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Entanglement between an isolated qubit and a qubit in a cavity with Kerr

media
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Introduction

The Jaynes−Cummings model, which describes the

interaction of a two-level atom with a lossless resonator

field isolated quantum mode, is the simplest fully quantized

exactly solvable model of quantum optics [1]. Despite its

simplicity, the Jaynes−Cummings model and its generaliza-

tions, which take into account several transitions in atoms,

the presence of several modes of a quantized field, several

atoms, dipole-dipole and other types of interactions between

atoms, the presence of various types of nonlinear media

in a resonator, make it possible to describe all the main

quantum effects of radiation-matter interaction [2]. Recently,
various generalizations of the Jaynes−Cummings model

have found wide application in the physics of quantum

computing and quantum communications. This is due to

the fact that to generate and control the entangled states

of natural and artificial two-level atoms (qubits), such as

superconducting rings with Josephson junctions, ions in

magnetic traps, impurity spins, etc., electromagnetic fields of

resonators are usually used [3–5]. At present, the dynamics

of qubit entanglement induced by resonator fields has been

studied for a large number of different Jaynes−Cummings-

type multi-qubit models (see references in [6–11]). The use

of entangled states for quantum computing and communi-

cations suggests the need to choose appropriate measures

to quantify the degree of qubit entanglement. Although

the general properties of entangled states have been studied

in sufficient detail, rigorous quantitative criteria for qubit

entanglement have so far been introduced only for two-

qubit systems. These criteria include consistency (Wootters

test) [12] and negativity (Peres−Horodecki test) [13,14]. As
for multi-qubit systems, it has not been possible to introduce

similar quantitative criteria for them so far. Therefore,

at present, special attention is paid to the study of the

dynamics of entanglement of two-qubit systems.

One of the obstacles to the implementation of efficient

and reliable protocols for the physics of quantum computing

and quantum communications is the effect of sudden death

of qubit entanglement. Therefore, the study of mechanisms

that contribute to the disappearance or weakening of the

effect of sudden death of qubit entanglement becomes

one of the priority tasks for quantum informatics. The

entanglement sudden death phenomenon consists in the

disappearance of qubit entanglement at times shorter than

the decoherence time. The effect was theoretically predicted

for the first time by Yu and Eberly [15] while studying

the unitary dynamics of two qubits in a resonator. Later,

this effect was observed experimentally [16]. In Ref. [17],

the effect of entanglement sudden death was studied using

the example of a system of two spatially separated two-

level atoms: an isolated atom and an atom interacting

with the quantum electromagnetic field mode of a lossless

resonator (Janes−Cummings atom). The authors restricted

themselves to considering the case when the atoms at the

initial moment of time are in an entangled state, and the

resonator field is in the Fock state. At the same time,

the authors predicted the possibility of sudden death of

entanglement of atoms in the process of their evolution.

Differences in the behavior of various quantitative measures

of qubit entanglement [17], as well as the influence of

the quantum phase on the entanglement sudden death

effect [18,19], were also investigated within the framework

of the model proposed in [20]. The influence of the

transition frequency detuning in the Jaynes−Cummings

atom and the thermal resonator mode, as well as the direct

dipole-dipole interaction of atoms on the nature of the
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manifestation of the entanglement sudden death effect in

this model, is considered in [21,22].

At present, entangled states of qubits of different physical

nature have been experimentally obtained in resonators at

various temperatures from nK to room temperature [4,5].
This means the presence of thermal photons in the res-

onators of such quantum devices. It has been shown in

a number of papers that the interaction of qubits with

the thermal radiation fields in resonators can lead to

the sudden death of qubit entanglement (see references

in [23,24]). Therefore, it is of considerable interest to

study the mechanisms that prevent the sudden death of

qubit entanglement caused by the thermal radiation fields

of resonators. It has now been shown that thermal

noise-induced entanglement sudden death is eliminated by

including qubit and field frequency detuning, direct dipole-

dipole and Ising interactions between qubits, Stark shift, etc.

(see references in [25]). The disappearance of the effect can

also be facilitated by the use of nonlinear resonator media,

in particular, the Kerr nonlinearity [26]. For atomic systems,

the Kerr nonlinearity parameter 4 is small compared to the

photon loss rate from the resonator κ, so the impact of

the Kerr medium on the dynamics of atoms at relaxation

times is insignificant. However, for superconducting qubits

in coplanar resonators, it was possible to create conditions

under which the ratio between the Kerr nonlinearity and the

loss rate satisfies the inequality 4κ > 30 [27]. Under such

conditions, the Kerr nonlinearity can have a significant effect

on the entanglement dynamics of superconducting qubits.

Here we report the exact dynamics of a system

of dipole-coupled isolated two-level atom (qubit) and

Jaynes−Cummings atom interacting with the thermal radi-

ation field of a resonator containing a Kerr medium. Based

on the exact solution, we have studied the time dependence

of the qubit entanglement parameter, i.e., the negativity

for separable and entangled initial states of qubits. The

conditions for the disappearance of the sudden death of

qubits entanglement are analyzed.

1. Model and its exact solution

Consider a system consisting of two identical dipole

coupled natural or artificial two-level atoms (qubits) Q1

and Q2 with a transition frequency between the excited

and ground energy levels equal to ~ω0. In this case,

the first qubit is trapped in a single-mode ideal resonator

and resonantly interacts through single-photon transitions

with the resonator field of frequency ω = ω0, while the

second qubit is free. Note that for artificial atoms, e.g.,

superconducting rings with Josephson junctions, the direct

dipole-dipole interaction constant can exceed the atom-field

interaction constant [28]. Let us also assume that there

is an additional Kerr medium in the resonator. Then the

Hamiltonian of the considered model in the interaction

picture can be written in the form

H = ~g(σ+
1 a + σ−

1 a†) + ~J(σ+
2 σ−

1 + σ+
1 σ−

2 ) + ~4a†2a2,

(1)
where σ−

1 = |−〉11〈+| and σ+
1 = |+〉11〈−| are the transition

operators between excited |+〉1 and ground |−〉1 state in

the first qubit, a† and a are operators of creation and

annihilation of resonator mode photons, g is the constant

of coupling between the qubit and the resonator field, J is

the constant of the dipole-dipole interaction of qubits and

4 is the Kerr nonlinearity constant.

We assume that initially the qubits are prepared in one of

the separable states of the form

|9(0)〉Q1 Q2
= |+,−〉, (2)

|9(0)〉Q1 Q2
= |+,+〉, (3)

or in an entangled Bell-type state

|9(0)〉Q1 Q2
= cos θ|+,−〉 + sin θ|−, +〉, (4)

where θ is a parameter that determines the degree of initial

entanglement of qubits Q1 and Q2. The maximum degree of

qubit entanglement corresponds to the value θ = π/4. Such

initial states for qubits in resonators can be obtained using

microwave pulses of a certain duration.

As the initial state of the field, we choose a single-mode

thermal radiation state with a density matrix of the form

ρF (0) =
∑

n

pn|n〉〈n|.

Here the weight functions pn have the form

pn = n̄n/ (1 + n̄)n+1
,

where n̄ is the average number of thermal photons given by

the Bose−Einstein formula

n̄ = (exp [~ω/kBT] − 1)−1
,

where kB is the Boltzmann constant and T is the tem-

perature of the microwave resonator. Depending on the

physical nature of a natural or artificial atom interacting

with the resonator field, the resonator temperature can vary

from room temperature for nitrogen-substituted vacancies

in diamond to nanokelvins in the case of neutral atoms and

ions in magnetic traps.

We set the task of finding the exact dynamics of the

model under consideration. For this purpose, we first

find the exact solution of the time-dependent Schrodinger

equation for the model under consideration in the case of

the initial state of the electromagnetic field with a certain

number of photons, and then generalize the results obtained

to the case of a thermal field.

For a field state with a certain number of photons, the

wave function is

|9(0)〉F = |n〉 (n = 0, 1, 2, . . .).
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To obtain the exact solution of the time-dependent

Schrödinger equation for the model under consideration,

we use the so-called
”
dressed“ state representation, i.e.

eigenfunctions of the Hamiltonian (1). Let us assume that

the number of excitations of the
”
two qubits+ cavity field“

system is equal to N = n + 2 (n ≥ 0). Then the evolution

of the time-dependent state vector will take place in a 4-

dimensional Hilbert space with the basis

|−,−, n + 2〉, |+,−, n + 1〉, |−,+, n + 1〉, |+,+, n〉.

Then, using the expansion of the time-dependent state

vector in terms of basis vectors

|9(t)〉n = X1,n(t)|−,−, n + 2〉 + X2,n(t)|+,−, n + 1〉

+ X3,n(t)|−, +, n + 1〉 + X4,n(t)|+, +, n〉 (5)

together with the time-dependent Schrodinger equation, we

get
˙̃X = −(ıH/~)X̃,

where

X̃(t) =















X1,n(t)

X2,n(t)

X3,n(t)

X4,n(t)















. (6)

The solution of Eq. (6) for excitation numbers N ≥ 2 and

initial states of qubits |−,−〉, |+,−〉, |−,+〉, |+,+〉 is

X(m)
i ,n (t) =

4
∑

j=1

Ui j ,nm(t)X(m)
j ,n (0), (7)

where

Ui j ,nm(t) =

4
∑

l=1

t l
inm(t l

jnm)∗e−ıλlngt.

Here the index m = 1, 2, 3, 4 enumerates the initial states

of qubits of the form |−,−〉, |+,−〉, |−,+〉, |+,+〉
respectively, and λln = Eln/(~g) (l = 1, 2, 3, 4) are the

normalized eigenvalues of the Hamiltonian (1):

λ1n = (1/2)χ + nχ + n2χ −Vn −Wn,

λ2n = (1/2)χ + nχ + n2χ −Vn + Wn,

λ3n = (1/2)χ + nχ + n2χ + Vn −Wn,

λ4n = (1/2)χ + nχ + n2χ + Vn + Wn,

where

Vn =
1

2

√

−2cn/3 + d2
n/4 + 21/3Gn/(3Fn) + Fn/(3 21/3),

Wn =
1

2

√

−2cn/3 + d2
n/4− 21/3Gn/(3Fn) − Fn/21/3,

Fn =

(

27b2
n − 72ancn + 2c3

n − 9bncndn + 27and2
n

+

√

(

−4(12an + c2
n − 3bndn)

3 + (27b2
n − 72ancn

+2c3
n − 9bncndn + 27and2

n)
2
)

)1/3

,

Gn = 12an + c2
n − 3bndn,

Hn = −(2bn − cndn + d3
n/4)

/

√

−2cn/3 + d2
n/4 + 21/3Gn/(3Fn) + Fn/(3 21/3),

an =
√
1 + n

√
2+n(n + 1)−n(2 + 7n + 9n2 + 5n3 + n4)χ2

+ −n2(n2 − 1)
√
1 + n

√
2 + nχ2 + nα2(2 + n− 2n2)χ2

− n4α2χ2 − 2n3χ4 − 5n4χ4 − 2n5χ4 + 4n6χ4 + 4n7χ4,

bn = n8χ4
(

2χ + 6nχ + 6n2χ + 2n3χ + 2n2
√
1 + n

√
2 + nχ

+ 2α2χ + 2nα2χ + 2n2α2χ + 2n2χ3 − 10n4χ3

− 12n5χ3 − 4n6χ3
)

,

cn = −1− n−
√
1 + n

√
2 + n− α2 + 2nχ2 + 8n2χ2

+ 12n3χ2 + 6n4χ2,

dn = −2χ − 4nχ − 4n2χ, χ = 4/g, α = J/g

and

X(1)
1,n(0) = 1, X(1)

2,n(0) = 0, X(1)
3,n(0) = 0, X(1)

4,n(0) = 0,

X(2)
1,n(0) = 0, X(2)

2,n(0) = 1, X(1)
3,n(0) = 0, X(1)

4,n(0) = 0,

X(3)
1,n(0) = 0, X(3)

2,n(0) = 0, X(3)
3,n(0) = 1, X(3)

4,n(0) = 0,

X(4)
1,n(0) = 0, X(4)

2,n(0) = 0, X(4)
3,n(0) = 0, X(4)

4,n(0) = 1.

The explicit form of the coefficients t l
inm for the initial

states of atoms (2)−(4) is not presented here because it

is excessively cumbersome.

For the number of system excitations N = 1, the solu-

tion of the time-dependent Schrödinger equation can be

presented as follows:

a) If the initial state of the system is |−,−, 0〉, then

|9(t)〉1 = Y(1)
1 (t)|−,−, 1〉 + Y(1)

2 (t)|+,−, 0〉

+ Y(1)
3 (t)|−, +, 0〉, (8)

where

Y(1)
1 =

3
∑

j=1

ε j e
ıε j t/q j , Y(1)

2 = −
3

∑

j=1

ε2j e
ıε j t/q j ,

Y(1)
3 = −α

3
∑

j=1

ε j e
ıε j t/q j ,
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q j = 1 + α2 − 3ε2j ,

ε1 = Re
[

(− 3
√
2ζ /ξ + ξ/

3
√
2)

]

/3,

ε2 = Re
(

(1 + ı
√
3)ζ /22/3ξ − (1− ı

√
3)ξ/2

3
√
2

)

/3,

ε3 = Re
(

(1− ı
√
3)ζ /22/3ξ − (1 + ı

√
3)ξ/2

3
√
2

)

/3,

ξ = 21/3ı
√

3(α2 + 1), ζ = −3(1 + α2);

b) If the initial state of the system is |−,−, 0〉, then

|9(t)〉2 = Y(2)
1 (t)|−,−, 1〉 + Y(2)

2 (t)|+,−, 0〉

+ Y(2)
3 (t)|−, +, 0〉, (9)

where

Y(2)
1 = −α

3
∑

j=1

eıε j t/q j , Y(2)
2 = −α

3
∑

j=1

ε j e
ıε1t/q j ,

Y(2)
3 = −α

3
∑

j=1

eıε j t/q j ;

c) If the initial state of the system is |−,−, 1〉, then

|9(t)〉3 = Y(3)
1 |−,−, 1〉 + Y(3)

2 |+,−, 0〉 + Y(3)
3 |−,+, 0〉,

(10)
where

Y(3)
1 =

3
∑

j=1

(α2 − ε2j )e
ıε21 )t/q j , Y(3)

2 =

3
∑

j=1

ε j e
ıε1t/q j ,

Y(3)
3 = −α

3
∑

j=1

eıε j t/q j .

Finally, for the number of excitations N = 0 and the initial

state of the system |−,−, 0〉, the time-dependent wave

function remains unchanged in time

|9(t)〉4 = |−,−, 0〉. (11)

Using expressions (5)−(11), we can obtain the time-

dependent density matrix for the total system for the

thermal initial state of the resonator field having the form

ρ(t) =
∑

n

pn|9(t)〉n n〈9(t)|.

To find the quantitative criterion of cubit entanglement, the

negativity, it is necessary to calculate the reduced cubit-cubit

density matrix. For this purpose, we should average the total

density matrix over the field variables, ρQ1Q2
(t) = TrFρ(t).

2. Calculation of negativity

For a two-qubit system described by the density operator

ρQ1Q2
(t), the measure of entanglement of qubits, the

negativity, can be determined through negative eigenvalues

ν−
i of the reduced two-qubit density matrix ρ

T1
Q1Q2

[13,14]:

N(t) = −2
∑

i

ν−
i . (12)

For separable initial states of qubits (2), (3) and entangled

initial state (4), the two-qubit density matrix has the form

ρQ1Q2
(t) =















ρ11(t) 0 0 0

0 ρ22(t) ρ23(t) 0

0 ρ23(t)∗ ρ33(t) 0

0 0 0 ρ44(t)















. (13)

Correspondingly, the density matrix partially transposed

over the variables of one qubit for (13) is

ρT1
Q1Q2

(t) =















ρ11(t) 0 0 ρ23(t)∗

0 ρ22(t) 0 0

0 0 ρ33(t) 0

ρ23(t) 0 0 ρ44(t)















. (14)

The elements of matrix (14) for the initial state of the cubits
|+,+〉 are

ρ11 =

∞
∑

n=0

pn|X(4)
4,n(, t)|2, ρ22 =

∞
∑

n=0

pn|X(4)
2,n(, t)|2,

ρ33 =

∞
∑

n=0

pn|X(4)
3,n(, t)|2, ρ44 =

∞
∑

n=0

pn|X(4)
1,n(, t)|2,

ρ23 =

∞
∑

n=0

pnX(4)
2,n(t)X

(1)
3,n(t)∗.

For the initial state |+,−〉 they take the form

ρ11 =

∞
∑

n=0

pn|X(2)
4,n−1(, t)|2,

ρ22 =

∞
∑

n=0

pn|X(2)
2,n−1(, t)|2 + p0Y

(1)
2 (t),

ρ33 =

∞
∑

n=0

pn|X(2)
3,n−1(, t)|2 + p0Y

(1)
3 (t),

ρ44 =

∞
∑

n=0

pn|X(2)
1,,n(, t)|2 + p0Y

(1)
1 (t),

ρ23 =

∞
∑

n=0

pnX(2)
2,n−1(t)X

(2)
3,n−1(t)

∗.
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For the entangled initial state (4), we do not present the

matrix elements here because they are too cumbersome.

Matrix (14) has only one eigenvalue, which can take

negative values. As a result, for negativity (12) we have

N(t) =
√

(ρ11(t) − ρ44(t))2 + 4|ρ23(t)|2 − ρ11(t) − ρ44(t).

(15)
The results of numerical calculations of negativity (15) for

various initial states of qubits and model parameters are

shown in Figs. 1−4.

3. Results and discussion

Figure 1 shows the dependence of the entanglement

parameter on the dimensionless time gt for an disentangled

initial state of qubits |+,−〉 and different values of the

0 102 84 6

N
(t
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

gt

Figure 1. Negativity as a function of the dimensionless time gt for
the separable initial state of qubits |+,−〉. The average number of

photons in the mode is n̄ = 3. The dimensionless parameter of the

dipole-dipole interaction is α = 0.75. The dimensionless parameter

of Kerr nonlinearity is χ = 0 (solid line), χ = 1 (dashed line) and

χ = 3 (dotted line).

0 102 84 6

N
(t
)

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

gt

Figure 2. Negativity as a function of the dimensionless time gt for
the separable initial state of qubits |+, +〉. The average number of

photons in the mode is n̄ = 3. The dimensionless parameter of the

dipole-dipole interaction is α = 0.75. The dimensionless parameter

of Kerr nonlinearity is χ = 0 (solid line), χ = 0.2 (dashed line) and
χ = 0.3 (dotted line).

0 142 84 6

N
(t
)

0

0.2

0.4

0.6

0.8

1.0

gt
1210

Figure 3. Negativity as a function of the dimensionless

time gt for the entangled initial state of qubits (4) at θ = π/4.

The average number of photons in the mode is n̄ = 3. The

dimensionless parameter of the dipole-dipole interaction is α = 0.

The dimensionless parameter of the Kerr nonlinearity is χ = 0

(solid line), χ = 1 (dashed line) and χ = 2 (dotted line).

0 142 84 6

N
(t
)

0

0.2

0.4

0.6

0.8

1.0

gt
1210

Figure 4. Negativity as a function of the dimensionless time gt
for the entangled initial state of qubits (4) at θ = π/4. The average

number of photons in the mode is n̄ = 3. The dimensionless

parameter of the dipole-dipole interaction is α = 0.75. The

dimensionless parameter of the Kerr nonlinearity is χ = 0 (solid
line), χ = 1 (dashed line) and χ = 2 (dotted line).

Kerr nonlinearity. The curves are plotted for a model

with an average number of thermal photons in the mode

n̄ = 3 and a dimensionless parameter of the dipole-dipole

interaction of qubits α = 0, 75. For numerical simulation

of the entanglement parameter, a rather intense thermal

field of the resonator is considered, since at low intensities

the influence of the Kerr nonlinearity on the degree of

entanglement of qubits is insignificant.

It is easy to see that as the dimensionless Kerr nonlin-

earity parameter χ increases, the maximum degree of qubit

entanglement increases. A similar result also takes place

for qubits interacting with the common thermal field of the

resonator [25]. However, for the model under consideration,

the occurrence of entanglement of qubits in the case of

disentangled initial states is possible only in the presence

Technical Physics, 2023, Vol. 68, No. 4
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of their dipole coupling. Figure 1 also shows that in the

absence of the Kerr nonlinearity, the effect of sudden death

of entanglement takes place, that is, the disappearance of

entanglement during times shorter than the decoherence

time. As the parameter of the Kerr nonlinearity increases,

the sudden death of entanglement disappears. Thus, in the

case of α = 0.75 and n̄ = 3, the sudden death disappears

for values of the Kerr nonlinearity parameter χ > 3.5.

The time dependence of the negativity for the initial

atomic state |+,+〉 and different values of the Kerr

nonlinearity is shown in Fig. 2. As in the previous Figure,

the curves are plotted for the value of the qubit dipole

coupling parameter α = 0.75 and the average number of

thermal photons in the mode is n̄ = 3. For the considered

initial state of qubits, an increase in the Kerr nonlinearity

parameter leads to the opposite effect: the maximum degree

of entanglement of qubits decreases in this case.

Figures 3 and 4 show the time dependence of negativity

for the Bell entangled state of qubits1/
√
2(|+,−〉 + |−,+〉)

and different values of the Kerr nonlinearity parameter. The

average number of thermal photons in the mode is n̄ = 3,

and the qubit dipole coupling parameter is chosen to be

α = 0 (Fig. 3) and α = 0.75 (Fig. 4). It can be seen

from the figures that, for entangled initial states of qubits,

the inclusion of the Kerr nonlinearity leads to stabilization

of the negativity oscillations both for the model with

dipole−dipole interaction and for the model without such

interaction. In this case, at large values of the nonlinearity

parameter, the effect of the entanglement sudden death

disappears.

Conclusion

We studied the dynamics of a free qubit and a qubit

trapped in a single-mode ideal resonator with a Kerr

medium in the presence of direct dipole−dipole interaction

of qubits and resonant interaction of the qubit with the field.

An exact solution of the quantum Liouville equation of the

considered model is obtained in the case of initial separable

and entangled states of qubits and the thermal radiation field

of the resonator. Based on the exact solution, an analytical

expression for negativity is found. We have studied the

influence of the Kerr nonlinearity and the dipole-dipole

interaction on the degree of qubit entanglement. For qubits

prepared in the separable state |+,−〉, the Kerr nonlinearity

leads to an increase in the maximum degree of entanglement

of qubits and can suppress the effect of sudden death of

entanglement. For a separable initial state of qubits |+,+〉,
the inclusion of the Kerr nonlinearity, on the contrary,

leads to the disappearance of entanglement of qubits. For

entangled initial states of qubits, the nonlinearity leads to

stabilization of the negativity oscillation amplitudes both for

the model with dipole−dipole interaction and for the model

without such interaction. For models with large values of

the Kerr nonlinearity parameter, the effect of entanglement

sudden death disappears.
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