с электронными системами управления микроскопом [16].

Эллиптическое зеркало-коллектор 2 собирает излучение ЛПИ 1 на образце, установленном в предметной области объектива 3. Коллектор имеет форму эллипсоида. После асферизации и локальной коррекции формы его пятно фокусировки от точечного источника было измерено и имело FWHM-размер менее $30 \,\mu m$ [18], что позволяет эффективно собирать излучение источника на образце. Максимальный перепад интенсивности подсветки образца на поле зрения $290 \times 290 \,\mu\mathrm{m}$ составил 10%(в центре максимум, на краях минимум). Держатель с образцом устанавливается на пьезокерамическую подвижку, обеспечивающую аксиальную томографию за счет перемещения вдоль оптической оси. Изображение образца с увеличением в 46 раз строится двухзеркальным объективом 4 на CMOS-детекторе обратной засветки 6 с 6.5 µm пикселем. Асферическое вогнутое зеркало объектива обеспечивает большое безаберационное поле

зрения размером $290 \times 290 \, \mu$ m. После объектива установлен фильтр Mo/ZrSi $_2$ 5, подавляющий длинноволновое излучение и пропускающий 13.84 nm [19]. Делается серия снимков при различных положениях образца вдоль оптической оси для последующей трехмерной реконструкции изображения.

2. Математическая модель реконструкции абсорбционного изображения

2.1. Вывод исходного интегрального уравнения из преобразования Радона (прямая задача)

В настоящей работе задача томографии (определения трехмерного распределения неоднородностей ко-

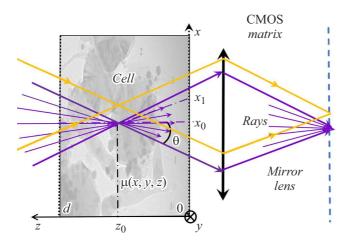


Рис. 2. Схема лучей рассматриваемого рентгеновского микроскопа, проходящих через сечение образца, находящееся в фокальной плоскости объектива.

эффициента поглощения исследуемых объектов) рассматривается в приближении геометрической оптики, что позволяет получить исходные уравнения, которые предполагается в дальнейшем скорректировать с учетом дифракционного расплывания. На рис. 2 приведена упрощенная схема лучей в микроскопе для модели, в которой пренебрегается незначительным изменением их углов в пределах пятна фокуса внутри клетки.

Сигнал (интенсивность) в каждой точке измерительной матрицы формируется всеми лучами в конусе, прошедшими через соответствующий фокус x_0, y_0, z_0 и выходящими из камеры в точках $x_1, y_1, z_1 = 0$ в измерительной камере (рис. 1). Одномоментно зеркальный объектив строит изображение среза образца, попавшего в фокальную плоскость объектива $(z = z_0)$. Для трехмерной реконструкции изображения образца он сдвигается вдоль оси z (оптической оси объектива), и на камере регистрируется серия x-y снимков образца, так называемый *z*-стек. Размерность сетки сканирования в z-плоскости определяется масштабом поперечного дифракционного расплывания излучения в фокусе. Вклад каждого луча в интенсивность определяется оптической толщиной поглощения — интегралом вдоль пути луча (преобразованием Радона) от коэффициента поглощения $\mu(x,y,z)$ на прямой, проходящей через точки x_0, y_0, z_0 и $x_1, y_1, z_1 = 0$ между плоскостями z = 0иz = d:

$$\tau(x_1, y_1, z_1 = 0, x_0, y_0, z_0) = \int_L \mu(x, y, z) dl.$$
 (1)

К аналогичному уравнению приводят также наиболее известные методы медицинской томографии КТ (компьютерной томографии) и МРТ (магниторезонансной томографии). В основе этих методов лежит теория преобразований Радона, предложенная им в [20], а позднее развитая для приложений в компьютерной

рентгеновской томографии на основе теории некорректных обратных задач А.Н. Тихоновым с учениками [21-24]. В частности, в [24] была рассмотрена задача рентгеновской томографии в конических пучках в применении к слоисто-неоднородной среде.

В настоящей работе предлагаемый метод томографии трехмерных неоднородностей основан на решении обратной задачи для преобразования Радона (1) в рассматриваемой геометрии измерений. Поскольку в отличие от КТ и МРТ в этой геометрии нет цилиндрической симметрии, будем рассматривать задачу в декартовых координатах. Чтобы представить уравнение (1) в этих координатах, используем его параметрическое представление

$$\tau(x_1, y_1, z_1, x_0, y_0, z_0) = \int_{\lambda_1(x_1, y_1, z_1)}^{\lambda_2(x_0, y_0, z_0)} \mu[x(\lambda), y(\lambda), z(\lambda)]$$

$$\times \sqrt{[dx(\lambda)/d\lambda]^2 + [dy(\lambda)/d\lambda]^2 [dz(\lambda)/d\lambda]^2} d\lambda,$$
(2)

используя уравнение для прямых в 3D:

$$x(\lambda) = x_1 + (x_0 - x_1)\lambda, \quad y(\lambda) = y_1 + (y_0 - y_1)\lambda,$$

$$z(\lambda) = z_1 + (z_0 - z_1)\lambda. \tag{3}$$

Тогда имеем

$$\tau(x_1, y_1, z_1, x_0, y_0, z_0)$$

$$= \sqrt{(x_0 - x_1)^2 + (y_0 - y_1)^2 + (z_0 - z_1)^2}$$

$$\times \int_{\lambda_1}^{\lambda_2} \mu[x_1 + (x_0 - x_1)\lambda, y_1 + (y_0 - y_1)\lambda, z_1 + (z_0 - z_1)\lambda] d\lambda$$
(4)

или с пределами интегрирования

$$\tau(x_{1}, y_{1}, z_{1}, x_{0}, y_{0}, z_{0})$$

$$= \sqrt{(x_{0} - x_{1})^{2} + (y_{0} - y_{1})^{2} + (z_{0} - z_{1})^{2}} \int_{z_{1}/[z_{1} + (z_{0} - z_{z})]}^{d/[z_{1} + (z_{0} - z_{1})]}$$

$$\times \mu[x_{1} + (x_{0} - x_{1})\lambda, y_{1} + (y_{0} - y_{1})\lambda, z_{1} + (z_{0} - z_{1})\lambda]d\lambda.$$
(5)

Используя уравнение переноса излучения в поглощающей среде, получаем выражение для относительной (по отношению к среде без поглощения) интенсивности в точке x_1, y_1, z_1 для луча, прошедшего через

фокус x_0, y_0, z_0 :

$$\frac{J_0(x_1, y_1, z_1, x_0, y_0, z_0)}{J(x_1, y_1, z_1, x_0, y_0, z_0)[\mu = 0]}$$

$$= \exp\left(-\sqrt{(x_0 - x_1)^2 + (y_0 - y_1)^2 + z_0^2}\right)$$

$$\times \int_0^{d/z_0} \mu[x_1 + (x_0 - x_1)\lambda, y_1 + (y_0 - y_1)\lambda, z_0\lambda]d\lambda\right). (6)$$

Делая замену переменной $z_0\lambda \to z$, получаем это выражение в декартовых координатах:

$$J(x_1, y_1, z_1, x_0, y_0, z_0)/J_0(x_1, y_1, z_1, x_0, y_0, z_0)[\mu = 0]$$

$$= \exp\left(-\sqrt{(x_0 - x_1)^2 + (y_0 - y_1)^2 + z_0^2}\right)$$

$$/z_0 \int_0^d \mu[x_1 + (x_0 - x_1)z/z_0, y_1 + (y_0 - y_1)z/z_0, z]dz\right).$$
(7)

Далее, выполняя интегрирование по всем лучам в конусе, выходящим через плоскость z=0, получаем решение прямой задачи — относительную интенсивность в точке матрицы, соответствующую положению фокуса в точке (x_0, y_0, z_0) :

$$I(x_{0}, y_{0}, z_{0})/I_{0}[\mu = 0] = \int_{x_{0}-z_{0} \operatorname{tg} \theta}^{x_{0}+z_{0} \operatorname{tg} \theta} dx_{1} \int_{-\sqrt{(z_{0} \operatorname{tg} \theta)^{2}-(x_{0}-x_{1})^{2}}}^{\sqrt{(z_{0} \operatorname{tg} \theta)^{2}-(x_{0}-x_{1})^{2}}} \times dy_{1} \exp\left(-\sqrt{(x_{0}-x_{1})^{2}+(y_{0}-y_{1})^{2}+z_{0}^{2}} / z_{0}\right) \times \int_{0}^{d} \mu \left[x_{1}+(x_{0}-x_{1})z/z_{0}, y_{1}+(y_{0}-y_{1})z/z_{0}, z\right] dz$$

$$/\int_{x_{0}-z_{0} \operatorname{tg} \theta}^{x_{0}+z_{0} \operatorname{tg} \theta} dx_{1} 2\sqrt{(z_{0} \operatorname{tg} \theta)^{2}-(x_{0}-x_{1})^{2}}, \tag{8}$$

где в нашем случае можно положить $I_0=I(\mu=0)= ext{const.}$

2.2. Решение обратной задачи микроскопической томографии на основе обратного преобразования Радона

Для решения обратной задачи томографии используем дополнительное условие малости оптической толщины поглощения $\tau \ll 1$. Тогда для относительной убыли

интенсивности получаем выражение

$$\delta I(x_0, y_0, z_0) = [I_0 - I]/I_0 = \iint dx_1 dy_1 \int_{x_0 - z_0 \lg \theta}^{x_0 + z_0 \lg \theta} dx_1$$

$$\times \int_{-\sqrt{(z_0 \lg \theta)^2 - (x_0 - x_1)^2}}^{\sqrt{(z_0 \lg \theta)^2 - (x_0 - x_1)^2}} dy_1 \sqrt{(x_0 - x_1)^2 + (y_0 - y_1)^2 + z_0^2} / z_0$$

$$\times \int_{0}^{d} \mu \left[x_1 + (x_0 - x_1)z/z_0, \ y_1 + (y_0 - y_1)z/z_0, \ z \right] dz,$$
(9)

где подынтегральную функцию в интеграле по z представим в виде двойного интеграла по x и y:

$$\delta I(x_0, y_0, z_0) = \iint dx_1 dy_1 \int_0^d \iint dx dy \, \mu(x, y, z)$$

$$\times F(x_0 - x_1, y_0 - y_1, z_0) \delta \left[x - x_1 - (x_0 - x_1) z / z_0 \right]$$

$$\times \delta \left[y - y_1 - (y_0 - y_1) z / z_0 \right] dz, \tag{10}$$

а вместо пределов интегрирования и множителей перед интегралом по z в (9) введена функция

 $F(x_0-x_1,y_0-y_1,z_0)=$

$$\begin{cases} = \sqrt{(x_0 - x_1)^2 + (y_0 - y_1)^2 + z_0^2} / \\ \left(2z_0 \int_{-z_0 \operatorname{tg} \theta}^{z_0 \operatorname{tg} \theta} \sqrt{(z_0 \operatorname{tg} \theta)^2 - \xi^2} d\xi \right), \\ |x_0 - x_1| > z_0 \operatorname{tg} \theta, |y_0 - y_1| > \sqrt{(z_0 \operatorname{tg} \theta)^2 - (x_0 - x_1)^2} = 0, \\ |x_0 - x_1| > z_0 \operatorname{tg} \theta, |y_0 - y_1| > \sqrt{(z_0 \operatorname{tg} \theta)^2 - (x_0 - x_1)^2}, \end{cases}$$

описывающая все точки внутри двойного светового конуса на рис. 2. Изменяя порядок интегрирования и делая замену переменных $\tilde{x}_1 = x_1(z_0-z)/z_0$, $\tilde{y}_1 = (z_0-z)/z_0$ в (10), выполняем интегрирование с δ -функцией по \tilde{x}_1, \tilde{y}_1 и получаем уравнение типа двумерной свертки по x, y:

$$\delta I(x_0, y_0, z_0) = \int_0^d dz \iint \mu(x, y, z) F\left[(x_0 - x) \frac{z_0}{z_0 - z}, (y_0 - y) \frac{z_0}{z_0 - z}, z_0\right] \left(\frac{z_0}{(z_0 - z)}\right)^2 dx dy,$$
(12)

которое двумерным фурье-преобразованием по x_0 и y_0 сводится к одномерному интегральному уравнению

в k-пространстве:

$$\delta I(k_x, k_y, z_0) = 4\pi^2 \int_0^d \mu(k_x, k_y, z) K(k_x, k_y, z_0, z) dz,$$
(13)

которое должно решаться для каждой пары k_x , k_y компонент пространственного спектра. Тогда обратное преобразование Фурье полученного решения $\mu(k_x,k_y,z)$ дает и решение $\mu(x,y,z)$ поставленной задачи томографии в декартовых координатах:

$$\mu(x, y, z) = \iint \mu(k_x, k_y, z) \exp(-ik_x x - ik_y y) dk_x dk_y.$$
(14)

Следуя методике, предложенной в [25], ядро уравнения (13) можно определить из эксперимента с тонким (по z) тестовым объектом с известным поперечным k-спектром, например однородного параллелепипеда с известным коэффициентом поглощения μ_0 :

$$K(k_x, k_y, z_0, z) = \delta I(k_x, k_y, z_0) / 4\pi^2 \mu_0(z) \Delta z.$$
 (15)

Если взять интеграл в функции F в (11), то (12) сводится к уравнению типа свертки по всем трем координатам:

$$\delta I(x_0, y_0, z_0) = \int_0^d \iint \mu(x, y, z) K(x_0 - x, y_0 - y, z_0 - z) \times dx \, dy \, dz,$$
(16)

где

$$K(x_0 - x, y_0 - y, z_0 - z) =$$

$$= \begin{cases}
\frac{2}{\pi (\operatorname{tg} \theta)^{2} (z_{0} - z)} \sqrt{\left(\frac{x_{0} - x}{z_{0} - z}\right)^{2} + \left(\frac{y_{0} - y}{z_{0} - z}\right)^{2} + 1}, \\
\left| \frac{x_{0} - x}{z_{0} - z} \right| < \operatorname{tg} \theta, \left| \frac{y_{0} - y}{z_{0} - z} \right| < \sqrt{(\operatorname{tg} \theta)^{2} - \left(\frac{x_{0} - x}{z_{0} - z}\right)^{2}} = 0, \\
\left| \frac{(x_{0} - x)}{z_{0} - z} \right| > \operatorname{tg} \theta, \left| \frac{y_{0} - y}{z_{0} - z} \right| > \sqrt{(\operatorname{tg} \theta)^{2} - \left(\frac{x_{0} - x}{z_{0} - z}\right)^{2}}.
\end{cases} (17)$$

Трехмерное преобразование Фурье приводит (18) к простому уравнению для спектров в k-пространстве

$$\delta I(k_x, k_y, k_z) = 8\pi^3 \mu(k_x, k_y, k_z) K(k_x, k_y, k_z),$$
 (18)

и формуле искомого обратного преобразования Радона для данного метода томографии:

$$\mu(x, y, z) = \frac{1}{8\pi^3} \iiint \delta I(k_x, k_y, k_z) / K(k_x, k_y, k_z) \times e^{ik_x x + ik_y y + ik_z} dk_x dk_y dk_z.$$
 (19)

Известно, что это решение обратных задач типа свертки для входных данных с погрешностью является некорректной задачей [21]. Случайные ошибки могут иметь более широкий пространственный спектр, чем спектр ядра, что приводит к неограниченному усилению мелкомасштабных компонент в решении; кроме того, спектр ядра может иметь нули. Поэтому, для решения этой задачи необходимо применять соответствующие методы регуляризации. Следуя теории А.Н. Тихонова [21], для регуляризации решения уравнений типа свертки, можно применять следующий алгоритм:

$$\mu(x, y, z) = \frac{1}{8\pi^3} \iiint \frac{\delta I(-k_x, -k_y, -k_z) K(k_x, k_y, k_z)}{|K(k_x, k_y, k_z)|^2 + \alpha [1 + (k_x^2 + k_y^2 + k_z^2)^2]} \times e^{ik_x x + ik_y y + ik_z} dk_x dk_y dk_z.$$
(20)

Параметр регуляризации α определяет степень сглаженности приближенного решения. При больших значениях высокочастотные (мелкомасштабные) компоненты в восстанавливаемом распределении подавляются, и мелкие детали заглаживаются, при уменьшении α решение приближается к точному, но, начиная с некоторого уровня, происходит усиление высокочастотных ошибок данных и появляются несуществующие в реальности детали (артефакты). Такое варьирование параметром регуляризации в чем-то подобно фокусировке изображения линзой.

Математически последовательный метод обобщенной невязки Тихонова [21] автоматически определяет параметр регуляризации α из условия равенства невязки параметру суммарной погрешности данных и ядра уравнения в соответствующих метриках (метод обобщенной невязки Тихонова), что делает его универсально применимым. При таком выборе доказана сходимость решения к точному при стремлении к нулю параметра ошибки. В реальности погрешность данных и ядра уравнения (из-за дискретизации) невозможно устремить к нулю, но опыт показывает, что применение этого метода при конечной ошибке это оптимальный компромисс между заглаживанием решения и возможностью появления артефактов [26]. В отличие от задач в корректной постановке, погрешность решения не пропорциональна точности данных, и сходимость к точному решению существенно более медленная — более того, точность решения существенно зависит от сложности восстанавливаемого распре-

Альтернативой может быть выбор α в (20) на основе численного эксперимента. При этом возникает возможность выбора стратегии: можно стремиться избежать артефактов, выбирая достаточно большое значение α , а можно уменьшать это значение, добиваясь большего контраста и резкости границ восстанавливаемых объектов (аналогии в радио-

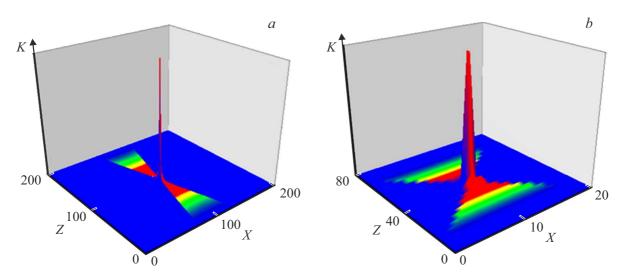


Рис. 3. Функция ядра (17) уравнения (18) K(x, y, z) в сечении Y=0 при $\theta=15.65^\circ$: a — дискретизация $200\times 200\times 200$ пикселей; b — $20\times 20\times 80$ пикселей.

локации — ошибки ложной тревоги и пропуска цели соответственно). В представленном ниже численном моделировании из-за относительно большой ресурсоемкости метода обобщенной невязки использовался метод выбора значения α выше уровня появления артефактов.

При практическом применении метода к разрабатываемой измерительной системе погрешности томографии включат также ошибки, связанные с дифракционной расходимостью и аберрации из-за остаточной ошибки формы зеркал объектива [16]. При этом дифракционная расходимость приводит к нарушению разностного вида ядра по координате z. Этот эффект может быть незначительным, если расходимость несущественна на интервале по z, в котором расположена исследуемая неоднородность. В любом случае вид функции К нужно будет уточнить из (15) в эксперименте с тестовым образцом известной формы. Если окажется, что ошибки из-за дифракционной расходимости существенны, необходимо применить алгоритм томографии, основанный на решении уравнения (12) с полученным из эксперимента ядром.

2.3. Численное моделирование

Разработана компьютерная программа, реализующая алгоритм микроскопической томографии (20) и выполнено численное моделирование. Схема моделирования включала:

а) для тестовых объектов с заданной геометрической структурой (однородных по коэффициенту поглощения параллелепипедов и неоднородных, моделируемых гауссовыми распределениями) из (16), (17) вычислялось распределение принимаемого сигнала в зависимости от положения фокуса в области зондирования;

- б) формировались "данные измерений": к вычисленным значениям принимаемого сигнала с использованием датчика случайных чисел добавлялась "погрешность измерений" с нулевым средним значением и заданным уровнем среднеквадратичного отклонения σI ;
- в) решалась обратная задача для уравнения (16) с использованием регуляризирующего алгоритма (20), и полученное решение сравнивалось с заданным модельным распределением;
- г) на основе моделирования оптимизировались параметры алгоритма: дискретизация, пространственный спектр анализа, параметры алгоритма регуляризации.

В моделировании имелась возможность использования безразмерных координат, параметров сигнала и коэффициента поглощения зондируемых объектов (использовались модельные распределения с максимальным значением $\mu = 1$), что обеспечивает универсальную применимость полученных результатов. Полагалось, что линейный размер пикселя при дискретизации вычислений соответствует поперечному размеру дифракционного расплывания зондирующего излучения в фокусе. Поскольку приближение геометрической оптики не описывает распределение интенсивности на этом масштабе (неограниченно возрастает), в численном моделировании полагалось, что интенсивность излучения в фокусе, которая в реальности сглаживается на масштабе соответствующей пиксели, не меняется между ближайшими к фокусу пикселями. Отметим, что при угле $\theta < 45^\circ$ по условиям ограничений в точке фокуса значение Kв (17) равно нулю. Применимость этого приближения планируется исследовать экспериментально, используя возможность определения ядра решаемого уравнения из (15) по результатам предложенных выше измерений с тестовыми объектами.

Численный анализ предполагал вычисление и анализ ядраинтегрального уравнения (16). На рис. 3, а пред-

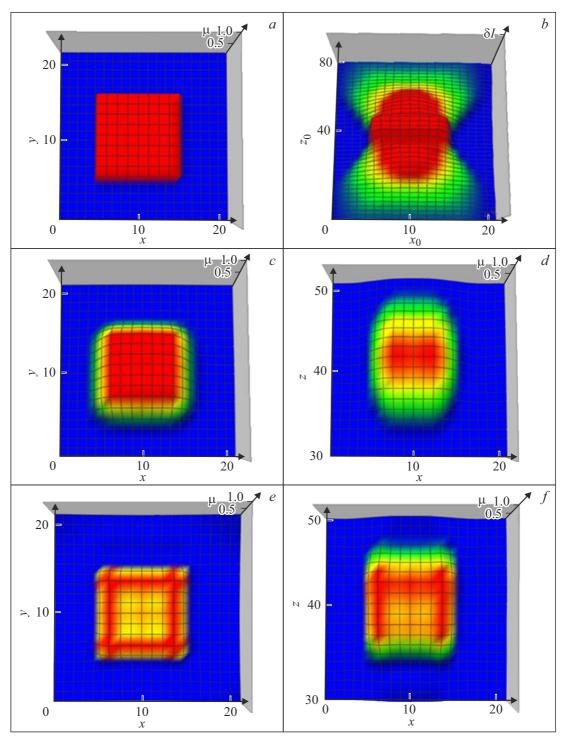


Рис. 4. a — исходное распределение сплошной неоднородности коэффициента поглощения $\mu(x,y,z)$ в горизонтальном сечении z=0 (в вертикальном сечении объект — это тоже квадрат); b — распределение "измеряемого сигнала" $\delta I(x_0,y_0,z_0)$ с добавленной погрешностью со среднеквадратичным отклонением $\sigma=5\%$ в вертикальном сечении $y_0=0$; c — восстановленное распределение коэффициента поглощения $\mu(x,y,z)$ в горизонтальном сечении z=0; d — восстановленное распределение коэффициента поглощения $\mu(x,y,z)$ в горизонтальном сечении $\mu(x,y,z)$ в горизонтальном сечении $\mu(x,y,z)$ в горизонтальном сечении $\mu(x,y,z)$ в горизонтальном сечении $\mu(x,z)$ в вертикальном сечении $\mu(x,z)$ в горизонтальном сечении $\mu(x,z)$ в горизо

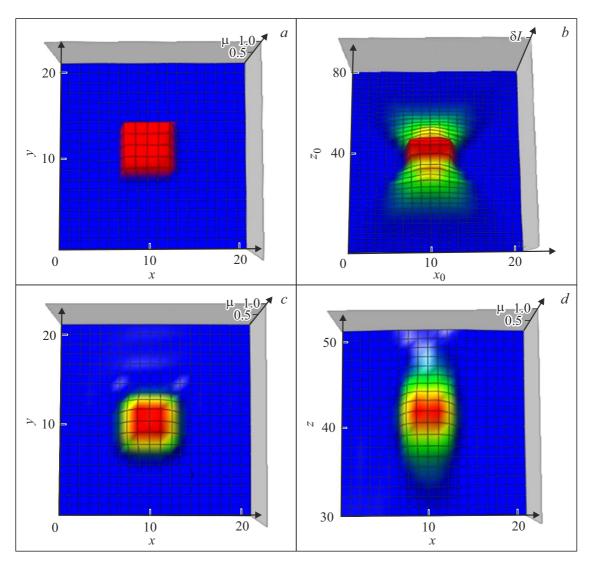


Рис. 5. a — исходное распределение в горизонтальном сечении z=0; b — распределение сигнала $\delta I(x_0,y_0,z_0)$ в вертикальном сечении $y_0=0$; c — восстановленное распределение $\mu(x,y,z)$ в горизонтальном сечении z=0; d — восстановленное распределение $\mu(x,y,z)$ в вертикальном сечении y=0.

ставлено распределение этой функции ядра в разностных координатах $X=x_0-x$, $Y=y_0-y$, $Z=z_0-z$ при угле $\theta=15.65^\circ$ градуса в сечении $Y={\rm const}$ для 200-пиксельной дискретизации по координатам, соответствующим дискретизации данных в разрабатываемой измерительной системе, а на рис. 3,b — распределение K в более узкой области с дискретизаций $20\times20\times80$ пикселей, которая была выбрана в численном моделировании объектов небольшого размера с целью определения разрешающей способности компьютерной реализации алгоритма (22).

Моделирование показало, что для небольших объектов (внутри 20-пиксельного объема камеры) вполне достаточно 80-пиксельного сканирования по высоте z. Исследовались как сплошные объекты, так и распределенные неоднородности коэффициента поглощения. Ши-

рина полосы анализа по координатам в k-пространстве составляла $\Delta j_{x,y,z}=1.35\pi.$

На рис. 4 представлены результаты моделирования сплошной неоднородности в форме куба размерами $8\times8\times8$. В численном моделировании было установлено, что случайные погрешности даже при величине среднеквадратичного отклонения $\sigma=10\%$ от рассчитанного распределения сигнала не приводят к значимым искажениям в восстановленных распределениях. В рассматриваемом случае и далее использовалось добавление ошибки с $\sigma=5\%$. Наблюдаемые искажения в виде сглаживания краев объекта обусловлены, главным образом, дискретизацией задачи и проявлением ее некорректности. При этом расплывание восстановленного распределения в вертикальной плоскости на рис. 4,d существенно больше, чем в вертикальной плоскости на рис. 4,c, что обусловлено наблюдаемой

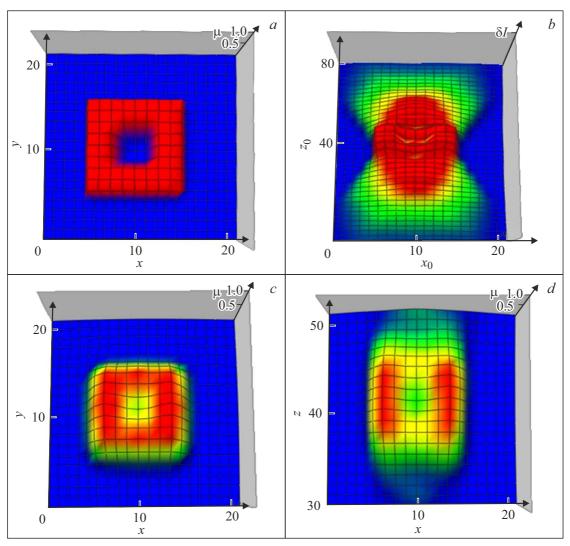


Рис. 6. a — исходное распределениев $\mu(x,y,z)$ в горизонтальном сечении z=0; b — распределение сигнала $\delta I(x_0,y_0,z_0)$ в вертикальном сечении $y_0=0$; c — восстановленное распределение $\mu(x,y,z)$ в горизонтальном сечении z=0; d — восстановленное распределение $\mu(x,y,z)$ в вертикальном сечении y=0.

на рис. 4, b асимметрией функции ядра уравнения (рис. 3). На рис. 4, c можно видеть отчетливо выраженную область прохождения фокуса через объект, которая близка по форме к наблюдаемому объекту. Как следствие, поперечное распределение сигнала в этой области практически совпадает с восстановленным распределением коэффициента поглощения, представленным на рис. 4, c, и поэтому здесь и далее не приводится.

Погрешности восстановления значений коэффициента поглощения в центральной части восстановленных распределений не превосходят 2-3%. На рис. 4, e, f показаны результаты восстановления при уменьшенном значении параметра регуляризации α . Видно, что при уменьшении роли регуляризации проявляются другие особенности некорректности задачи: несмотря на некоторое уменьшение расплывания краев объекта, возни-

кают артефакты — лишние детали, которые на краях проявляются как известный эффект Гиббса.

На рис. 5 показаны результаты моделирования для сплошного объекта в форме куба с вдвое меньшими линейными размерами $4 \times 4 \times 4$.

Оказалось, что и в этом случае форма и величина моделируемой неоднородности воспроизводятся почти с той же точностью, что и в случае, показанном на рис. 4, однако относительное к линейным размерам объекта расплывание при этом увеличивается, и при дальнейшем уменьшении объекта он уже воспроизводится как размытое пятнышко.

Поскольку в некорректных задачах качество решения существенно зависит от степени сложности структуры неоднородности, было выполнено моделирование такого сложного объекта — куба с размерами $8\times8\times8$ с кубической полостью с размерами $4\times4\times4$ в центре с гранями, параллельными соответствующим граням

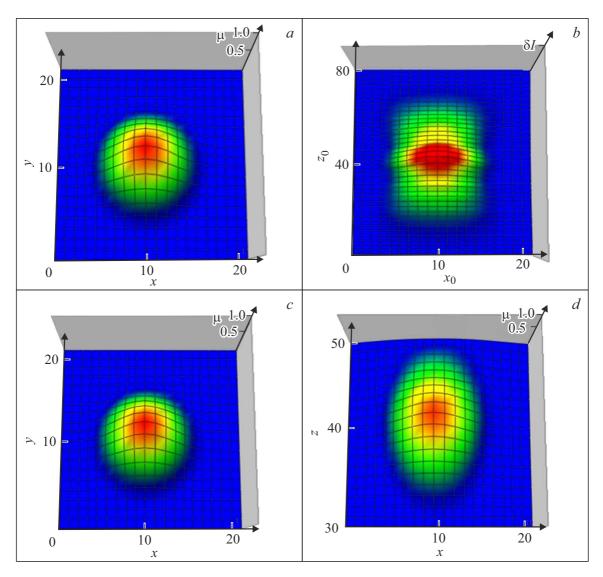


Рис. 7. a — исходное распределение $\mu(x,y,z)$ (23) в горизонтальном сечении z=0; b — распределение сигнала $\delta I(x_0,y_0,z_0)$ в вертикальном сечении $y_0=0$; c — восстановленное распределение $\mu(x,y,z)$ в горизонтальном сечении z=0; d — восстановленное распределение $\mu(x,y,z)$ в вертикальном сечении y=0.

внешнего куба. На рис. 6 показаны результаты моделирования.

На рис. 6, c видно, что в центральном поперечном сечении объект сохраняет общую геометрическую структуру, но уже с ненулевым коэффициентом поглощения в полости. Из рассмотрения поперечной структуры восстановленного объекта на рис. 6, d следует, что по мере удаления от центра эта структура расплывается, и за пределами реальных размеров объекта сливается и постепенно исчезает с характерным масштабом трехчетырех пикселей.

Было выполнено также моделирование томографии распределенных неоднородностей на основе трехмерных гауссовых распределений коэффициента поглощения. На рис. 7 представлены результаты для структуры,

описываемой формулой

$$\mu(x, y, z) = \exp\left[-\frac{(x - x_c)^2}{\sigma_x^2} - \frac{(y - y_c)^2}{\sigma_y^2} - \frac{(z - z_c)^2}{\sigma_z^2}\right],\tag{21}$$

где
$$x_c = 10$$
, $y_c = 10$, $z_c = 40$, $\sigma_x = \sigma_y = \sigma_z = 4$.

Из сравнения рис. 7, a и b видно, что в центральном сечении распределение показателя преломления восстанавливается практически точно, но, как видно из рис. 7, d, оно значительно расплывается в вертикальном направлении.

На рис. 8 представлены результаты моделирования для более узкой гауссовой неоднородности (21) при $\sigma_x = \sigma_y = \sigma_z = 2$.

Качество восстановления более узкой гауссовой неоднородности оказалось не хуже, чем у показанной

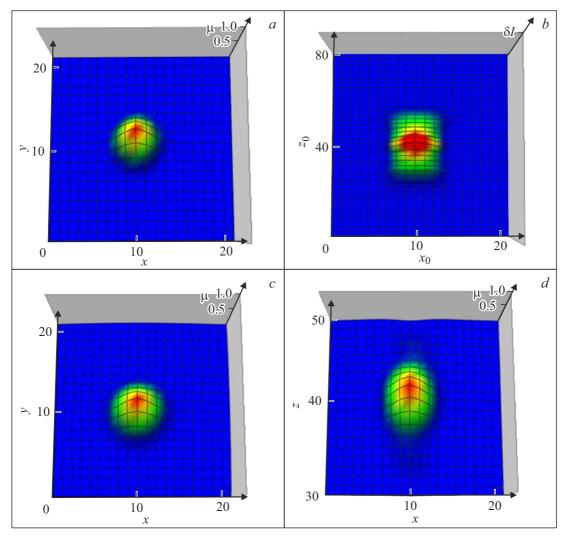


Рис. 8. a — исходное распределение $\mu(x,y,z)$ (23) уменьшенной дисперсией в горизонтальном сечении z=0; b — распределение сигнала $\delta I(x_0,y_0,z_0)$ в вертикальном сечении $y_0=0$; c — восстановленное распределение $\mu(x,y,z)$ в горизонтальном сечении z=0; d — восстановленное распределение $\mu(x,y,z)$ в вертикальном сечении y=0.

на рис. 7, однако при дальнейшем уменьшении дисперсии дискретизация данных оказывается недостаточной для удовлетворительного решения задачи.

Так же как и для сплошных неоднородностей, было выполнено моделирование для более сложных, не односвязных неоднородностей на основе комбинаций двух трехмерных гауссовых распределений:

$$\mu(x, y, z) = a_1 \exp\left[-\frac{(x - x_{c1})^2}{\sigma_{x1}^2} - \frac{(y - y_{c1})^2}{\sigma_{y1}^2} - \frac{(z - z_{c1})^2}{\sigma_{z1}^2}\right] + a_2 \exp\left[-\frac{(x - x_{c2})^2}{\sigma_{x2}^2} - \frac{(y - y_{c2})^2}{\sigma_{y2}^2} - \frac{(z - z_{c2})^2}{\sigma_{z2}^2}\right].$$
(22)

На рис. 9 представлено моделирования для гауссовой неоднородности (22) с параметрами $a_1=1$ $a_1=-1$, $\sigma_{x1}=\sigma_{y1}=\sigma_{z1}=4$, $\sigma_{x2}=\sigma_{y2}=\sigma_{z2}=2$, $x_{c1}=x_{c2}=10$, $y_{c1}=y_{c2}=10$, $z_{c1}=z_{c2}=40$. Такое распределение об-

разует структуру с заполняющейся от центра к краям полостью.

На рис. 9, c, d видно, что восстановленные распределения также воспроизводят полость и исходной неоднородности на рис. 9, a, но вблизи центра она расплывается и не достигает близких к нулю значений.

Исследовалось также минимальное расстояние, на котором можно восстановить разнесенные по вертикальной координате узкие гауссовы неоднородности, показанные на рис. 10. Оказалось, что это расстояние составляет 6 пикселей между их центрами. Соответствующее суммарное распределение коэффициента поглощения описывается формулой (22) с параметрами $a_1=1$ $a_2=1$, $\sigma_{x1}=\sigma_{y1}=\sigma_{z1}=\sigma_{x2}=\sigma_{y2}=\sigma_{z2}=2$, $x_{c1}=x_{c2}=10$, $y_{c1}=y_{c2}=10$, $z_{c1}=37$, $z_{c2}=43$.

На рис. 10, c можно видеть, что расплывание восстановленных неоднородностей приводит к их перекрытию. При меньшем разнесении по вертикальной

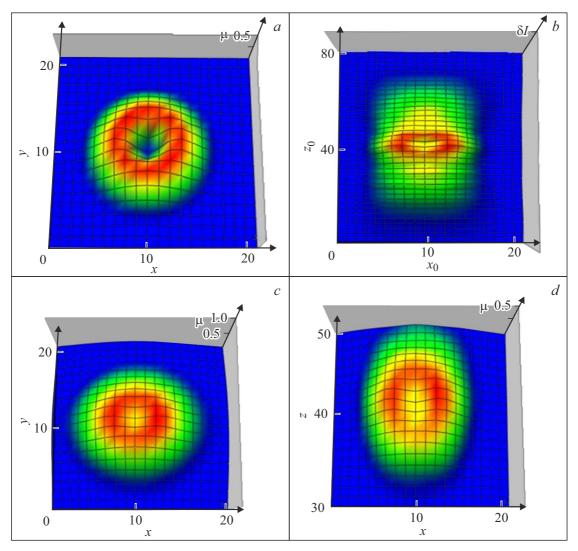


Рис. 9. a — исходное распределение $\mu(x,y,z)$ (24) в горизонтальном сечении z=0; b — распределение сигнала $\delta I(x_0,y_0,z_0)$ в вертикальном сечении $y_0=0$; c — восстановленное распределение $\mu(x,y,z)$ в горизонтальном сечении z=0; d — восстановленное распределение $\mu(x,y,z)$ в вертикальном сечении y=0.

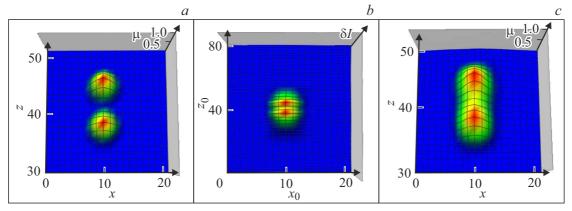


Рис. 10. a — исходное распределение $\mu(x,y,z)$ (24) в вертикальном сечении y=0; b — распределение сигнала $\delta I(x_0,y_0,z_0)$ в вертикальном сечении $y_0=0; c$ — восстановленное распределение $\mu(x,y,z)$ в вертикальном сечении y=0.

координате неоднородности сливаются и становятся неразличимыми.

Заключение

Приведенные выше результаты моделирования прямого и реконструированного трехмерного изображения подтверждают работоспособность и достаточную эффективность разработанного алгоритма аксиальной рентгеновской томографии в высокоапертурной мягкой рентгеновской микроскопии. Алгоритм может быть доработан до практического применения на основе экспериментального уточнения функции ядра уравнения (16) или модификации на основе использования уравнения (12) в случае, если дифракционное расплывание нарушит разностный вид уравнения по вертикальной координате.

Финансирование работы

Исследование выполнено за счет гранта Российского научного фонда (проект № 22-62-00068).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- E. Hanssen, C. Knoechel, M. Dearnley, M.W.A. Dixon, M. Le Gros, C. Larabel, L. Tilley. J. Structural Biol., 177, 224 (2012).
- [2] D. Sage, L. Donati, F. Soulez, D. Fortun, G. Schmit, A. Seitz, R. Guiet, C. Vonesch, M. Unser. Methods, 115, 28 (2017).
- [3] G. Vicidomini, P. Bianchini, A. Diaspro. Nat. Methods, 15, 173 (2018).
- [4] V. Lučić, A. Rigort, W. Baumeister. J. Cell Biol., 202 (3), 407 (2013).
- [5] K.E. Leigh, P.P. Navarro, S. Scaramuzza, W. Chen, Y. Zhang, D. Castaño-Diez, M. Kudryashev. Methods Cell Biol., 152, 217 (2019). DOI: 10.1016/bs.mcb.2019.04.003
- [6] P.A.C. Takman, H. Stollberg, G.A. Johansson, A. Holmberg, M. Lindblom, H.M. Hertz. J. Microscopy, 226, 175 (2007).
- [7] C.A. Larabell, M.A. Le Gros. Molecular Biol. Cell, 15, 957 (2004).
- [8] D. Weib, G. Schneider, B. Niemann, P. Guttmann, D. Rudolph, G. Schmah. Ultramicroscopy, 84, 185 (2000).
- [9] M. Bertilson, O. von Hofsten, U. Vogt, A. Holmberg, E. Athanasia, Christakou, H.M. Hertz. Opt. Lett., 36 (14), 2728 (2011).
- [10] M. Bertilson, O. von Hofsten, U. Vogt, A. Holmberg, H.M. Hertz. Opt. Expr., 17 (13), 11057 (2009).
- [11] M. Toyoda, K. Yamasoe, T. Hatano, M. Yanagihara, A. Tokimasa, T. Harada, T. Watanabe, H. Kinoshita. Appl. Phys. Express., 5 (11), 112501 (2012).
- [12] L. Juschkin, R. Freiberger, K. Bergmann. J. Phys.: Conf. Ser., 186, 012030 (2009).

- [13] A. Torrisi, P. Wachulak, Ł. Wegrzyn'ski, T. Fok, A. Bartnik, T. Parkman, Š. Vondrová, J. Turňová, B.J. Jankiewicz, B. Bartosewicz, H. Fiedorowicz. J. Microscopy, 00 (0), 1 (2016). DOI: 10.1111/jmi.12494
- [14] P.W. Wachulak, A. Torrisi, A. Bartnik, Ł. Wegrzyn'ski, T. Fok, H. Fiedorowicz. Appl. Phys. B, 123, 25 (2017).
- [15] T. Ejima, F. Ishida, H. Murata, M. Toyoda, T. Harada, T. Tsuru, T. Hatano, M. Yanagihara, M. Yamamoto, H. Mizutani. Opt. Express, **18** (7), 7203 (2010).
- [16] I.V. Malyshev, D.G. Reunov, N.I. Chkhalo. Opt. Expr., 30 (26), 47567 (2022). DOI: 10.1364/OE.475032
- [17] A.V. Vodop'yanov, S.A. Garakhin, I.G. Zabrodin, S.Yu. Zuev, A.Ya. Lopatin, A.N. Nechay, A.E. Pestov, A.A. Perekalov, R.S. Pleshkov, V.N. Polkovnikov. Quantum Electronicsthis, 51 (8), 700 (2021).
- [18] И.В. Малышев, А.Е. Пестов, В.Н. Полковников, Н.Н. Салащенко, М.Н. Торопов, Н.И. Чхало. Поверхность. Рентгеновские, синхротронные и нейтронные исследования, 1, 3 (2019).
- [19] N.I. Chkhalo, M.N. Drozdov, E.B. Kluenkov, S.V. Kuzin, A.Ya. Lopatin, V.I. Luchin, N.N. Salashchenko, N.N. Tsybin, S.Yu. Zuev. Appl. Optics, 55 (17), 4683 (2016).
- [20] J. Radon. Akad. Wiss., 69, 262 (1917)
- [21] А.Н. Тихонов, В.Я. Арсенин. Методы решения некорректных задач (Наука, М., 1986)
- [22] А.Н. Тихонов, В.Я. Арсенин, А.А. Тимонов. Математические задачи компьютерной томографии (Наука, М., 1987)
- [23] А.Н. Тихонов, А.В. Гончарский, И.В. Кочиков, Э.И. Рау, Д.О. Савин, Г.В. Спиваков, В.В. Степанов. Докл. АН СССР, 289 (5), 1104 (1986).
- [24] А.Н. Тихонов, П.Н. Бочикашвили, А.В. Гончарский, А.Н. Матвиенко, Е.И. Рау, Д.О. Савин, В.В. Степанов. Докл. АН СССР, **296** (5), 1095 (1987).
- [25] K.P. Gaikovich, P.K. Gaikovich, Ye.S. Maksimovitch, V.A. Badeev. Phys. Rev. Lett., 108 (16), 163902 (2012).
- [26] K.P. Gaikovich. *Inverse Problems in Physical Diagnostics* (Nova Science Publishers Inc., NY., 2004)