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Multi-mode dynamics with Zitterbewegung of an electron in 2D Dirac crystal placed in the field of

monochromatic radiation is studied. For calculations a model Hamiltonian taking into account two independent

Dirac points has been used. Calculations have shown that the spectrum of electron oscillations contains a series

of new (compared to the usual Zitterbewegung) frequencies. The latter, in the case of a high radiation frequency,

are a combination of the Zitterbewegung frequency and frequencies that are multiples of the field frequency. In the

case when the field frequency is comparable to the Zitterbewegung frequency, the spectrum of electron oscillations

is determined by the field amplitude. The character of this dependence has been shown to be changed by changing

of the direction of radiation polarization. The possibility of the appearance of a constant component of the electron

velocity in the field of monochromatic radiation is also discussed.
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Introduction

The discovery of new types of 2D-crystals, comprising a

group of so-called Dirac materials (graphene, germanene,

silicene, etc.), as well as the study of their electrodynamic

properties has determined, in fact, the development of that

part of solid-state physics, which stands at the interface be-

tween the condensed state theory and high energy physics.

The point is that the relativistic form of the equations for

electronic states in hexagonal 2D lattices makes graphene-

like materials a convenient platform for studying the effects

of quantum electrodynamics [1–4]. The uniqueness of the

above materials can be explained by the presence of terms

in the quantum equation for electronic states that connect

the charge carrier momentum with its pseudo-spin degree

of freedom. Examples of such connection manifestations

are topological phase transitions [5–10] of the
”
half-metal-

insulator“ [7,11,12] and
”
Dirac-half-dirac material“ [13,14]

type, as well as the Zitterbewegung (ZB) effect — rapid

velocity oscillations of a free (pseudo)relativistic electron

resulting from the states interference with positive and

negative energies.

The ZB possibility for electrons in crystals described

by a pseudo-relativistic Hamiltonian is shown theoretically

in [15–18]. As for the experimental realization of ZB,

due to the high frequency of the corresponding electron

oscillations in the vacuum (∼ 1021 Hz), the observation of

this effect is very difficult. The advantage of Dirac structures

over vacuum, however, is the much lower ZB frequency,

which makes it much easier to detect experimentally in

these materials [19–21]. A computer simulation of the

ZB oscillation attenuation for the Gaussian wave packet

predicted earlier theoretically [17] was performed in 22,23.

It is worth noting that the ZB study in Dirac crystals is

also of applied importance. Thus, in [24], the way to

create a nano-resonator based on a system of oscillating

circuits exhibiting active load properties at external signal

frequencies higher than the ZB frequency is outlined.

In [25], similar systems were used in microcircuits which

allowed to simulate such relativistic quantum effects as the

Klein and ZB paradox.

Recently, the issue of controlling the electronic ZB in

Dirac materials due to external force fields has become

urgent. In particularly, [26–28] proposes a solution to the

ZB attenuation problem for an electron wave packet of finite

width. In [29,30] the possibility of ZB stabilizing by a

quantized magnetic field is shown. The combinational effect

of simultaneous accounting for ZB in Dirac structures and

an external high-frequency (HF) electromagnetic (EM) field
was investigated in [26,31,32].
In work [32], for free graphene, the so-called multimode

ZB — electron oscillations induced by the HF electric field

were studied. The spectrum of such oscillations contained

new frequencies equal to combinations of the monochro-

matic field frequency and ZB frequency. However, in [32],
the calculations were not performed for arbitrary electron

pulses: the pulse along the polarization line was assumed

to be zero. This does not correspond to the real situation,

277



278 S.V. Kryuchkov, E.I. Kukhar

in which the charge carrier pulses obey 2D statistics. In

addition, in some cases, the field amplitude was assumed

to be small enough to allow the equations of motion to

be solved in the linear field amplitude approximation. As

a result, the spectrum of multimode ZB contained only

two new frequencies. Below, as in [32], the (1) rotating

wave approximation (RWA) and (2) high driving frequency

(HDF) are used for calculations. In contrast to [32],
the analytical calculations were performed for arbitrary

amplitudes of the alternating field and in the case of the

HDF for arbitrary electron pulses. It is shown that for strong

fields, the spectrum of multimode ZB contains a series of

new (compared to conventional ZB) frequencies, which are

a combination of the ZB frequency and frequencies that

are multiples of the pumping field frequency. Among other

things, the result is generalized to the case of a Hamiltonian

model describing two independent Dirac points [13].

The constant component of electron
velocity in a monochromatic field

Let a Dirac 2D crystal, to which we will connect

the xy plane, be placed in the field of monochromatic

EM radiation propagating along Oz so that its electric

component oscillates along Ox . In the future, we will

neglect the coordinate dependence of the electric field

strength of the wave, considering that the length of the

latter is much greater than the thickness of the material

in question. Spinor ψ, describing the electron state in such

a situation, satisfies the equation

i
∂ψ

∂t
= (�1σ̂x +�2σ̂y )ψ + ωa(t)σ̂xψ, (1)

where σ̂x ,y,z — Pauli matrices, ω — frequency of the

alternating field, ~�1 = υFpx , and the form of the summand

~�2 will be determined by the crystal model. For example,

for the conic spectrum model ~�1 = υFpy . In the following,

we use the model of a 2D crystal with displaced Dirac

points [13]:

~�2 =
p2

y

2m
− 1, (2)

with 1 > 0. Note, that changing the sign of the parameter 1

to the opposite means the transition from the semi-metallic

state to the state of a zone insulator. In the latter case, the

crystal will be of the half-Dirac type.

We assume that the time dependence of the HF signal is

harmonic: a(t) = a0 cos(ωt + ϕ0). Here, a0 = υFp0/~ω,

p0 = eE0/ω, E0 — the amplitude of the electric field

strength, ϕ0 — the initial phase. In addition, we consider

that the initial state in the momentum representation is

described by a spinor

ψ0(p) =
f (p− p′)

√

C2
1 + C2

2

χ0, (3)

where f (p− p′) — is the normalized function specifying

the profile of the wave packet with initial momentum p′,

χ0 = (C1 C2)
T , and components C1 and C2 define the

orientation of the pseudo-spin [18,23,33]. To study exactly

the modification due to ZB of the spectral composition of

the electron velocity oscillations in the monochromatic force

field, rather than the temporal evolution of the wave packet

as f (p), it is sufficient to choose the delta profile [32]:
f (p) = δ(p). Choosing as the initial function f (p) a

Gaussian wave packet of finite width, which is usually dealt

with in works [15,18,23,33–36], will lead to the standard

situation of electronic oscillation attenuation [17].
If �2 = 0, then equation (1) has an exact analytical

solution

ψ(t) = e−i(�1t+a0 sin(ωt+ϕ0))σ̂xψ0. (4)

For certainty, we fix C1 = 1, and the parameter C2 will

be considered arbitrary, C2 = α. For example, the values

α = 1, α = i and α = 0 describe states with pseudo-

spin orientation along the axes Ox , Oy and Oz , respec-

tively. The components of the average quantum mechan-

ical speed of the electron calculated as matrix elements

υx ,y = υF〈ψ|σ̂x ,y |ψ〉, are equal

υx =
2υFReα

1 + |α|2 ,

υy = 2υF
Imα

1 + |α|2 cos
(

�ZBt + b(t)
)

− υF
1− |α|2
1 + |α|2 sin

(

�ZBt + b(t)
)

, (5)

where the �ZB = 2�1 — frequency of velocity oscilla-

tions in the absence of a variable field (ZB frequency),
b(t) = 2a0 sin(ωt + ϕ0). In particular, for α = 0, we have

υx = 0, υy = −υF sin
(

�ZBt + 2a0 sin(ωt + ϕ0)
)

. (6)

According to (6), the following situation is possible. If

ϕ0 6= sπ, and the frequency of ZB is a multiple of the AC

field frequency, �ZB = kω (s and k — integers), then the

electron speed has a constant component equal to

〈υy 〉t = (−1)kJk(2a0)υF sin kϕ0. (7)

Here, Jk(x) – is a Bessel function of k-th order. In particular,

if ϕ0 = π/2, then the constant velocity component is non-

zero only when the ratio �ZB/ω is an odd number:

�ZB = (2k + 1)ω. Wherein 〈υy 〉t = (−1)k+1J2k+1(2a0)υF .
Such

”
rectification“ of the velocity is caused by a combina-

tion of two vibrational movements of the electron in a Dirac

crystal: ZB vibrations, which take place in the absence of

the field, and forced vibrations, arising due to the force

action from the alternating electric field.

Multimode ZB in HF electric field

To analyze the behavior of electron velocity at arbitrary

�2 it is convenient to use the unitary transformation with
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the operator

Û = ei�tσ̂0, (8)

with the designation

σ̂0 =
�1σ̂x +�2σ̂y

�
, � =

√

�2
1 +�2

2.

In [32], to study the nonlinear dynamics of the Dirac

electron within HDF, the solution to equation (1) was

limited to the a0 approximation linear in field amplitude.

The unitary transformation operator used here (8) differs

from the analogous operator used in [32] and allows us to

obtain analytical results for arbitrary HF field amplitudes.

By putting in (1) ψ = Û+χ and 6̂x ,y,z (t) = Û σ̂x ,y,zÛ+,

ϕ0 = 0, we will come, after some transformations, to the

following equation:

∂χ

∂t
= −iωa0 cosωt6̂x (t)χ. (9)

Let us suppose that the following condition is satisfied:

ω ≫ � (HDF approximation). Then it is not difficult to see

that the spinor

χ(t) = e−ia0 sinωt6̂x (t)χ0 (10)

is a solution to equation (9). Indeed, the terms equal to the

result of the spinor differentiation 6̂x (t)χ0 can be neglected,

since the latter will contain as a multiplier low compared to

ω frequencies. With the help of spinor (10), let us calculate
the average quantum mechanical speed of the electron:

υx ,y = υF〈χ|6̂x ,y |χ〉. (11)

For certainty, let us consider the quite common

case in the literature when the initial pseudo-spin is

oriented perpendicular to the 2D-crystal plane, i. e.,

χ0 = (1 0)T [15,18,23,32–36]. After substituting (10)
into (11) and some transformations, we obtain

υx =
υF�2

�
sin 2�t, (12)

υy = − υF�1

�
cos(2a0 sinωt) sin 2�t

− υF sin(2a0 sinωt) cos 2�t. (13)

As one would expect, the velocity fluctuations, according

to (13), are not harmonic.

To analyze the spectral composition of these oscillations,

we decompose function (13) into a Fourier series:

υy = −υF�1

�
J0(2a0) sin 2�t +

υF�1

�

×
∞
∑

n=1

J2n(2a0)
(

sin 2(nω −�)t − sin 2(nω +�)t
)

− υF

∞
∑

n=0

J2n+1(2a0)
(

sin((2n + 1)ω + 2�)t

+ sin((2n + 1)ω − 2�)t
)

. (14)
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Dependence of 〈υ2〉 on the amplitude of the RF electric field.

a —- �1 = 0; b — �2 = 0; c — �1 = �2 .

Thus, the spectrum of electron velocity oscillations

contains as the main frequency ZB, equal to 2�, and

additional frequencies nω ± 2�, where n — an integer. This

type of motion of a Dirac electron in a monochromatic

field in [32] is called multi-mode ZB. If px and a0 ≪ 1,

then, as one would expect, expressions (12) and (14) pass

into the corresponding formulas from [32]. The intensity of

multimode ZB is proportional to the time-averaged square

of the electron velocity 〈υ2〉 = 〈υ2
x 〉 + 〈υ2

y 〉 [32]. Using

formulas (12) and (14), we find

〈υ2〉 = υ2
F

(

�2
2

2�2
+

�2
1

2�2

(

J2
0(2a0) + 2

∞
∑

n=1

J2
2n(2a0)

)

+

∞
∑

n=0

J2
2n+1(2a0)

)

. (15)

The dependence of 〈υ2〉 on the dimensionless amplitude

of the HF field a0, constructed by the formula (15),
is shown in the figure for different values �1 and �2.

If �2 = 0, then the value of 〈υ2〉 is independent of

amplitude a0 and equal to υ2
F/2.

As can be seen, the multimode effect appears only for

the velocity component υy , which is due to the chosen

orientation of the plane of polarization of the incident

radiation. We should expect that in the case of an elliptically

polarized wave, for example, the multimode effect will be

observed in both components of the average velocity.

It is not difficult to obtain the average velocity for other

initial spinor structures as well. Below, there are the results

for the υy component only. Thus, in the case χ0 = (1 i)T ,

corresponding to the orientation of the initial pseudo-spin

along Ox , we have

υy =
υF�2

�

(

�1

�
(1− cos 2�t) cos b0 + sin 2�t sin b0

)

.

(16)
Here, b0 — the oscillating function b(t) appearing in (5),
at ϕ0 = 0. If χ0 = (1 i)T , which corresponds to the initial
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orientation of the pseudo-spin along Oy , then

υy =
υF

�2
(�2

2 +�2
1 cos 2�t) cos b0 −

υF�1

�
sin 2�t sin b0.

(17)

Rabi frequency

Here, as in [32], we will put px = 0, but instead of the

conic Hamiltonian model, we will use the model (2). The

RWA approximation allows to find solutions to equation (1)
under the condition |2|�2| − ω| ≪ ω. The RWA frames

neglect the terms oscillating with frequency 2|�2| + ω. In

this case, the spectrum of velocity oscillations will still

contain three frequencies: �R, �R ± ω, where �R — the

so-called Rabi frequency, which has the form

�R =

√

(2|�2| − ω)2 +
υ2
Fp2

0

~2
. (18)

As can be seen from (18), unlike [32] the Rabi (18) fre-

quency is determined by three crystal structure parameters

υF, m and 1 instead of one parameter υF . In addition, the

anisotropy of the Hamiltonian [13] model, which considers

2 dirac points, leads to the fact that the character of the

Rabi frequency dependence on the AC field amplitude will

be determined by the polarization direction of this field in

the 2D-crystal plane. Let us make sure of that explicitly. To

do this, change the direction of polarization of the field so

that it oscillates along the Oy axis. Then instead of (1), we
should write

i
∂ψ

∂t
= �1σ̂xψ + �̃2σ̂yψ

+ ω

(

p2
0

4m~ω
cos 2ωt +

py p0

m~ω
cosωt

)

σ̂yψ, (19)

with the designation

�̃2 = �2 +
p2
0

4m
. (20)

Next, consider that �̃2 = 0, which can be achieved if 1 > 0

and eE0 < 2ω
√

m1. Then, after the transformation with the

operator

Ŝ = ei�1tσ̂x (21)

write instead (19)

∂χ

∂t
= −iω(a1 cosωt + a2 cos 2ωt)4̂y χ. (22)

Here, 4̂y = Ŝσ̂y Ŝ+, a1 = ±q0p0/m~ω, a2 = p2
0/4m~ω,

q0 =
√

2m1− p2
0/2. To solve equation (22), apply the

RWA method. The latter is justified in two cases: (a)
|2|�1| − ω| ≪ ω or (b) 2|�1| − ω| ≪ ω. In the first case,

we leave in (22) only those terms that oscillate with

frequency 2||�1| − ω. As a result, we arrive at the following

ratio:

(a1 cosωt + a2 cos 2ωt)4̂y ≈ a1

2
ei(2|�1|−ω)tσ̂x σ̂y .

Then, instead of (22) we get

∂χ

∂t
= − iωa1

2
ei(2|�1|−ω)tσ̂x σ̂yχ. (23)

After some transformations, we write

∂2χ

∂t2
− i(2|�1| − ω)σ̂x

∂χ

∂t
+
ω2a2

1

4
χ = 0. (24)

Partial solutions to equation (24) have the form

χ±(t) = e−
i
2
(ω−2|�1|±�R)tσ̂xχ0, (25)

where the Rabi frequency

�R =

√

(2|�1| − ω)2 +
21p2

0

m~2

(

1− p2
0

4m1

)

. (26)

In the case of 2||�1| − ω| ≪ ω in equation (22), the

terms oscillating with frequency 2|�1| − 2ω should be left

out. As a result, after similar transformations, we obtain for

the Rabi frequency

�R =

√

4(|�1| − ω)2 +
p4
0

16m2~2
. (27)

As can be seen from (18), (26) and (27), the func-

tional dependence of the Rabi frequency on the HF

field amplitude (p0 = eE0/ω) appears to be different for

different polarizations of this field, which is explained by

the anisotropy of the Dirac crystal spectrum with the

Hamiltonian [13].

Conclusion

The nonlinear dynamics of an electron in a 2D Dirac

crystal placed in an alternating electric field of monochro-

matic radiation of frequency ω are considered above. The

model Hamiltonian used in the calculations [13], in contrast

to [32], took into account the presence of 2 independent

Dirac points and was characterized by substantial anisotropy.

Taking into account the ZB — phenomenon of free

Dirac electron oscillations —leads to a modification of the

spectrum of nonlinear electron oscillations in an external

HF force field. In the HDF approximation, when the

frequency of the external field is much greater than the

frequency of ZB, this spectrum contains combinations of

nω ± 2�, where n — an integer, 2� —ZB frequency. It

is worth mentioning that the multi-mode dynamics of the

Dirac electron in a monochromatic field was studied earlier

in [32], where three frequencies in the spectrum of electron

oscillations were reported in the HDF: 2� and ω ± 2�.
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However, the theory built in [32] was limited to one-

dimensional electron motion and linear in the amplitude of

the HF field approximation. In the present work, in contrast

to [32], the case of arbitrary directions of quasi-pulse

and arbitrary amplitudes of HF radiation is investigated.

As a result, a functional dependence of the intensity of

multimode ZB on the amplitude of the HF field a0 is

obtained (figure). In addition, formula (14) allows to find

the dependence on a0 of the amplitude of an arbitrary nth
harmonic of multimode ZB.

The spectrum of electron oscillations obtained in the

framework of RWA, when the external field frequency is

comparable with the ZB frequency, contains, as well as

in [32], three frequencies: �R, �R ± ω, where �R —
the Rabi frequency. However, unlike [32], the frequency

dependence of �R on the amplitude of EM radiation is

determined by the direction of its polarization (formu-

las (18), (26) and (27)). The latter is due to the anisotropy

of the Hamiltonian used in the calculations [13].

In conclusion, let us point out the possibility of the

appearance of a constant velocity component in the electron

of a 2D-dirac crystal in the field of monochromatic radiation.

This requires that the frequency of ZB be a multiple of the

frequency of the alternating electric field. And, according

to formula (7), the value
”
of the rectified velocity“ is

determined by the amplitude of this field.

Funding

The research was supported by the Ministry of Education

of Russian Federation as a part of a state task. Project

title
”
Propagation and interaction of soliton waves in

nanostructures based on Dirac materials“.

Conflict of interest

The authors declare that they have no conflict of interest.

References

[1] M.I. Katsnelson, K.S. Novoselov, A.K. Geim. Nature Phys., 2,

620 (2006). DOI: 10.1038/nphys384
[2] M.I. Katsnelson. Eur. Phys. J. B, 51, 157 (2006).

DOI: 10.1140/epjb/e2006-00203-1

[3] A.F. Young, P. Kim. Nat. Phys., 5, 222 (2009).
DOI: 10.1038/nphys1198

[4] I. Romanovsky, C. Yannouleas, U. Landman. Phys. Rev. B, 87,

165431 (2013). DOI: 10.1103/PhysRevB.87.165431
[5] M. Ezawa. Phys. Rev. Lett., 109, 055502 (2012).

DOI: 10.1103/PhysRevLett.109.055502

[6] D. Pesin, A.H. MacDonald. Nature Mater., 11, 409 (2012).
DOI: 10.1038/nmat3305

[7] P. Delplace, A. Gomez-Leon, G. Platero. Phys. Rev. B, 88,

245422 (2013). DOI: 10.1103/PhysRevB.88.245422
[8] G. Usaj, P.M. Perez-Piskunow, L.E.F. Foa Torres, C.A. Bal-

seiro. Phys. Rev. B, 90, 115423 (2014). DOI: 10.1103/Phys-
RevB.90.115423

[9] S. Ghosh, A. Manchon. SPIN, 6 (2), 1640004 (2016).
DOI: 10.1142/S201032471640004X

[10] C.P. Weber. J. Appl. Phys., 129, 070901 (2021).
DOI: 10.1063/5.0035878

[11] T. Oka, H. Aoki. Phys. Rev. B, 79, 081406 (2009).
DOI: 10.1103/PhysRevB.79.081406

[12] O.V. Kibis. Phys. Rev. B, 81, 165433 (2010).
DOI: 10.1103/PhysRevB.81.165433
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