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Shubnikov-de Haas oscillations in 2D electron gas

with anisotropic mobility
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Shubnikov-de Haas oscillations in selectively doped GaAs single quantum wells with AlAs/GaAs superlattice

barriers has been studied at temperature T = 4.2K in magnetic fields B < 1 T. High-mobility heterostructures

with thin spacer had been grown by molecular-beam epitaxy on (001) GaAs substrates. The mobilities of two-

dimensional electron gas measured in two crystallographic directions [110] and [1̄10] differ from each other more

than 50%. Properly adapted expression for Shubnikov-de Haas oscillations amplitudes in anisotropic samples has

been used for correct analysis of this oscillations. It was stated that quantum life-time in our heterostructures as

measured by Shubnikov-de Haas oscillations on Hall bars oriented in the directions [110] and [1̄10] varies less than
5%. Obtained results show that quantum life-time in two-dimensional electron system with anisotropic mobility is

isotropic with aforementioned accuracy.
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The low-temperature mobility of a two-dimensional

(2D) electron gas in high-mobility selectively doped

GaAs/AlGaAs heterostructures with a thick spacer

(dS > 50 nm) is limited by scattering not only by re-

mote ionized donors and background impurities, but also

by the heterointerface roughness [1]. Mobility µ of

a 2D electron gas in such heterostructures grown by

molecular beam epitaxy on (001) GaAs substrates is

anisotropic. The electron mobility (µ = eτt/m∗, where

τt is the transport scattering time and m∗ is the effective

electron mass) is maximal in crystallographic direction

[1̄10] and minimal in direction [110]. The anisotropy

of mobility µ in this case is due to scattering by the

roughness of heterointerfaces extended in the [1̄10] direction
and having a height of the order of an atomic mono-

layer [1].
Anisotropic scattering of electrons by the heteroin-

terface roughness is manifested not only in high-

mobility GaAs/AlGaAs heterostructures with a thick spacer

and a correspondingly low 2D electron gas density

(ne ∼ 3 · 1015 m−2), but also in high-mobility GaAs/AlAs

heterostructures with a thin spacer (dS < 50 nm) and a

higher electron density ne ∼ 1016 m−2 [2,3]. The studied

GaAs/AlAs heterostructure is a single GaAs quantum well

with short-period AlAs/GaAs superlattice barriers [4]. The

scattering of 2D electrons by a random potential of ionized

donors in this structure is suppressed due to both the

spatial separation of doping and transport regions and

the additional screening by X -electrons localized in AlAs

layers [4–7]. Mobility µy in direction [1̄10] may be several

times higher than mobility µx in direction [110] in such

selectively doped heterostructures with a thin spacer grown

on (001) GaAs substrates [3].

The processes of scattering of electrons of a 2D gas

are characterized both by transport scattering time τt and

quantum lifetime τq = 2Ŵ/~, where Ŵ is the half-width

of quantum energy levels. In the general case, τt 6= τq,

since τt is governed by large-angle scattering, while τq is

affected by scattering by any angle [8,9]. In 2D systems

with an anisotropic scattering potential, quantum lifetime

τq measured using Shubnikov-de Haas (SdH) oscillations

should be an effectively isotropic quantity [10]. This is the

result of the averaging of outcomes of individual scattering

events in the process of electron motion along cyclotron

orbits [10]. This conclusions agrees with the results of

examination of quantum transport in GaAs quantum wells

with anisotropic mobility µ [11,12], but contradicts the data

obtained for certain other 2D systems [13–15]. The causes

of this discrepancy still remain debatable; further studies

of SdH oscillations in various 2D electron systems with an

anisotropic mobility are required. The study of anisotropic

transport in single GaAs quantum wells with short-period

AlAs/GaAs superlattice barriers is also made relevant by

the fact that at present such structures are widely used in

fundamental research [16] and in applications [17].

Mobilities µx and µy in the main mutually perpendicular

directions x , y are equal in isotropic 2D systems; conse-

quently, dissipative resistance ρd = ρxx = ρyy . Weak-field

SdH oscillations at ωcτq ∼ 1 are then described by the

following relation [18–20]:

ρSdH
d = 4ρ0dX(T ) exp(−π/ωcτq) cos(2πεF/~ωc − π), (1)

where ρ0d is the resistance in zero magnetic field,

X(T ) = (2π2kBT/~ωc)/ sinh(2π
2kBT/~ωc), ωc = eB/m∗,

and εF is the Fermi energy. The results reported in [19]
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Parameters of heterostructures

Structure dSQW dS nSi ne µy µx
µy/µxnumber (nm) (nm) (1016 m−2) (1015 m−2) m2/(V · s) m2/(V · s)

1 14 32.5 2.3 6.59 287 170 1.69

2 13 29.4 3.2 7.48 124 80.5 1.54

Note. dSQW — width of a single GaAs quantum well; dS — spacer thickness; nSi — net density of remote Si donors in thin δ-doped GaAs layers;

ne — density of a 2D electron gas in a single GaAs quantum well; µy and µx — mobilities in directions [1̄10] and [110], respectively.

make it easy to generalize formula (1) to a 2D system with

an anisotropic mobility (µx 6= µy). This generalization is

performed by substituting the isotropic Drude conductivity

in the initial expressions from [19] with an anisotropic

conductivity:

σxx (B) =
e2

m∗

τx n
1 + ω2

c τx τy
, σyy (B) =

e2

m∗

τy n
1 + ω2

c τx τy
, (2)

σxy (B) = −σyx (B) = e
∂N
∂B

−
e2

m∗

ωcτx τy n
1 + ω2

c τx τy
, (3)

where n = n0(1 + 1g/g0), n0 is the carrier density in zero

magnetic field, 1g/g0 is the relative perturbation of the

density of states in a magnetic field, τx = τ0x (1− 1g/g0)
and τy = τ0y (1− 1g/g0) are the transport lifetimes of an

electron moving in directions x and y , τ0x and τ0y are the

transport lifetimes in zero field, and N is the number of

states below the Fermi energy per unit area.

Inverting a σ̂ (B) conductivity tensor represented by

formulae (2) and (3), one finds a ρ̂(B) resistivity tensor.

Its diagonal components in the linear small-perturbation

approximation (1g/g0 ≪ 1) are

ρxx(B) =
σyy (B)

detσ̂
≈

m∗

e2τx n

(

1 + 2
B
n
∂N
∂B

)

, (4)

ρyy(B) =
σxx (B)

detσ̂
≈

m∗

e2τy n

(

1 + 2
B
n
∂N
∂B

)

, (5)

where detσ̂ ≡ σxxσyy + σ 2
xy . Following [19], we use the fact

that τx n = τ0x n0 and τy n = τ0y n0. The final result is

ρxx(B) ≈ ρ0xx(1 + 21g/g0),

ρyy(B) ≈ ρ0yy(1 + 21g/g0), (6)

where

ρ0xx =
m∗

e2τ0x n0

and ρoyy =
m∗

e2τ0y n0

are the resistivities in zero magnetic field in directions x
and y , respectively. It follows from expressions (6) that

ρxx(B) − ρ0xx

ρ0xx
=

ρyy(B) − ρ0yy

ρ0yy
≈ 2

1g
g0

. (7)

Formulae (7) suggest that relevant values of ρ0d need to be

used to construct Dingle plots for each direction. Depending

on the considered direction, ρd in an anisotropic structure

is substituted with ρxx or ρyy , and ρ0d in formula (1) is

substituted with ρ0xx or ρ0yy . This is the modification

of known formula (1) [18–20] that takes into account the

anisotropy of a 2D electron gas. Normalized amplitudes of

SdH oscillations in an anisotropic system are then written

as

ASdH
x = 1ρSdH

x /ρ0xx X(T ) = ASdH
0x exp(−π/ωcτqx ), (8)

ASdH
y = 1ρSdH

y /ρ0yy X(T ) = ASdH
0y exp(−π/ωcτqy ), (9)

where 1ρSdH
x and 1ρSdH

y are the amplitudes of SdH

oscillations measured in the corresponding directions;

ASdH
0x = ASdH

0y = 4. According to (8) and (9), dependences

ASdH
x (1/B) and ASdH

y (1/B) in semi-log scale are linear

with initial points ASdH
x (1/B = 0) = ASdH

y (1/B = 0) = 4

and with slopes defined by quantities τqx and τqy .

The studied selectively doped GaAs/AlAs heterostruc-

tures were grown by molecular beam epitaxy on semi-

insulating GaAs (100) substrates. These heterostructures

were single GaAs quantum wells with width dSQW and

short-period AlAs/GaAs superlattice barriers consisting of

thin AlAs and GaAs layers [4]. Two Si δ-layers located

within thin GaAs layers at distance dS from the upper and

lower heterointerfaces of single GaAs quantum wells served

as sources of free electrons. L-shaped Hall bars (see the

inset in the figure) oriented along the [110] and [1̄10] crys-
tallographic directions were fabricated based on the grown

heterostructures via optical lithography and liquid etching.

The AC resistance of bars (Iac < 1 µA, f ac ∼ 0.5 kHz)
was measured at T = 4.2K in magnetic fields B < 1T.

The parameters of the studied heterostructures are listed

in the table.

Experimental dependences ρxx(B) and ρyy(B) for struc-

ture 1 (panel a of the figure) demonstrate that SdH os-

cillations in the examined 2D electron system at T = 4.2K

are manifested at B > 0.5T. A quantum positive magnetore-

sistance [21,22] and oscillations induced by scattering of a

2D electron gas by acoustical phonons [23,24] are observed

in weaker magnetic fields. In agreement with formulae (8)
and (9), the amplitudes of SdH oscillations for ρxx and ρyy

differ. Experimental (symbols) and calculated (solid lines)
dependences of ASdH

x and ASdH
y on 1/B plotted in semi-log

scale for structures 1 and 2 are shown in panel b of the

figure. Dependences ASdH
x (1/B) and ASdH

y (1/B) are linear in
semi-log scale and have equal (to within 5%) slopes for each
structure. The values of ASdH

0x and ASdH
0y differ insignificantly

from the theoretical value ASdH
0x = ASdH

0y = 4.
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a — Experimental dependences of ρxx and ρyy on B measured

with an L-shaped bar at T = 4.2K for structure 1: 1 — ρxx ,

2 — ρyy . The geometry of an L-shaped bar is shown in the

inset. b — Dependences of ASdH
x and ASdH

y on 1/B : 1 and 2 —
structure 1; 3 and 4 — structure 2. Symbols denote experimental

data. Solid lines represent the results of calculation performed

using formulae (8) and (9): 1 — ASdH
0x = 6.05, τqx = 5.61 ps;

2 — ASdH
0y = 4.94, τqy = 5.85 ps; 3 — ASdH

0x = 5.02, τqx = 1.44 ps;

and 4 — ASdH
0y = 4.57, τqy = 1.38 ps.

The equality of slopes of dependences ASdH
y (1/B) and

ASdH
x (1/B) indicates that quantum lifetime τq measured

using SdH oscillations is isotropic (to within 5%) in

the examined system. The quantum lifetime determined

by analyzing SdH oscillations is necessarily effectively

isotropic, since it is averaged over cyclotron orbits of motion

of an electron in a magnetic field [10]. Therefore, the

anisotropy of τq reported in [13,15] is, in our view, the

result of an incorrect application of the van der Pauw

method [25]. In systems with an anisotropic conductivity,

this method provides an opportunity to measure ρxx and ρyy

only at B = 0 [26]. It is not possible to derive dependences

ρxx(B) and ρyy(B) in an anisotropic system directly from

resistance dependences Rxx(B) and Ryy(B) measured using

the van der Pauw method. In order to determine such

dependences, one needs first to solve the corresponding

non-standard boundary value problem for each magnitude

of magnetic field B and find the potential distribution [26].
Therefore, the van der Pauw method is not suitable for

the determination of τq from SdH oscillation data in the

presence of anisotropy and a magnetic field. A correct

characterization of conductivity anisotropy is needed in

the study of magnetotransport characteristics of structures

not only in the van der Pauw geometry, but also when

anisotropic Corbino disks are used [27]. The anisotropy

of τq, which was revealed in [14] in the analysis of SdH

oscillations measured in a Hall bar geometry, also appears

dubious. In our opinion, inaccuracies in data processing

and a relatively narrow probed range of fields are the

probable reasons why an erroneous conclusion regarding

the τq anisotropy was made.

Thus, Shubnikov-de Haas oscillations in a 2D electron gas

with an anisotropic conductivity in selectively doped single

GaAs quantum wells with short-period GaAs/AlAs super-

lattice barriers were studied. Mobility anisotropy µy/µx

in the studied heterostructures in crystallographic directions

[1̄10] and [110] was greater than 1.5. A properly adapted

formula for the amplitude of SdH oscillations was used to

perform a correct analysis of Shubnikov-de Haas oscillations

in a 2D electron gas. It was found experimentally that

the quantum lifetime values measured by means of the

Shubnikov-de Haas effect with Hall bars oriented along

directions [1̄10] and [110] are equal to within 5%.
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