20

Трансформации спектров фотолюминесценции наноразмерных апконвертирующих фосфоров фантомами биологических тканей

© Е.М. Трифанова 1,¶ , М.Е. Николаева 2 , А.П. Свиридов 1 , В.К. Попов 1

- 1 Институт фотонных технологий (ИФТ), ФНИЦ "Кристаллография и фотоника" РАН,
- 108840 Москва, Троицк, Россия
- ² Московский педагогический государственный университет,
- 119991 Москва, Россия
- ¶ e-mail: katikin@mail.ru

Поступила в редакцию 21.03.2023 г. В окончательной редакции 14.04.2023 г. Принята к публикации 17.04.2023 г.

Для имитации биологических тканей в лабораторных условиях часто используются их фантомы, изготовленные на основе материалов природного и синтетического происхождения, а также их гидрогелей и разнообразных биоактивных композиций. Для визуализации биотканей и изучения происходящих с ними процессов в исследованиях *in vitro* и *in vivo* в реальном масштабе времени сегодня активно применяются наноразмерные апконвертирующие фосфоры (НАФ), обладающие целым набором уникальных фотолюминесцентных свойств и являющиеся одним из перспективных компонентов современного инструментария неинвазивной оптической диагностики организма человека и животных. Нами проведен синтез и комплексная характеризация таких НАФ на основе наночастиц β -NaYF₄:Yb³⁺:Er³⁺/NaYF₄, эффективно преобразующих излучение ближнего ИК диапазона в видимую область спектра. Разработан процесс их инкапсуляции в структуру алифатических полиэфиров и формирования биорезорбируемых полилактогликолидных матриксов методом антисольвентной 3D-печати. Изготовлены два типа фантомов биоткани на основе агарозы, ультрапастеризованного коровьего молока и меланина. Проведены характеризация и анализ их оптических свойств. Исследованы трансформации спектра фотолюминесценции синтезированных НАФ при прохождении их излучения сквозь эти фантомы и реализована визуализация размещенных в них фотолюминесцентных полиэфирных матриксов.

Ключевые слова: наночастицы, фосфоры, фотолюминесценция, люминесцентная визуализация, фантомы биологических тканей, агароза, меланин, алифатические полиэфиры.

DOI: 10.21883/OS.2023.06.55912.124-23

1. Введение

Наноразмерные апконвертирующие фосфоры (НАФ), легированные ионами лантаноидов, являются высокоэффективными фотолюминесцентными компонентами различных материалов и систем, активно использующихся в настоящее время для неинвазивной оптической диагностики гибридных тканеинженерных конструкций и биологических тканей [1]. Они обладают высокой структурной и химической стабильностью, биоинертностью, узкими полосами и большими сдвигами полос фотолюминесценции относительно длины волны возбуждающего света [2], а также стабильностью своих оптических характеристик, выгодно отличающих их от других люминофоров, таких как квантовые точки или флуоресцентные белки [1]. Легируя НАФ различными ионами лантаноидов, можно активно управлять их фотолюминесцентными свойствами, оптимизируя последние для конкретных применений. Так, например, наночастицы, легированные ионами Yb^{3+} и Er^{3+} , обладают наиболее интенсивными линиями фотолюминесценции на двух длинах волн 544 и 658 nm [3]. Это позволяет следить не только за их интенсивностью, но и за соотношением между ними, что можно использовать для визуализации и диагностики биологической ткани на различной глубине, учитывая соответствующую зависимость ее коэффициентов поглощения и рассеяния излучения от длины волны [4–6].

Биологическая ткань обладает весьма сложной иерархической структурой, характеризуемой множеством различных параметров. При этом даже для одного типа ткани эти параметры могут варьировать в достаточно широких пределах. Так, например, коэффициент оптического пропускания кожи зависит от количества содержащегося в ней меланина [7]. Поэтому часто для имитации биологических тканей в лабораторных условиях используются их фантомы, изготовленные из различных материалов природного или синтетического происхождения, различных гидрогелей и биоактивных композиций. Обычно при изготовлении таких фантомов стараются смоделировать какое-нибудь одно свойство конкретной биологической ткани. Известны фантомы, имитирующие по отдельности диэлектрические [8,9], акустические [10], теплофизические [11] или оптические [12,13] свойства. При этом также существуют и гибридные фантомы

50* 787

(например, оптоакустические [14,15]), удовлетворяющие сразу нескольким требованиям.

Самыми распространенными фантомами являются различные структуры на основе тканей животного происхождения [16]. Они имеют наиболее схожие параметры с живой биотканью. Однако они не долговечны, и не всегда удается изготовить из них фантом подходящих геометрических параметров (толщина, размер). Синтетические материалы для изготовления фантомов делятся на твердые, полутвердые и жидкие [17]. Твердые структуры наиболее стабильны и лучше всего могут соответствовать требуемым геометрическим параметрам. Самыми распространенными материалами для создания твердых фантомов являются полиуретан [18], силикон [19,20] и воск [21]. Полутвердые (или гидрогели) материалы менее стабильны, чем твердые, однако изменить их состав при необходимости гораздо проще. Чаще всего для оптических исследований используют фантомы на основе агарозы [22] и желатина [23]. Жидкие фантомы являются самыми простыми в изготовлении и удобными для изменения их состава, но при этом наименее стабильными и долговечными [24]. Для придания фантомам определенных оптических свойств используют различные рассеивающие (оксид титана [25], липозин [26], интралипид [27], молоко [28]) и поглощающие (меланин [29], графит [21] и чернила [30]) модельные среды.

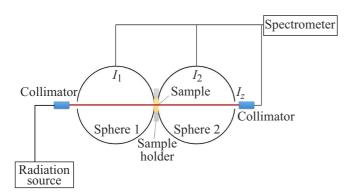
Целями настоящей работы являлись: 1) комплексное исследование оптических свойств фантомов биологических тканей на основе агарозы, ультрапастеризованного коровьего молока и меланина, рассеивающих и поглощающих излучение ближнего ИК и видимого диапазонов, 2) анализ изменений спектра фотолюминесценции наночастиц β -NaYF₄:Yb³⁺:Er³⁺/NaYF₄ при ее прохождении через них, 3) проведение визуализации размещенных в этих фантомах фотолюминесцентных полилактогликолидных матриксов.

2. Материалы и методы

2.1. Синтез апконвертирующих наночастиц

Синтез наночастиц β -NaYF₄:Yb³⁺:Er³⁺ 2% Ег) с оболочкой NaYF₄ проводился термолиза прекурсоров в высококипящих (290-310°C) растворителях (олеиновая кислота и октадецен), описанным нами ранее [3]. Кратко, смесь оксидов Y₂O₃, Yb₂O₃, Er₂O₃ (Sigma Aldrich, США) кипятили в системе CF₃COOH:H₂O=3:1 до растворения. К полученным $(CF_3COO)_3Y$, (CF₃COO)₃Yb, трифторацетатам (CF₃COO)₃Er добавляли 2 eq (CF₃COO)Na, 15 ml 1октадецена и 15 ml олеиновой кислоты. Для разложения трифторацетатов и образования in situ нанокристаллов β -NaYF₄:Yb³⁺:Er³⁺ колбу помещали в сплав Розе, нагретый до 360°C. Через 30 min колбу доставали из сплава Розе и для быстрого охлаждения добавляли 15 ml 1-октодецена. Частицы промывали изопропанолом (ХЧ, Экос-1, Россия) и центрифугировали при 6000 грз в течение 30 min. Реакцию контролировали по изменению светопропускания реакционной смеси и фотолюминесценции продукта реакции. Синтезированные наночастицы покрывали кристаллической инертной оболочкой состава NaYF₄. Формирование инертной оболочки вели по описанной выше методике.

2.2. Изготовление матриксов


В качестве исходного материала для формирования матриксов использовали полилактогликолид (ПЛГ) марки Purasorb 7507 (Corbion Purac, Нидерланды), ПЛГ-композицию для антисольвентного формирования матрикса готовили методом растворения полимера в тетрагликоле (Sigma Aldrich, США) в соотношении 10 mas.% [31]. Также в композицию замешивали НАФ в соотношении 1 mas.% от массы полимера в ультразвуковой ванне в течение 30 min. В силиконовую форму диаметром 5 mm и толщиной 2 mm, закрепленную на дне чашки Петри, помещали готовую композицию, после чего чашку Петри заливали водой и оставляли на 24 h до полного отверждения.

2.3. Изготовление фантомов

Фантомы биологической ткани изготавливали на основе агарозы (Serva, США). 150 mg порошка агарозы заливали 4 ml дистиллированной воды, нагревали до 95°C и перемешивали с помощью магнитной мешалки до полного растворения. В качестве оптически модельных сред использовали ультрапастеризованное молоко 3.5% (ОАО "Белгородский молочный комбинат", Россия) и меланин ("Русские корни", Россия). Для изготовления рассеивающих фантомов на основе молока часть дистиллированной воды (5 и 10%) замещали молоком. Для изготовления поглощающих фантомов в раствор с агарозой добавляли меланин в концентрации 0.5 и 1 mg/ml. Затем раствор с агарозой выливали в чашку Петри диаметром 6 ст. После полного остывания при нормальных условиях чашки Петри с полученными фантомами толщиной 1 mm хранили в холодильнике при температуре 4°C. Для получения фантома толщиной 2 mm количество всех материалов увеличивали в два раза.

2.4. Анализ оптических свойств

Спектры фотолюминесценции образцов при возбуждении непрерывным излучением полупроводникового лазера с длиной волны 976 nm регистрировали с использованием спектрофлуориметра Fluorolog-3 (Horiba Jobin Yvon, Франция). Измерения коэффициента пропускания фантомов проводили на спектрофотометре Cary 50 (Varian, США). Для регистрации спектра фотолюминесценции сквозь фантом его помещали непосредственно поверх образца. Для оценки изменения

Рис. 1. Схема установки для определения оптических характеристик фантомов.

спектра фотолюминесценции НАФ при взаимодействии с фантомом $40\,\mu l$ коллоидного раствора наночастиц в гексане (концентрация 17.5 mg/ml) было нанесено на бумагу (1×1 cm, Fax Стандарт 210 mm, Россия).

Измерение оптических характеристик фантома проводили на установке (рис. 1) на основе двух интегрирующих сфер (диаметр 75 mm) [32], покрытых изнутри стандартным диффузно рассеивающим материалом. Образец фантома располагали между сферами. В сферу 1 заводили излучение белого света от галогенового источника HL-2000 (Ocean Optics, США). Спектры излучений в сферах регистрировали с помощью спектрометра USB4000 (Ocean Optics, США) с диапазоном длин волн 200—1100 nm.

Для расчёта коэффициентов диффузного рассеяния R_d , диффузного пропускания T_d и коллимированного пропускания T_c использованы следующие соотношения [28,32]:

$$R_d = \frac{I_1}{I_{01}}, \ T_d = \frac{I_2}{I_{01}}, \ T_c = \frac{I_z}{I_{0z}},$$

 $-\ln(T_c)/d = (\mu_a + \mu_s),$

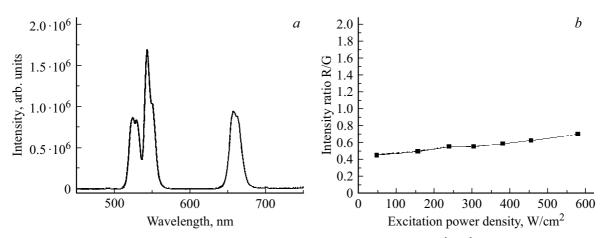
где I_{01} — интенсивность излучения в сфере 1 при условии, что вместо образца стоит заглушка, покрытая стандартным диффузно рассеивающим материалом, I_1 — интенсивность излучения в сфере 1 в присутствии образца, I_2 — интенсивность в сфере 2 в присутствии образца, I_{0z} — интенсивность излучения на выходе из сферы 2 в отсутствие образца, I_z — интенсивность излучения на выходе из сферы 2 с образцом, μ_a — коэффициент поглощения, μ_s — коэффициент рассеяния, d — толщина фантома.

На основе полученных экспериментальных данных (коэффициентов диффузного рассеяния R_d , диффузного пропускания T_c) рассчитаны оптические характеристики фантомов методом Монте-Карло, описанным в [32]. Кратко, пакет программ MatLab позволяет решить прямую задачу определения коэффициентов R_d , T_d и T_c по заданным параметрам: фактора анизотропии g и коэффициентов μ_s

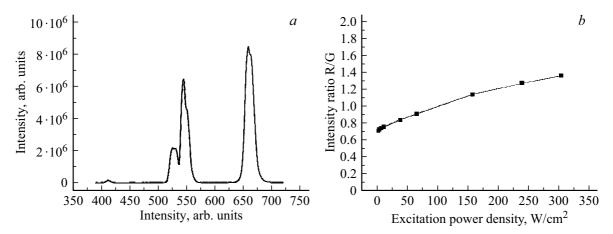
и μ_a . Варьируя эти параметры, можно решить задачу и найти значения коэффициентов $R_d^{'}$ и $T_d^{'}$, которые наиболее согласуются с экспериментальными. Для этого необходимо определить минимум выражения

$$\varepsilon = rac{(R_d^{'} - R_d)^2}{R_d^2} + rac{(T_d^{'} - T_d)^2}{T_d^2}.$$

Для визуализации НАФ, внедренных в матриксы, использовали имиджинговую систему, описанную в [33], оснащенную сканаторной головкой Raylase (Германия), с помощью которой происходит отклонение лазерного луча инфракрасного света по осям х и у. Регистрация сигнала происходит с помощью EMCCD-камеры (Raptor Photonics Incorporated, USA) с высокой чувствительностью в диапазоне 400-850 nm и лазерным гальванометрическим сканером, управляемым с ПК (Техноцентр Атеко, Россия) для точного наведения лазерного луча на образец. В качестве источника света на длине волны 976 nm использован полупроводниковый лазер LDD-10 (АО "Полупроводниковые приборы", Россия) с волоконным выходом. Интенсивность лазерного излучения составляла 200 mW/cm². Фокусировку камеры осуществляли с помощью оптического объектива F = 0.95, а для отсекания возбуждающего излучения (976 nm) применяли систему интерференционных фильтров (Semrock,


Количественная оценка интенсивности фотолюминесценции наночастиц, импрегнированных в матрикс, проводилась при помощи программы ImageJ [34].

Построение графиков выполняли в программе OriginPro 9 (OridginLab, США), статистическую обработку результатов — в программе Microsoft Excel (Microsoft, США). При нормальном распределении использовали t-тест Стьюдента для сравнения двух значений. Статистически значимыми считали различия при вероятности ошибки отклонения от нулевой гипотезы ниже 5% (p < 0.05).


3. Результаты и обсуждения

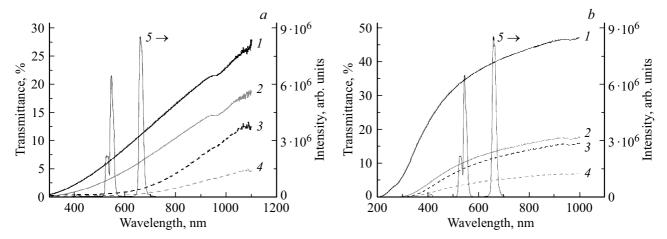
3.1. НАФ типа ядро/оболочка β -NaYF₄:Yb³⁺:Er³⁺ (NaYF₄)

В экспериментах использовались апконвертирующие наночастицы типа ядро/оболочка со средним диаметром 21 ± 6 nm. Спектры фотолюминесценции и отношение интенсивностей "красного" пика 658 nm к интенсивности "зеленого" пика на длине волны 544 nm этих НАФ представлены на рис. 2. Соотношение интенсивностей R/G исходных наночастиц растет при увеличении плотности мощности возбуждающего излучения и не превышает 0.6 при плотности мощности 300 W/cm², что указывает на высокую интенсивность "зеленого" пика при условии, что наночастицы ни с чем не взаимодействуют. Именно поэтому были выбраны именно эти частицы, так как при дальнейших манипуляциях вклад красного пика будет только расти.

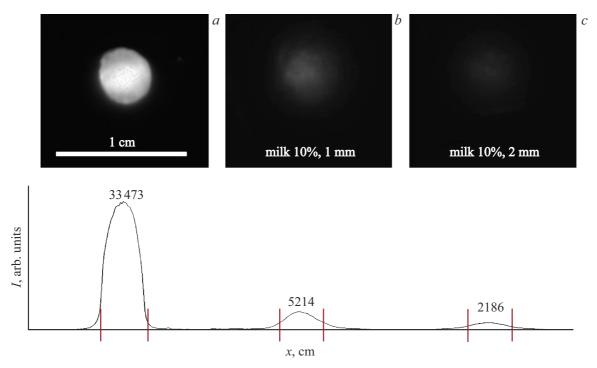
Рис. 2. Спектр фотолюминесценции НАФ со структурой ядро/оболочка β -NaYF₄:Yb³⁺:Er³⁺ (a); зависимость отношения интенсивности "красного" пика 658 nm к интенсивности "зеленого" на длине волны 544 nm НАФ ядро/оболочка от плотности мощности лазерного излучения (b).

Рис. 3. Спектр фотолюминесценции НАФ β -NaYF₄:Yb³⁺:Er³⁺, внедренных в ПЛГ-матриксы (a). Зависимость отношения интенсивности "красного" пика 658 nm к интенсивности "зеленого" на длине волны 544 nm НАФ ядро/оболочка от плотности мощности лазерного излучения (b).

3.2. Матриксы, импрегнированные НАФ


Спектр фотолюминесценции НАФ, внедренных в ПЛГ-матрикс (рис. 3), отличается, так как наночастицы окружают молекулы полимера. Отношение интенсивностей теперь не превышает 1.4 при плотности мощности возбуждающего излучения 300 W/cm². Далее все спектры фотолюминесценции и отношения интенсивностей, полученные при использовании фантомов, будут сравниваться с данными НАФ, внедренных в ПЛГ-матрикс.

3.3. Оптические свойства фантомов


На рис. 4 показаны коэффициенты пропускания T фантомов в зависимости от длины волны. Коэффициент пропускания T уменьшается как при увеличении концентрации модельного вещества (молоко и меланин), так и при увеличении толщины фантома. В видимом диапазоне это не так выражено для фантомов на основе молока в отличие от фантомов на основе меланина. По данным

для коэффициента пропускания видно, что минимальная интенсивность фотолюминесценции регистрируется с использованием агарозного фантома с добавлением 10% молока толщиной 2 mm.

С помощью установки с двумя интегрирующими сферами получены зависимости коэффициентов диффузного рассеяния R_d для всех фантомов (табл. 1 и 2). Из таблиц видно, что на длине волны 544 nm этот коэффициент имеет большее значение, чем на длинах волн 658 и 980 nm, и только монотонно растет с увеличением концентрации модельного вещества. На основе полученных экспериментальных данных (коэффициентов диффузного рассеяния R_d , диффузного пропускания T_d и коллимированного пропускания T_c) рассчитаны оптические характеристики фантомов методом Монте-Карло, описанным в [32], для трех длин волн 544, 658 и 976 nm . Рассчитаны фактор анизотропии g, коэффициенты поглощения μ_a и рассеяния μ_s для всех фантомов. Из табл. 1 видно, что коэффициент g растет с увеличением как длины волны,

Рис. 4. Коэффициент пропускания фантомов на основе агарозы с различным содержанием молока (a): I = 5% толщиной 1 mm, 2 = 5% толщиной 2 mm, 3 = 10% толщиной 1 mm, 4 = 10% толщиной 2 mm и меланина (b): I = 0.5 mg/ml толщиной 1 mm, 2 = 0.5 mg/ml толщиной 2 mm, 3 = 1 mg/ml толщиной 1 mm, 4 = 1 mg/ml толщиной 2 mm. Кривые 5 (на обоих графиках) — спектр фотолюминесценции НАФ β -NaYF4:Yb $^{3+}$:Er $^{3+}$, внедренных в ПЛГ-матриксы.

Рис. 5. Фотографии исходного матрикса (a) и сквозь фантомы с добавлением 10% молока 1 mm (b) и 2 mm (c) и соответствующий анализ интенсивности. Красными линиями обозначены границы образца.

так и количества рассеивающего вещества. Коэффициент рассеивания растет с увеличением количества молока на всех длинах волн.

Оптические свойства биотканей очень сильно варьируют в зависимости от их типа и состава. Даже в пределах одного типа тканей (например, кожи) в литературе можно встретить различные значения коэффициентов поглощения μ_a и рассеяния μ_s на одной и той же длине волны. Так, в [35] для кожи разных пациентов μ_a на длине волны 500 nm варьирует в диапазоне от 3.8 до 15.3.

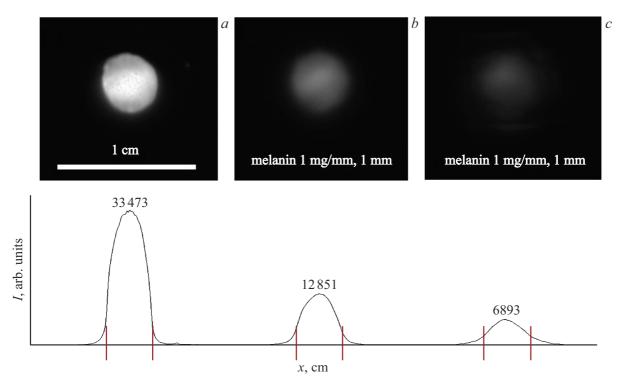
Таким образом, подобрав оптимальную концентрацию рассеивающих и поглощающих компонентов модельных сред, можно имитировать оптические свойства конкретной биоткани.

3.4. Визуализация матриксов, импрегнированных НАФ

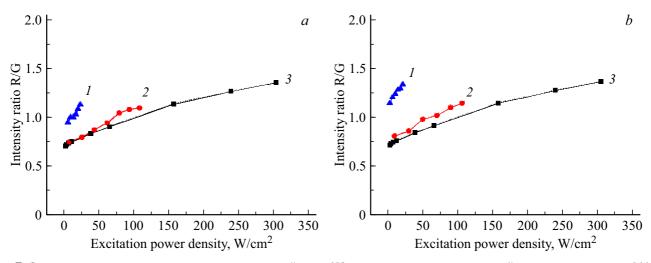
Изменение спектров фотолюминесценции НАФ, внедренных в матрикс, может происходить как за счет

Таблица 1. Расчетные и экспериментальные оптические характеристики фантомов на основе агарозы с добавлением молока. (Статистическая обработка фактора g, а также коэффициентов μ_s и μ_a приведена с погрешностью \pm 0.05, 3 cm $^{-1}$ и 0.05 cm $^{-1}$ соответственно.)

Тип фантома	Длина волны, nm	R_d	T_d	μ_s , cm ⁻¹	μ_a, cm^{-1}	g
Молоко 5%,	544	0.65	0.31	42	0.20	0.15
1 mm	658	0.40	0.51	36	0.45	0.60
	976	0.33	0.59	30	0.50	0.65
Молоко 5%,	544	0.58	0.34	74	0.35	0.60
2 mm	658	0.31	0.61	86	0.45	0.90
	976	0.28	0.59	82	0.75	0.90
Молоко 10%,	544	0.49	0.47	59	0.15	0.70
1 mm	658	0.45	0.51	57	0.25	0.70
	976	0.39	0.53	43	0.60	0.70
Молоко 10%,	544	0.50	0.41	106	0.20	0.80
2 mm	658	0.46	0.51	116	0.25	0.85
	976	0.38	0.48	110	0.50	0.90


Таблица 2. Расчетные и экспериментальные оптические характеристики фантомов на основе агарозы с добавлением молока. (Статистическая обработка фактора g, а также коэффициентов μ_s и μ_a приведена с погрешностью \pm 0.1, $2\,\mathrm{cm}^{-1}$ и 0.05 cm $^{-1}$ соответственно.)

Тип фантома	Длина вол-ны, nm	R_d	T_d	μ_s , cm ⁻¹	μ_a , cm ⁻¹	g
Меланин 0.5 mg/ml,	544	0.65	0.25	17	1.5	0.1
1 mm	658	0.34	0.45	15	1.5	0.1
	976	0.33	0.50	13	1.5	0.1
Меланин 0.5 mg/ml,	544	0.67	0.18	44	4	0.3
2 mm	658	0.31	0.20	40	4	0.5
	976	0.34	0.23	34	3	0.3
Меланин 1 mg/ml,	544	0.59	0.14	27	7	0.1
1 mm	658	0.26	0.15	25	6	0.1
	976	0.25	0.20	20	5	0.1
Меланин 1 mg/ml,	544	0.56	0.06	55	9	0.5
2 mm	658	0.24	0.08	53	8	0.5
	976	0.22	0.09	46	8	0.5


поглощения, так и за счет рассеяния излучения фантомом. Так как возбуждающее излучение проходило сквозь фантом, то при одной и той же входной мощности излучения плотность мощности возбуждающего излучения менялась и была рассчитана с учетом коэффициента пропускания фантома.

Пример визуализации матриксов через фантомы в видимом диапазоне показан на рис. 5 и 6. Видно,

что с увеличением толщины фантома интегральная интенсивность на длинах волн 544 и 658 nm снижается. Это подтверждается как анализом полученных изображений, так и рассчитанными оптическими характеристики из табл. 1. При количественном подсчете интенсивности можно увидеть, что самая низкая интенсивность фотолюминесценции (в относительных единицах) наблюдается при прохождении сквозь

Рис. 6. Фотографии исходного матрикса (a) и сквозь фантомы с добавлением 1 mg/ml меланина 1 mm (b) и 2 mm (c) и соответствующий анализ интенсивности. Красными линиями обозначены границы образца.

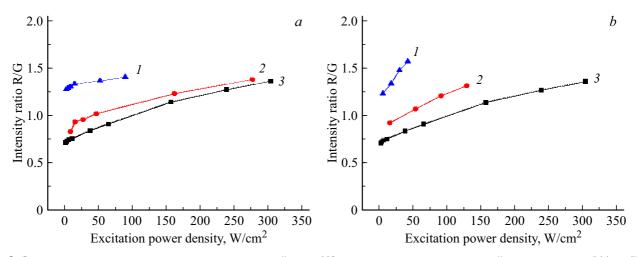
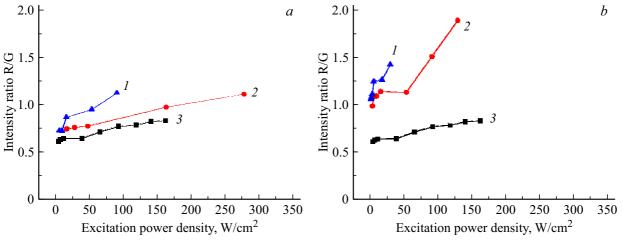


Рис. 7. Зависимость отношения интенсивности "красного" пика 658 nm к интенсивности "зеленого" пика на длине волны 544 nm НАФ (кривая 3 на графиках a и b), внедренных в ПЛГ-матрикс, от плотности мощности лазерного излучения сквозь фантомы на основе агарозы с молоком: (a) 1 — 5% толщиной 2 mm, 2 — 5% толщиной 1 mm; (b) 1 — 10% толщиной 2 mm, 2 — 10% толщиной 1 mm.


фантом с 10% молока толщиной $2\,\mathrm{mm}$, что хорошо согласуется рис. 4. Более того, за счет рассеяния излучения границы образца при визуализации сквозь фантомы становятся менее четкими. Для фантомов с добавлением молока значение интегральной интенсивности фотолюминесценции гораздо ниже (на 60-70%), чем для фантомов с добавлением меланина.

4. Заключение

В результате проведенных экспериментов исследованы оптические характеристики двух типов фантомов биологических тканей, изготовленных на основе рассеивающих и поглощающих модельных сред в зависимости от толщины фантома и концентрации составляющих его веществ. Проанализированы изменения спектров фото-

Рис. 8. Зависимость отношения интенсивности "красного" пика 658 nm к интенсивности "зеленого" на длине волны 544 nm НАФ, внедренных в ПЛГ-матрикс (кривая 3 на графиках a и b), от плотности мощности лазерного излучения сквозь фантомы на основе агарозы с меланином: (a) 1 — 0.5 mg/ml толщиной 2 mm, 2 — 0.5 mg/ml толщиной 1 mm; (b) 1 — 1 mg/ml толщиной 2 mm, 2 — 1 mg/ml толщиной 1 mm.

Рис. 9. Зависимость отношения интенсивности "красного" пика 658 nm к интенсивности "зеленого" пика на длине волны 544 nm НАФ, нанесенных на бумагу (кривая 3 на графиках a и b), от плотности мощности лазерного излучения сквозь фантомы на основе агарозы с меланином: (a) I — 0.5 mg/ml толщиной 2 mm, 2 — 0.5 mg/ml толщиной 1 mm; (b) I — 1 mg/ml толщиной 2 mm, 2 — 1 mg/ml толщиной 1 mm.

люминесценции НАФ со структурой ядро/оболочка β -NaYF₄:Yb³⁺:Er³⁺. Рассчитаны отношения интенсивности "красного" пика 658 nm фотолюминесценции НАФ к интенсивности "зеленого" пика на длине волны 544 nm в зависимости от типа фантома, его толщины и концентрации модельных веществ. Показано, что при увеличении как толщины фантома с добавлением меланина, так и концентрации этого вещества, отношения интенсивности "красного" пика фотолюминесценции (на длине волны 658 nm) как исходных НАФ, так и НАФ, содержащихся в ПЛГ-матриксах (размещенных в этих фантомах), к интенсивности "зеленого" пика (на длине волны 544 nm) увеличиваются при одной и той же плотности мощности поглощающего излучения.

При этом изменяется не только интегральная интенсивность, но и отношение интенсивности "красного" пика 658 nm к интенсивности "зеленого" на длине волны 544 nm (R/G) (рис. 7). Для НАФ, внедренных в ПЛГ-матрикс, при увеличении содержания модельного рассеивающего вещества интенсивность "красного" пика растет. Для фантомов толщиной 1 mm разница в концентрации молока не так заметна, как для фантомов толщиной 2 mm. При увеличении концентрации с 5 до 10% отношение R/G растет с 1.17 до 1.3. Это можно объяснить эффектом рассеяния Ми — чем больше длина волны, тем меньше интенсивность рассеиваемого света [36].

Также были рассчитаны отношения для наночастиц, внедренных в матрикс, в зависимости от находящегося между ним и детектором фантома с меланином (рис. 8). При увеличении толщины фантома интенсивность "красного" пика 658 nm растет, как и при увеличении концентрации меланина в целом. Это можно объяснить несколькими причинами. При увеличении толщины фантома коэффициент пропускания на длине волны 658 nm уменьшается в 3 раза, а на длине волны 544 nm — в 3.4 раза. При увеличении концентрации меланина наблюдается схожая картина.

Проведено исследование изменения спектра фотолюминесценции НАФ, нанесенных на бумагу, при взаимодействии с фантомом (рис. 9). В этом эксперименте НАФ не находятся внутри матрикса, следовательно, не покрыты защитным полимерным слоем и могут напрямую взаимодействовать с веществом фантома.

Из-за взаимодействия НАФ с водой спектр фотолюминесценции частиц изменяется — увеличивается интенсивность "красного" пика из-за безызлучательных переходов [37]. Поэтому при взаимодействии с фантомом ожидаемо у частиц тоже будет расти интенсивность "красного" пика — у исходных наночастиц при плотности мощности лазерного излучения в 150 W/cm² этот коэффициент равен 0.5, а у НАФ, нанесенных на бумагу и взаимодействовавших с фантомом, он более 0.8. Таким образом, при расчете отношения интенсивностей необходимо учитывать не только оптические свойства фантома, но и влияние окружения самих наночастиц.

Финансирование работы

Работа выполнена в рамках Государственного задания ФНИЦ "Кристаллография и фотоника" РАН (в части синтеза наноразмерных апконвертирующих фосфоров и изготовления фантомов биологических тканей) и гранта РФФИ (проект № 20-32-90218_Аспиранты) в части характеризации и визуализации полиэфирных матриксов.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] L. Cheng, K. Yang, S. Zhang, M. Shao, S. Lee, Z. Liu. Nano Res., **3** (10), 722 (2010). DOI: 10.1007/s12274-010-0036-2
- [2] J. Zhou, Z. Liu, F. Li. Chem. Soc. Rev., 41 (3), 1323 (2012).DOI: 10.1039/C1CS15187H
- [3] Е.М. Трифанова, М.Е. Николаева, В.К. Попов. Перспективные Материалы, 12, 40 (2021). DOI: 10.30791/1028-978X-2021-12-40-50
- [4] E. Hemmer, N. Venkatachalam, H. Hyodo, A. Hattori, Y. Ebina, H. Kishimoto, K. Soga. Nanoscale, 5 (23), 11339 (2013). DOI: 10.1039/c3nr02286b
- [5] L. Bachmann, D.M. Zezell, A. da C. Ribeiro, L. Gomes,
 A.S. Ito. Appl. Spectrosc. Rev., 41 (6), 575 (2006).
 DOI: 10.1080/05704920600929498
- [6] Laser-induced interstitial thermotherapy, ed. by A. Roggan,G. Muller (SPIE Press, Bellingham, WA, 1995), p. 10–44.

- M. Lualdi, A. Colombo, A. Mari, S. Tomatis, R. Marchesini.
 J. Laser Appl., 14 (2), 122 (2002). DOI: 10.2351/1.1475339
- [8] C. Ianniello, J.A. de Zwart, Q. Duan, C.M. Deniz, L. Alon, J.S. Lee, R. Lattanzi, R. Brown. Magn. Reson. Med., 80 (1), 413 (2018). DOI: 10.1002/mrm.27005
- [9] B.L. Oliveira, D. O'Loughlin, M. O'Halloran, E. Porter, M. Glavin, E. Jones. Biomed. Phys. Eng. Express, 4 (2), (2018). DOI: 10.1088/2057-1976/aaaaff
- [10] K. Zell, J.I. Sperl, M.W. Vogel, R. Niessner, C. Haisch. Phys. Med. Biol., 52 (20), 475 (2007). DOI: 10.1088/0031-9155/52/20/N02
- [11] A.V Kondyurin, A.P. Sviridov. Quantum Electron., **38** (7), 641 (2008).
- [12] B.W. Pogue, M.S. Patterson. J. Biomed. Opt., **11** (4), 041102 (2006). DOI: 10.1117/1.2335429
- [13] *Handbook of Optical Biomedical Diagnostics*, ed. by V.V. Tuchin (SPIE Press, Bellingham, WA, 2002), ch. 5, p. 311–354.
- [14] E. Amidi, G. Yang, K.M.S. Uddin, R. Wahidi, Q. Zhu. In: Photons Plus Ultrasound: Imaging and Sensing 2019, ed. by A.A. Oraevsky, L.V. Wang (SPIE Press, San Francisco, CA, 2019), p. 157. DOI: 10.1117/12.2507938
- [15] E. Maneas, W. Xia, O. Ogunlade, M. Fonseca, D.I. Nikitichev, A.L. David, S.J. West, S. Ourselin, J.C. Hebden, T. Vercauteren, A.E. Desjardins. Biomed. Opt. Express, 9 (3), 1151 (2018). DOI: 10.1364/boe.9.001151
- [16] S. Mosca, P. Lanka, N. Stone, S. Konugolu Venkata Sekar, P. Matousek, G. Valentini, A. Pifferi. Biomed. Opt. Express, 11 (3), 1697 (2020). DOI: 10.1364/boe.386349
- [17] M.Z. Vardaki, N. Kourkoumelis. Biomed. Eng. Comput. Biol.,
 11, 117959722094810 (2020).
 DOI: 10.1177/1179597220948100
- [18] T. Moffitt, Y.-C. Chen, S.A. Prahl. J. Biomed. Opt., **11** (4), 041103 (2006). DOI: 10.1117/1.2240972
- [19] S.K.V. Sekar, A. Pacheco, P. Martella, H. Li, P. Lanka, A. Pifferi, S. Andersson-Engels. Biomed. Opt. Express, 10 (4), 2090 (2019). DOI: 10.1364/BOE.10.002090
- [20] S.K.V. Sekar, A. Pacheco, P. Martella, H. Li, P. Lanka, A. Pifferi, S. Andersson-Engels. In: *European Conference on Biomedical Optics*, ed. by H. Dehghani, H. Wabnitz (Optica Publishing Group, 2019), p. 11074_46. DOI: 10.1117/12.2526867
- [21] E. Dong, Z. Zhao, M. Wang, Y. Xie, S. Li, P. Shao, L. Cheng, R.X. Xu. J. Biomed. Opt., 20 (12), 121311 (2015). DOI: 10.1117/1.JBO.20.12.121311
- [22] A. Mustari, I. Nishidate, M.A. Wares, T. Maeda, S. Kawauchi, S. Sato, M. Sato, Y. Aizu. J. Vis. Exp., 2018 (138), (2018). DOI: 10.3791/57578
- [23] P. Lai, X. Xu, L.V. Wang. J. Biomed. Opt., **19** (3), 035002 (2014). DOI: 10.1117/1.JBO.19.3.035002
- [24] D.A. Loginova, E.A. Sergeeva, A.D. Krainov, P.D. Agrba, M.Y. Kirillin. Quantum Electron., 46 (6), 528 (2016). DOI: 10.1070/QEL16133
- [25] G.M. Spirou, A.A. Oraevsky, I.A. Vitkin, W.M. Whelan. Phys. Med. Biol., 50 (14), 141 (2005). DOI: 10.1088/0031-9155/50/14/N01
- [26] J. Sun, K. Fu, M.-Q. Zhu, L. Bickford, E. Post, R. Drezek. Curr. Nanosci., 5 (2), 160 (2009). DOI: 10.2174/157341309788185433
- [27] J.R. Cook, R.R. Bouchard, S.Y. Emelianov. Biomed. Opt. Express, 2 (11), 3193 (2011). DOI: 10.1364/boe.2.003193

- [28] C. Fajardo, E. Solarte. J. Phys. Conf. Ser., 1547 (1), 012026 (2020). DOI: 10.1088/1742-6596/1547/1/012026
- [29] G. Zonios, J. Bykowski, N. Kollias. J. Invest. Dermatol., 117 (6), 1452 (2001).
- [30] P. Di Ninni, F. Martelli, G. Zaccanti. Opt. Express, 18 (26), 26854 (2010). DOI: 10.1364/OE.18.026854
- [31] A.V. Mironov, O.A. Mironova, M.A. Syachina, V.K. Popov. Polymer (Guildf), 182 (July), 121845 (2019). DOI: 10.1016/j.polymer.2019.121845
- [32] А.П. Свиридов, В.С. Жигарьков, А.Г. Шубный, В.И. Юсупов. Квантовая электроника, **50** (1), 81 (2020). DOI: 10.1070/QEL17236
- [33] A.N. Generalova, I.K. Kochneva, E.V. Khaydukov, V.A. Semchishen, A.E. Guller, A.V. Nechaev, A.B. Shekhter, V.P. Zubov, A.V. Zvyagin, S.M. Deyev. Nanoscale, 7 (5), 1709 (2015). DOI: 10.1039/C4NR05908E
- [34] C.A. Schneider, W.S. Rasband, K.W. Eliceiri. Nat. Methods, 9 (7), 671 (2012). DOI: 10.1038/nmeth.2089
- [35] В.В. Тучин. Оптика биологических тканей. Методы рассеяния света в медицинской диагностике (ФИЗ-МАТЛИТ, Москва, 2012), с. 275—390.
- [36] G. Mie. Ann. Phys., 331 (8), 597 (1908)
- [37] N. Bogdan, F. Vetrone, G.A. Ozin, J.A. Capobianco. Nano Lett., 11 (2), 835 (2011). DOI: 10.1021/nl1041929