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Adiabatic guided modes of a three-layer integral optical waveguide
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The numerical solution of the problem of guided propagation of polarized light in a smooth junction of a

planar waveguide is considered. Within the framework of the model of adiabatic guided modes, the system of

Maxwell equations is reduced to a system of four ordinary differential equations and two algebraic equations for six

components of the electromagnetic field in the zeroth approximation and the same number of equations in the first

approximation. The multilayer structure of waveguides makes it possible to reduce the problem to a homogeneous

system of linear algebraic equations, whose nontrivial solvability condition yields the dispersion equation. Auxiliary

eigenvalue problems for describing the adiabatic modes of the waveguide are solved.
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Introduction

The object of our consideration is the guided-wave

propagation of monochromatic electromagnetic radiation of
the optical range in thin-film integrated optical structures.

Such structures are complex waveguide structures formed
by applying additional guiding layers with various (smoothly

irregular) geometric configurations onto a flat substrate. By
a thin-film waveguide, we mean a waveguide whose guiding

layer (core) thickness is comparable to the wavelength λ of
the propagating radiation

Integrated optical structures are called smoothly irregular
if they satisfy the inequalities specified by the geometry of

the additional waveguide layer:
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The guided-wave propagation of monochromatic polar-

ized electromagnetic radiation in integrated optical waveg-
uides is described by the Maxwell equations.
In the absence of charges and currents, the scalar

Maxwell equations follow from the vector ones, and the
boundary conditions for normal components follow from

the boundary conditions to the tangential components of
the electromagnetic field [1,2]. In Cartesian coordinates

corresponding to the geometry of the substrate (or the three-
layered planar dielectric waveguide) the Maxwell equations

have the form
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To construct the model of adiabatic guided modes

(AGMs), we present the solutions of Eqs. (1) in terms of the

locally normal guides modes of a locally planar reference

waveguide (see [3,4]), which in the method of asymptotic

expansion take the form:

E(x ; y, z , t) =

∞
∑

s=0

Es (x ; y, z )

(−iω)γ+s
exp{iωt − ik0ϕ(y, z )},

H(x ; y, z , t) =

∞
∑

s=0

Hs (x ; y, z )

(−iω)γ+s
exp{iωt − ik0ϕ(y, z )}.

In the notation Es(x ; y, z ), Hs (x ; y, z ) the separation of x
from the rest arguments by a semicolon means the following

assumption:
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where ω is the circular frequency of the propagating

monochromatic electromagnetic radiation.

Using the method of asymptotic expansion in dimen-

sioned small parameter ω−1 [5–7], we obtain a system of

homogeneous equations in the zeroth approximation:
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and the system of equations in the first approximation of

the method:
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(13)
For a thin-film multilayer waveguide consisting of opti-

cally homogeneous layers, the matching conditions for the

electromagnetic field hold at the interfaces between media

n× E− + n× E+ = 0, (14)

n×H− + n×H+ = 0. (15)

In addition, the asymptotic conditions should be valid

E0
y , E0

z , H0
y , H0

z −→
x→±∞

0, (16)

which ensure the uniqueness of the solution of the problem

(2)−(13).

1. Two-dimensional dielectric
waveguides

In the absence of
”
y“dependence, the Maxwell equations

are simplified and separated into two independent subsys-

tems for TE and TM polarizations. In particular, for TE

polarization the following equations are valid in the zeroth

order:
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At horizontal boundaries, relations (14),(15) reduce to

the equality of the horizontal electric field components. At

the slanted part of the interface between the waveguide

layers x = h(z ), the tangent plane is specified by the

equation dx − (dh/dz )dz = 0, and the matching conditions

for the electromagnetic fields at point (h(z ), z )′ of the

slanted interface have the form
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They are fully specified by pairs of independent compo-

nents Eτ
y , Eτ

z and Hτ
y , Hτ

z .

Let us formulate the problem of finding solutions to Eqs.

(17)−(24) that decrease at infinity:

lim
n→±∞

|Ey
0 (x ; z )| = 0, lim

x→±∞
|Ey
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We approach its solution by means of an auxiliary spectral

problem
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with asymptotic conditions
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To find the electromagnetic field of the adiabatic guided

modes, let us consider the solution of an auxiliary problem.

2. Adiabatic guided TE modes in the
zeroth and first approximation

Let us consider the amplitudes of the TE mode electro-

magnetic field components in subdomains of thin homoge-

neous films of three-layered parts of the waveguides. We

express the general solutions for Ey in terms of parameters
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√
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γc = k0
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At the interfaces between the layers, the electromagnetic

field matching conditions in the zeroth approximation for

the TE mode take the form of a homogeneous system

of linear algebraic equations (SLAE) for the amplitude

coefficients Ac
0(z ), As

0(z ), A f +
0 (z ), A f −

0 (z ). The solvability

condition determined by the dependence between β(z ) and

h(z ) = a2(z ) − a1 leads to finding the solution parameters

β0(z ), γc
0 (z ), γ s

0(z ), χ f
0 (z ). The solution parameters β0(z )

and γc
0 (z ), γ s

0(z ), χ
f
0 (z ), as well as the nontrivial SLAE

solutions themselves, are searched for in such a way, that

the coefficients Ac
0(z ), As

0(z ), A f +
0 (z ), A f −

0 (z ) would be

continuously differentiable functions of the argument. In this

case, the particular first-order equations depending on their

derivatives will be valid.

With the relations β0(z ) Ac
0(z ), As

0(z ), A f +
0 (z ), A f −

0 (z )
taken into account, the studied Eqs. (20)−(22) of the first

order of smallness in the three layers take the form:
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The solutions of the system of equations (25)-(27) have

the form of a sum of solutions of the homogeneous parts

of these equations and partial solutions of the complete

inhomogeneous equations.

The solution of a homogeneous system in the first

approximation has the form:

Ey
s (z ) = As1(z ) exp

(

γs1(z )(x − a1)
)

,

Ey
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(
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)
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(
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)
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µ
As1(z ) exp(γs1(z )(x − a1)),

Hx
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(
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)

,
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µ
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k0µ
As1(z ) exp(γs1(z )(x − a1)),
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f = −

χ f 1

k0µ
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A+
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f 1(z ) exp (−iχ f 1(z )(x − a1))) ,

Hz
c (z ) =

iγc1(z )

k0µ
Ac1(z ) exp(γc1(z )(x − a1)).

We search for a particular solution of the inhomogeneous

system of ODEs (25)-(27) using the Wronskian by the

method developed for second-order ODEs. In this case,

complete general solutions that do not necessarily satisfy

the asymptotic conditions (16) are used, and only after

obtaining the final formal expressions, we nullify the terms

growing at infinity.

The general solution in the first approximation has the

form:

Ey = Ehomog
y + E p

y ,

Hx = Hhomog
x + H p

x ,

Hz = Hhomog
z .
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The boundary conditions at the planar boundary take the

form

Ey
s (x = a1) = Ey

f (x = a1),

Hz
s (x = a1) = Hz

f (x = a1).

At the curved boundary x = a2(z ) (in this case, the

boundary conditions a2(z ) − a1 = h(z ) take the form:

Ey
f (x = a2(z )) = Ey

c (x = a2(z )),

Hz
f (x = a2(z )) +

∂h
∂z

Hx
f (x = a2(z ))

= Hz
c (x = a2(z )) +

∂h
∂z

Hx
c (x = a2(z )).

Finally, we obtain an inhomogeneous system of four

equations with the unknown coefficients (As1(z )), A+
f 1, A−

f 1,

Ac1(z )) and unknown parameter β1(z ).

3. Discussion and conclusion

To formulate the system of first-order ODEs, it is

necessary to solve, first, a homogeneous system of zero-

order ODEs. After that, for each zero-order solution, we

write down an inhomogeneous system of first-order ODEs.

In a three-layer thin-film waveguide, the system of

homogeneous ODEs (17)−(19) for zero-order contributions
to adiabatic waveguide modes is reduced to a homogeneous

SLAE

M̂(β0(z ))A0(β0(z )) = 0. (28)

The condition for the solvability of SLAE (1) is

detM̂(β0(z )) = 0 (29)

at any z ∈ [z 0, z 1] in the interval of the initial problem

solution.

The system of inhomogeneous ODEs (20)-(22) for the

first-order contributions to AGMs comprises analytical ex-

pressions depending on derivatives of A0(β0(z )) and β0(z ),

χ
f
0 (z ), γc

0 (z ), γ s
0 (z ) in the right-hand side. Thus, for the

specific notation of the right-hand side, depending on the

solutions (28) and (29), these solutions should belong to

the class of continuously differentiable functions. In order to

find such zero-order solutions, the method described in [8]
is proposed.

After the explicitly expressing A0(β0(z )) depending on

the numerical solution β0 ∈ C1[z 0, z 1] by means of a

symbolic calculation software tool, it becomes possible to

reduce the system of inhomogeneous ODEs (25)−(27) for

the first-order contributions to a system of inhomogeneous

SLAE

M̂(β1(z ))A1(β1(z )) = F

(

∂β0

∂z
,
∂A0

∂z

)

(30)

with a similar matrix as in the zero-order contributions,

but depending the other parameter β1(z ) and, therefore, on

other χ
f
1 (z ), γc

1 (z ), γ s
1(z ). As above, in this case it is also

necessary to require the solvability of the inhomogeneous

SLAE (30).
After obtaining the solutions to the zero- and first-order

equations for electromagnetic fields of the AGM model in

a closed form, we can use them to express the electric and

magnetic field in the first (plus zero) approximation

E(x ; y, z ) = E0(x ; y, z ) +
i
ω
E1(x ; y, z ),

H(x ; y, z ) = H0(x ; y, z ) +
i
ω
H1(x ; y, z ).
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