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Analytical calculation of free-electron current density at low-order

harmonics of ionizing elliptically polarized laser pulse in the presence

of a static electric field
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The paper presents the derivation of an analytical expression for the current density of free electrons excited

during tunneling gas ionization by an elliptically polarized pulse in the presence of a static electric field. The

analytical calculation of the spectral components of the current density at the low-order odd and even harmonics

of the laser pulse is in good agreement with the results of the numerical simulation.
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Recently, low-order harmonics generation (LOHG) (with

photon energy equal and lower than the ionization potential)

of optical radiation during the interaction of laser pulses

with various media has been of great interest [1]. The

interest in LOHG is mainly due to the capability of short

pulses generation in the UV band [1–6]. Also, the interest

in LOHG is associated with the problems involving the

combined action of optical and lower-frequency radiation

on matter. They include detection of terahertz (THz) or

mid-IR radiation using even harmonics generation of laser

pulse [7,8]. Since the amplitudes of the even harmonics

are linear in the lower-frequency field strength at the laser

pulse arrival moment, the dependences of even harmonics

intensities on the gating pulse delay time reproduce the

time profile of the lower-frequency field squared, and the

addition of an external bias field helps to retrieve the field

direction [7–9]. Currently, this method using gating-pulse

second harmonic generation due to the cubic nonlinearity

is used to measure THz pulses, in particular, in the time-

domain THz spectroscopy [9–14].

As was shown in our recent study [8], the use of even

Brunel harmonics (the low-order harmonics caused by free

electron current excitation during tunneling ionization of

atoms and molecules) ensures much higher time resolution

of detection compared with the use of the cubic (Kerr)
nonlinearity. This is ensured by the much shorter duration

of Brunel harmonics pulses compared with the laser pulse

duration [5,6,8]. It was shown that a strong noise signal,

which arises when linearly polarized pulses are used,

is associated with the population of atom or molecule

excited states and can exceed the even Brunel harmonics

intensities. This noise signal is removed when using

elliptically polarized laser pulses [8].
In this paper, we present the analytical approach to

investigating even and odd Brunel harmonics generated

during gas ionization by elliptically polarized pulses in the

presence of a static field. Results provided by this approach

are compared with the numerical calculation results.

We assume that the electric field acting on atoms or

molecules consists of the static field ES and elliptically

polarized laser pulse with frequency ω0 in optical or IR

range:

E(t) = ES + EL(t), ES = x̂ES, (1)

EL(t) = A(t)Re
[

eiω0t ê
]

, ê = x̂ + iεŷ, (2)

where ε is the ellipticity, A(t) = E0 f (t) ≥ 0 is the slowly

varying bell-shaped envelope with peak E0. The approximat-

ing of the electric field of the detected lower-frequency pulse

by the static field ES is possible at a sufficiently large period

of the detected field, much larger than the duration of the

generated harmonics pulses. At the same time, the detected

pulse duration (equal to or lower than picosecond) is much

lower than the time scale, at which avalanche growth of the

ion concentration is possible due to collisional ionization

at gas pressures equal to one atmosphere and lower [15].
This allows considering high field strengths ES up to several

MV/cm and higher (but at the same time insufficient for

tunneling ionization of atoms or molecules by field ES). The
intensity of the laser field EL(t) is assumed as equal to or

higher than the threshold value for gas ionization, which is

about 1014 − 1015 W/cm2 depending on the gas type and

pulse duration and can be obtained both during sharp and

moderate focusing of the laser pulse.
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Free-electron current density j(t) is obtained from the

solution of the classical equations of the hydrodynamics of

cold collisionless plasma with a variable number of particles:

∂j

∂t
=

e2N
m

E,
∂N
∂t

= (Ng − N)w(E), (3)

with zero initial conditions at t → −∞ [16]. Here, N is

the free electron density, Ng is the initial gas density, e
and m are electron charge and mass, respectively, w(E) is

the probability of tunneling ionization per unit time in the

electric field E = |E|.
For calculation of the current density harmonics, let us

expand the ionization probability per unit time in a Taylor

series in low field strength ES assuming that ellipticity ε is

rather low:

w(E) ≈ w(|ELx |) + ESw
′(|ELx |)sign[ELx ], (4)

where ELx = A cosω0t is the laser field strength projection

on the x axis, the prime means a derivative with respect to

the argument, and it is assumed that ES ≪ 2A/n1(A), where

n1(A) = w ′′(A)A/w ′(A). Due to the laser field periodicity,

w(E) is presented as an infinite sum of quasi-harmonic

components on frequencies that are multiples to laser pulse

frequency, w(E) ≈ Re
∑∞

k=0wk(t)eikω0t . Slow harmonic

amplitudes for k ≥ 1 are determined by w(E) as

wk(t) =
2

T

∫ t+T/2

t−T/2
w[E(t′)]e−ikω0t′dt′, (5)

where T = 2π/ω0 is the field period. For analytical

calculation of wk(t), assume that w is a sharp function of its

argument, and near the times of maximum/minimum field

t = kT/2, where k is integer, is approximated as:

w(|ELx |) ≈ w(A)en0(A)[(−1)k cos(ω0t)−1], (6)

w ′(|ELx |) ≈ w ′(A)en1(A)[(−1)k cos(ω0t)−1], (7)

where n0(A) = w ′(A)A/w(A). Using these expressions, we

obtain

wk ≈ 4ESw
′(A)e−n1 Ik(n1), odd k, (8)

wk ≈ 4w(A)e−n0 Ik(n0), even k. (9)

Here, Ik(ξ) is the modified Bessel function of the first

kind, and n0,1 are taken at argument A. Due to the

sharp dependence of ionization probability on field strength,

n0,1 ≫ 1 and, thus, we can use asymptotics of the modified

Bessel function Ik(ξ) ≈ eξ−k2/2ξ/
√
2πξ at ξ ≫ 1. Thus, in

addition to even harmonics arising at ES = 0, ionization

probability in the presence of the static field also contains

odd harmonics which are linear in ES. Concentration of free

electrons N(t) is also presented as a quasi-harmonic series

N(t) ≈ Re
∑∞

k=0 Nk(t)eikω0t , where complex amplitudes of

harmonics with numbers k ≥ 1 are equal to

Nk≥1 ≈ −i(Ng − N0)
wk

kω0

. (10)

Free-electron concentration N0(t) averaged over the field

period satisfies the equation

∂N0

∂t
= (Ng − N0)w0(t). (11)

In (10), (11), it is assumed that field period T is much

smaller than the ionization duration τi (characteristic growth

time of N0) defined as τi = [−N′
0(t0)/N′′′

0 (t0)]
1/2

, where t0 is
the time at which ∂N0/∂t takes the maximum value. In

case when the final degree of ionization is low, |t0| ≪ τ

and τi ≈ τ /
√

n0(E0), where τ = [− f (0)/ f ′′(0)]1/2 is the

pulse duration [5,17–19]. Thus, the ionization duration

defining the Brunel harmonics duration is much smaller

than the laser pulse duration. At high laser pulse intensities,

when the ionization degree is high, |t0| increases, while the

ionization duration (in the case of the Gaussian envelope of

the laser pulse) decreases [19–21].
Electric field mixing with quasi-harmonic components of

concentration results in the appearance of quasi-harmonic

components in the derivative of the current density:

∂j

∂t
≈ Re

∞
∑

k=0

Fkeikω0t, (12)

Fk≥2(t) = (e2/m)[(Nk−1ê + Nk+1ê
∗)A/2 + NkES]. (13)

For even k , the ratio of the second term (NkES) in equa-

tion (13) to the first term is of the order of 1/n0(A) ≪ 1,

i.e. the second term is negligible. For odd k , the second

term in equation (13) is quadratic in ES and also can be

neglected. As a result, we obtain

Fk≥2(t) = (e2A/m)(C+x̂ + iεC−ŷ), (14)

C± = Nk−1 ± Nk+1 = −i
αkD±

ω0

∂N0

∂t
, (15)

D± =
e−(k−1)2/2n0

k − 1
± e−(k+1)2/2n0

k + 1
, (16)

αk =

{

1, odd k,

n0(A)ES/A, even k .
(17)

For the last expression, n1 ≈ n0 [5] was assumed. For

k ≪ 2n0,

D+ ≈ 2ke−k2/2n0

k2 − 1
, D− ≈ 2(k2/n0 + 1)e−k2/2n0

k2 − 1
.

The derived analytical expressions show that the generated

low-order harmonics have the phase shift by π/2 with

respect to the laser field and elliptical polarization with the

ellipticity εk≥2 ≈ εD−/D+ . It should be noted that the last

expression is true at any (including those comparable with

unity) degrees of gas ionization. Thus, Brunel harmonics

ellipticity (a) is lower than laser pulse ellipticity, and (b)
monotonically decreases with the increase in harmonics

number up to k ≈
√

n0(E0) and then grows tending

asymptotically to εk/n0(E0). Amplitudes of even/odd
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Figure 1. The square of the spectrum of x - and y -components

∂ j/∂t normalized to N2
g (in atomic units) excited during helium

ionization by a 50 fs, 800 nm laser pulse with peak intensity

1015 W/cm2 and ellipticity ε = 0.4 in the presence of static electric

field ES = 500 kV/cm. Thick solid lines denote the numerical

solution of equations (3), thin solid and dashed lines denote

analytical formula (19) for x - and y -components, respectively.
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Figure 2. Spectral intensity of k = 2 — 5 harmonics of ∂ j/∂t
normalized to N2

g (in atomic units) as function of laser-pulse

ellipticity ε. Solid lines denote numerical calculation, dashed

lines denote analytical formula (19). The dotted line shows the

numerically calculated square of the final degree of gas ionization.

harmonics of ∂j/∂t at low k decrease inversely proportional

to the harmonic number. At fixed peak intensity of laser

pulse I = (c/8π)(1 + ε2)E2
0 (where c is the speed of light

in vacuum), harmonic amplitudes are maximum at zero

ellipticity and decrease with increase in ε in proportion

to the factor w(E0) ≈ w(Emax)(1− n0(Emax)ε
2/2), where

Emax = (8πI/c)1/2 . This factor defines the maximum con-

centration growth rate ∂N0/∂t in equation (14) for complex

amplitudes of Brunel harmonics. Thus, the characteristic

scale of harmonics amplitudes decrease with an increase in

ellipticity is ε ∼ 1/
√

n0(Emax).

In order to check that the obtained analytical formulas

have high accuracy, we compare them with the numerical

solution of equations (3) for the helium atom. We specify

the probability of helium atom ionization per unit time as

w(E) = αωa (Ea/E)δ exp (−β1Ea/E − β2E/Ea) , (18)

where ωa = 4.13 · 1016 s−1 and Ea = 5.14 · 109 V/cm -

atomic units of frequency and field, respectively, α = 9.2,

β1 = 1.6, β2 = 3.2, and δ = 0.49 [8,22]. In all calcula-

tions, ES = 500 kV/cm, wavelength λ = 2πc/ω0 = 800 nm,

envelope f (t) = e−t2/2τ 2

with intensity full-width at half-

maximum duration τp = (2
√
ln 2)τ = 50 fs and with peak

intensity I = 1015 W/cm2.

Figure 1 shows the numerically calculated squared

Fourier spectrum of x - and y components of the current

density derivative, Sx ,y (ω) = |
∫

(∂ jx ,y/∂t)e−iωtdt|2 for the

laser pulse ellipticity ε = 0.4. The obtained result is

compared with the analytical result for low ionization

degree:

Sx ,y (ω > 0) =
j2oscw

2(E0)τ
2

n2
0

∞
∑

k=2

α2
k Gx ,y e−

(ω−kω0)2τ 2

n0 , (19)

where josc = e2NgE0/mω0, Gx = D2
+, Gy = D2

−; D± are

set using (16). As shown in Figure 1, at these parameters,

the analytical formula agrees with high accuracy with the

results of numerical calculation.

Figure 2 shows dependences of harmonics intensities

Sx(ω) + Sy (ω) on the laser-pulse ellipticity ε. Harmonic

intensities are maximum at zero ellipticity and decrease

with ellipticity increase approximately in the same manner

as final ionization degree N(∞)/Ng squared (shown by

the dotted line in the figure). The numerically calculated

harmonic intensities tend to zero sharply when ellipticity

approaches unity, excluding the second harmonic intensity,

which is approximately by two orders of magnitude lower

at ε = 1 than at ε = 0 (approximately the same ratio is also

observed for the final ionization degree squared). Harmonic

intensities calculated numerically using formula (19) agree

with the numerical calculation for a wide ellipticity range.

Significant deviations are observed only when ε approaches

unity. For example, in the case of the third harmonic

generation, the analytical and numerical calculations almost

totally coincide at ellipticity ε < 0.9. The same good

agreement is achieved for the second and fifth harmonics

at ε < 0.6 and for the fourth harmonic at ε < 0.8. Thus,

the developed analytical model is highly accurate and

may be used both for estimating the free-electron current

contribution to LOHG mechanisms and determining the

conditions for effective LOHG, as well as for developing and

optimizing methods for THz and mid-IR radiation detection.
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