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It is shown that during a first-order phase transition in ferromagnetic semiconductors based on lanthanum

manganites, along with the semiconductor phase of s-electrons, a phase arises with fluctuation short-range order

associated with a change in the sign of the intermode interaction parameter in the system of d-electrons. The phase

separation region is characterized by fluctuations of local magnetization depending on temperature and external

magnetic field. In this case, the temperature of the first order phase transition, above which phase separation arises,

is appreciably affected by double exchange. Due to self-heating, the phase separation is significantly affected by the

electric field, which leads to N-shaped current-voltage characteristics. Using La1−xCaxMnO3 as an example, it is

shown that the switching on of electric and magnetic fields during a first-order phase transition in ferromagnetic

semiconductors is accompanied by the appearance of self-oscillations of the electric current and magnetization.
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1. Introduction

It is well known that in ferromagnetic semiconductors

with colossal magnetoresistance (CMR) an abnormally

strong bond between spin and electron subsystems is

implemented, which leads to the Anderson localization of

conduction electrons in case of magnetic phase transition

and to the metal−isolator electronic transition [1]. However,
microscopic nature of the magnetic phase transition in the

group of ferromagnetic semiconductors in question, for

example, in lantanium manganites, is not finally established.

It is recognized that the main cause of ferromagnetism

in this group is the double exchange arising due to the

intra-atomic Hund interaction of conduction s-electrons

with d-electrons that are believed to be localized [2].
However, it is known that in the system of d-electrons of

ferromagnetic metals and compounds a competition arises

between their intra-atomic Coulomb interaction and their

band motion [3,4]. Therefore, the model of double exchange

in ferromagnetic semiconductors with CMR should be

added with accounting of correlations in the system of

d-electrons.

In addition, to describe band motion of s-electrons

and d-electrons in specific compounds of ferromagnetic

semiconductors with CMR, ab initio DFT-calculations of

their electron spectra and densities of electron states (DoS)
are needed. At the same time, it is worth to note that the in-

formation in databases regarding the electronic structure of

the metal ground state of this group of semiconductors [5,6]

shows the presence of topological features of the electron

spectrum.

Until recently, the role of topological features of the

thin structure of DoS that determine the magnitude

and sign of the intermode interaction parameter in the

Ginzburg−Landau functional (see, for example, [7]) has

not been considered. It is known that from the analysis of

this functional it follows that first-order phase transitions, in

contrast to second-order phase transitions, are accompanied

by a change in sign of the intermode interaction parameter,

which takes place between maximum and local minimum

of DoS [5,6].

In the case of first-order phase transitions a short-range

order with local magnetization is observed in ferromagnetic

semiconductors [8]. A feature of phase transitions in

ferromagnetic semiconductors is the emergence of strongly

nonlinear current-voltage curves in electric field, which are

noticeably affected by magnetic field [9,10].

In this context, this study investigates the first-order phase

transition in external electric and magnetic fields using the

example of La1−xCaxMnO3.

2. Model

Let us consider a system of d-electrons with intra-atomic

Coulomb correlations and conduction s-electrons1 intercon-

1 Both s-electrons and p-electrons are considered as conduction elec-

trons, the later are s-like in this model.
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nected by a strong sd-exchange interaction. Hamiltonian of

this electron system is as follows

H =
∑

l=s, p, d

H(l)
0 + Hdd + Hsd, (1)

where H(l)
0 is Hamiltonian of band motion of

s (l = s)-electrons and d (l = d)-electrons, Hdd is Hamil-

tonian of intra-atomic Hubbard (U) and Hund (Jdd) in-

teractions of d-electrons, and the Hamiltonian of Hund

interaction of s-electrons and d-electrons at a site [2] will

be described in the mean field approximation

Hsd = −Jsd

∑

ν

Sνsν ≈ −Jsd

∑

ν

(〈Sν〉sν + Sν〈sν〉).

Here Sν− and sν are spin vector operators of d-electron

and s-electron at the site ν .

We reduce the intra-atomic Coulomb correlations in the

system of d-electrons to the description of their motion in

exchange (ξ) and charge (η) fields fluctuating in space and

time [4]. Then, using Hubbard−Stratonovitch transforma-

tions (see, for example, [4]) and the technique of Matsubara

Green functions [11] (defined on four vectors q = (q, ω2n),
where q being quasipulse, ω2n being Matsubara Bose

frequency), free energy of the electron system can be

represented as follows:

F = F0 − T ln

∫

(dξdη) exp(−8(ξ, η)/T ). (2)

Here

F0 = T
∑

k,σ,l

ln
(

1 + exp
[

(εk,l − σ JsdM(l)
0 − µ)/T

])

; (3a)

8(ξ, η) = TN j

∑

q

(

D−1
q |ξq|

2 − (2− D−1
q + b − a)|η̂q|

2
)

+
∑

q

(

U−1|JqM
(s)
q |2 − 2(U/T )1/2N j J−q(ξqM

(s)
−q)

)

+ (3!)−1κTN j

∑

q1+q2+q3+q4=0

(

ξq1
ξq2

ξq3
ξ4 − 4ξq1

ξq2
η̂q3

η̂q4

+ η̂q1
η̂q2

η̂q3
η̂q4

)

− H(N jξ
(z )
0 + M(s)

0 ) (3b)

takes into account space-time dependencies of fluctuating

fields; T is temperature in energy units; H is modulus of

strength vector of the homogeneous external magnetic field

directed along the Oz axis, in energy units; N j is orbital

degeneracy of partly occupied energy states of d-electrons;

η̂q = ηq(U/T )1/2(2N j)
−1ndδq,0; nd is number of d-electrons

per site; M
(l)
q is Fourier-image of the local magnetization

vector of s-electrons or d-electrons (l = s or d) in 2µB units

(µB is Bohr magneton),

Dq = (1−Uχ(d)
q − J2

sd χ
(s)
q U−1 − a)−1; (4)

Jq = J2
dd χ

(s)
q ; χ

(s)
q and χ

(d)
q are Pauli susceptibilities of

s-electrons and d-electrons;

κ = 4−1U3
(

g(2)
d (µ) − (g(1)

d (µ))2/gd(µ)
)

(5)

is parameter of intermode interaction; µ is chemical po-

tential; gs(ε) and gd(ε) is density of states of s-electrons

and d-electrons calculated in the DFT+U-approximation;

g(n)
l (ε) (= dng l(ε)/dεn); a =JddU(U−Jdd)

−1(U+5J−1
dd) and

b = 4U(U−5Jdd)
−1.

To derive magnetic equations of state, functional integrals

in (2) are calculated in a saddle point approximation

(see [4]) with respect to rq = |ξq|, ϕq = arg(ξq), ξq, ξ0, ηq
variables. Then, by minimizing the free energy with respect

to magnetizations (M
(l)
q ), taking into account the relation

of saddle values to the thermodynamic mean values, the

following is derived

M(d)
q,γ(D

−1
q + 5κ〈m2〉/3) + κ

∑

q1,q2,q3

η̂q1

[

(M(d)
q2
M(d)

q3
)

− 4−1η̂q2
η̂q3

]

δq1+q2+q3+q4;0 = δγ,z (Hδq,0 + JsdM(s)
q,γ )/U,

(6a)

M(s)
q,γ = gs(µ)(Hδq,0δγ,z + J2

Hχ
(s)
q M(d)

q,γ), (6b)

(2 + a − b − D−1
q − 5κ〈m2〉/3)

− κ
∑

q1,q2,q3

η̂q1

[

(M(d)
q2
M(d)

q3
) − 4−1η̂q2

η̂q3

]

δq1+q2+q3+q4
= 0.

(6c)

Here H is strength of the magnetic field directed along

the Oz axis; 〈m2〉 is squared amplitude of Bose fluctua-

tions of spin density of d-electrons defined by (see [11])
the fluctuation-dissipation theorem (FDT) with the Bose–
Einstein function ( f B(ω/T )):

〈m2〉 =
∑

q

∞
∫

0

dω f B(ω/T ) Im χ(q, ω),

f B(ω/T ) is Bose function, where magnetic susceptibility of

d-electrons is

χ(q, ω) = χ(d)(q, ω)
(

1−Uχ(d)(q, ω)

+ 2κ
∑

q

|Mq|
2 + 5κ〈m2〉/3

)

−1
,

with χ(d)(q, ω) = χ
(d)
0 −Aq2 + iBω/|q| according to the

known approximation of the Lindhard function [4].

3. Solution to the magnetic equation
of state near TC

Ferromagnetic solutions to magnetic equations of state

are derived at D−1
0 < 0 and κ > 0. At the same time,
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it can be shown that at least near and below the Curie

temperature, with

|1−Uχ
(d)
0 − a + 5κ〈m2〉/3 + κM(d)2

0 | ≪ J2
sdχ

(s)
0 U−1, (7)

the decisive factor for the existence of ferromagnetism is the

double sd-exchange.

With T > TC the mode−mode parameter changes its

sign (κ < 0), ferromagnetism loses its thermodynamic

stability and solutions to equation (6) describe the phase of

ferromagnetic short-range order with a local magnetization

of d-electrons

M(d)
q,γ =

∑

q

|M(d)
q,γ | exp(iqν + iϕq,γ )

and fluctuations of occupation numbers of d-electrons at the

site

nν = 2−1
∑

q

|ηq| exp(iqν + iϕq,z ),

where ϕq,γ is chaotically changing difference of electronic

Berry phases (γ = x , y, z ).
Spatial dimensions of the regions of ferromagnetic

short-range order with fixed local magnetization modulus

Ms = 〈δM2〉1/2 are characterized by the radius of ferromag-

netic spin correlations

RC = (2εF/meff)
−1(|κ|/A)1/2(M2

s + M2
0(H))−1/2, (8)

where εF and meff are Fermi energy and effective electron

mass of d-electrons.

At the same time, the fluctuations of electron density

that depend on temperature and external magnetic field are

determined by the following equations:

〈δM2〉 =
{

|κ|[(M2
0(H) +5〈m2〉/3)(1+J2

dd/U2) −〈δn2〉]

+ A − D−1
0

}

/|2κ|, (9a)

〈δn2〉 =
{

2 − a + b − D−1
0 + A − |κ|(M2

0(H) + 〈δM2〉

+ 5〈m2〉/3)(1 + J2
dd/U2)

}

/|κ|. (9b)

The root-mean-square amplitude of thermal dynamic

Bose fluctuations of spin density (〈m2〉) according to (6)
is as follows

〈m2〉 = B(T/U)2
(

|κ|(M2
0(H) − 〈δn2〉 + 〈δM2〉) − A

)

−2

and turns to be (T/U)2 times less than the amplitude od

spatial static fluctuations (9a).
An important feature of the phase transition under

consideration is the emergence of semiconductor phase with

the Anderson localization of conduction s-electrons. Due to

the sd-exchange, the conduction s-electrons fall into the field

of random potential

Vν = σ
∑

µ

Jµ,µδMµ,

where

Jν,µ = J2
dd

∑

q

χ(s)
q exp

{

q(ν − µ)
}

.

According to [12], it leads to their localization, provided that

the chemical potential falls into the energy region between

the edge of the band and the energy value that differs from

it by a percolation threshold

EC = J2
sdM2

s /1, (10)

where 1 is route-mean-square of the integral of conduction

electrons hop between neighbor sites in the lattice occupied

by manganese atoms.

As a result, the conductivity σ (T ) changes with temper-

ature following the activation law

σ (T ) = σ0 exp(−T−1EA),

where EA is activation energy that will be defined below

after calculations of the electronic structure.

The chemical potential of the electron system is deter-

mined from the condition of electrical neutrality for the sum

concentration of s-electrons and d-electrons:

n = ns + 2Nd

[
∫

dε f (ε − µ)gd(ε)

+ Ug(1)
d (µ)

(

〈m2〉 + |M0|
2 + 〈δM2〉 − 〈δη2〉

)

/4

]

, (11)

ns = 2

∞
∫

−∞

gs(ε) f (ε − µ)dε,

gs(ε) is density of states of conduction electrons.

4. Numerical analysis of the phase
transition

The calculations of DoS taking into account the crystalline

structure of La1−xCaxMnO3 were performed on the basis of

ab initio DFT-modeling. To describe in a more correct way

the spatial inhomogeneities of the distribution of electron

density in La1−xCaxMnO3 at x = 0.3, the GGA+U+ SO-

calculations of DoS were performed (Fig. 1). Wave

functions were selected on a 5× 4× 5 grid of k-points
and length of the

”
cut-off“ wave vector was set equal to

4.16 at.units−1. For other ferromagnetic compounds a rigid

strip approximation was used.

To analyze thin structure of the gd(ε) dependence, the

results of GGA+U+ SO-calculation were approximated in

the energy range of −0.2 < ε < 0.4 eV by the following

polynomial:

gd(ε) = −335.31ε8 − 154.77ε7 + 147.05ε6 + 61.9ε5

− 19.90ε4 − 6.97ε3 + 0.71ε2 + 0.18ε + 0.30, eV−1.
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Figure 1. Results of GGA+U+ SO-calculations of the function

of density of states of d-electrons (gd(ε) — solid line) and

conduction electrons (gs(ε) — dashed line ). The origin of energy

count coincides with the Fermi energy for La0.7Ca0.3MnO3. In the

insert: concentration dependence of the parameter of intermode

interaction κ(x) at T = 0K.
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Figure 2. Temperature dependence of the intermode inter-

action coefficient for La1−xCaxMnO3 at x = 0.3 and H = 0

(TC = 218K).

In doing this, a point of inflection was found for the gd(ε)
dependence where the change in sign of its curvature and

the mode−mode parameter takes place.

It was found for La1−xCaxMnO3 ferromagnetic com-

pounds that in the range of concentrations from

0.2 < x < 0.45 the exchange enhancement factors in the

ground state are negative, and it was found that the

mode−mode parameter in their ground state is positive

(insert in Fig. 1). In the entire aforementioned region of

concentrations at a temperature of TC temperature first-

order phase transitions are realized. These transitions are

accompanied by a change in sign of the intermode interac-

tion parameter (Fig. 2) and an emergence of fluctuations of

local magnetization (9a).
Results of calculations of the concentration depen-

dence TC in comparison with the experimental findings

are shown in Fig. 3. It turns out that the consistency

with the experimental Curie temperature is achieved at

U = 1.8 eV, Jsd = 1.15 eV. In this case the parameter of

Hund dd-interaction in the Elk software package used in

the study (http://elk.sourceforge.net) is determined automat-

ically and equal to Jdd = 0.63 eV. Orbital degeneracy of the

partly occupied d-band is N j = 4.

In addition, direct band calculations show that in the

energy region below the energy gap (see Fig. 1) a mixture

of t2g and eg d-states takes place. It means that the spatial

charge fluctuations arising in accordance with formula (9b)
correspond to fluctuations of the Mn ion valence in the

model of electronic structure under consideration.

As it is shown by the evaluations based on formula (9),
spatial fluctuations of the local magnetization of d-electrons

x
0.2 0.3 0.4

100

200

T
C

, 
K

Figure 3. Concentration dependence of Curie temperature for

La1−xCaxMnO3 in relative units. Solid line and dashed line show

the calculation with and without taking into account the double

exchange, dots show the experimental result [1].
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Figure 4. IU-curve of La0.7Ca0.3MnO3 samples with a

size of 1× 1× 0.01mm3 at T0 = 220K, λ = 15W/(m2
·K) (as

in [14]) at the following inductions of the magnetic field:

0 (curve 1), 3 (curve 2), 5 T (curve 3). In the insert: percolation

threshold as a function of electric field strength in different

magnetic fields.
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Figure 5. Self-oscillations of current I, root-mean-square amplitude of fluctuations of local magnetization (at B = 0 T) and magnetization

(in an external magnetic field) for the La0.7Ca0.3MnO3 sample with a size of 1× 1× 0.01mm3 . Here T0 = 220K and E = 0.3 kV/m,

M0(0, 0) ≈ 0.1 µB . Frequencies in figures: a) B = 0 T, ν = 15 kHz; b) B = 3T, ν = 20 kHz; c) B = 5T, ν = 25 kHz.

give values of about 10 lattice constants for the ferromag-

netic compounds in question. And the decisive contribution

to the formation of the temperature dependence of elec-

tric conductivity is made by the semiconductor phase of

s-electrons.

Numerical analysis of the electronic structure shows that

the semiconductor phase of Anderson-localized conduction

s-electrons arising with the phase immiscibility is realized

under the condition that the chemical potential is near

the band gap. In this case the energy of activation is

EA = (EC−εc + µ), where εc is energy of the top edge of

the partly occupied d-band.

Evaluations of the activation conductivity dependence on

temperature and external magnetic field, carried out with

consideration of formulae (9,10) are consistent with the

CMR effect observed in the considered compounds. At the

same time, the performed numerical analysis shows that the

strong influence of magnetic field follows from formulae (9)
for spatial fluctuations of electron density.

5. Phase transition in external electric
and magnetic fields

In external electric fields (E) a current of conduction

electrons arises with a density of j(T ) ≈ exp(−T−1EA),
the Joule heat is emitted and a heat exchange with the

environment takes place due to the heat removal from the

sample surface. These processes are running with the

highest intensity in the case of planar samples. In this

case the equation of heat balance for a square cross-section

sample with a length of l and a thickness of h is as follows:

ρC(dT/dt) = ( jE) − 4λ(T − T0)/h, (12)

where λ is coefficient of heat removal from unit area of the

sample, C is specific heat capacity and ρ is mass density of

the sample (see [1] and [13]), T0 is ambient temperature.

The Anderson localization emerging at a phase transition

(see (7)) results in a feedback between the external electric

field and the local magnetization. This is due to the fact that

the electric current results in heating of the sample, and thus

to an increase in fluctuations of the local magnetization.

The presence of this feedback between current and

fluctuations of the local magnetization lays behind the

numerical solutions to equation of heat balance (12), which

in steady conditions describe the N-shaped current-voltage

curves (IU-curves) shown in Fig. 4.

In unsteady conditions (dT/dt 6= 0) a self-oscillation of

current and local magnetization MS arises, and in external

magnetic fields a self-oscillation of sample magnetization

takes place (Fig. 5). And frequency of the self-oscillation

increases with increase in the external magnetic field

(footnote to Fig. 5). The obtained frequencies of the self-

oscillation turn to be one or two orders of magnitude less
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than the frequencies used for the measurements of magnetic

impedance [15].

6. Conclusion

Thus, in the case of magnetic first-order phase transi-

tion in doped manganites a phase with fluctuation short-

range order and a semiconductor phase of conduction

s-electrons emerge in the system of d-electrons. The

phase immiscibility is accompanied by spatial fluctuations

of local magnetization, and the scattering of conduction

electrons on them results in the Anderson localization. This

transition is realized in the conditions when the chemical

potential crosses the region of topological features of the

electronic structure and a change in sign of the mode−mode

parameter takes place.

Features of the fluctuation-caused phase immiscibility at

a first-order phase transition are manifested in external

electric and magnetic fields. With a steady self-heating

N-shaped IU-curves arise that depend on the external

magnetic field. In unsteady conditions not only the self-

oscillation of electric current is realized but also the self-

oscillation of magnetization takes place, which frequency

can be controlled by the external magnetic field.

Further investigation of the self-oscillation of magnetiza-

tion may be of interest for development of spin current gen-

erators based of ferromagnetic semiconductors with CMR.
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