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The mechanical stresses reduction in a thin-walled quasi-force-free

magnetic system inserted into external crossed magnetic fields
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The mechanical stresses in the thin-walled quasi-force-free winding of the solenoid, which arise when a strong

pulsed magnetic field is produced, can be significantly reduced if the winding is inserted into the space between

two magnets creating crossed fields. It is shown that, with a rational choice of the amplitude and shape of the

external field pulses, the stresses can be reduced to values less than one tenth of the magnetic pressure of the

generated field.
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Generation of fields of 50−100 T is connected with

emergence of high mechanical stresses in the winding and

insulation. Those stresses are among the main factors

preventing obtaining strong magnetic fields. To ensure the

strength of up-to-date magnets with record-high fields in

them, coils with equally loaded multilayer windings are

used [1–3]. In such magnetic systems, the outer radius

is related with the internal by the ratio exp(B2
0/2µ0σ0),

where σ0 is the ultimate strength. Calculations show

that a drastic increase in the coil dimensions and energy

of the system takes place in case ultra-strong fields are

generated [4]. An alternative variant is using quasi-force-

free magnetic systems where electromagnetic forces are

essentially reduced without enlarging the magnetic system

dimensions and energy [4–7].

One of the possible realizations of such a magnetic system

is a magnet with additional magnetic fields [8]. In this paper,

we consider the applicability of this method for reducing

mechanical stresses in a pulsed-mode system. Since this

system provides the possibility to avoid impermissible

heating of the winding, it attracts a great practical interest,

for instance, in designing low-volume magnets [7].

In the stationary mode, it is possible to assume, ignoring

the wall curvature, that the current density is constant over

the winding conductor thickness, its absolute value being

δ0 = B0/µ01; here B0 is the induction at the magnet axis,

1 is the solenoid wall thickness. Thereat, the distribution

of the axial and azimuthal induction components over the

wall thickness obeys the linear law: B z = B0(1− x/1),
Bϕ = B0(x/1), where x = r -R (r is the point radial

coordinate, R is the solenoid inner radius). Calculations

via the elasticity-theory formulae accomplished in [6] and

confirmed by numerical calculations showed that, in a thin-

walled coil whose ends are fixed and winding turns are

laid at 45◦ to the axis, the ratio of equivalent mechanical

stress σM calculated via the von Mises formula to the

magnetic field pressure at the axis η = 2µ0σM/B2
0 takes

a value of about 0.2. Additional reduction of this stress

may be achieved in the magnetic system described in [8]
where inside the solenoid with the quasi-force-free primary

winding 1 there is an axial-current conductor 2 creating a

field with induction Bϕ1, while outside the solenoid there

is a magnet 3 creating an axial field with induction B z1

(Fig. 1).

When the boundary values of those inductions are equal

(Bϕ1(0) = B z1(1) = B1), the stationary distributions of

induction, current density components, and electromagnetic

force in the conductor introduced into the crossed external

magnetic field have the following forms:

B z = B0(1− x/1) + B1x/1,

Bϕ = B1(1− x/1) + B0x/1,

δz = δϕ = (B0 − B1)/µ01,

f (x) = (B0 − B1)
2(1− 2x/1)/µ01.

The characteristic quantity is the resultant of those forces,

which is defined as

F(x) =

x
∫

0

f (x)dx = PM(0) − PM(x)

= (B0 − B1)
2(x − x2/1)/µ01. (1)

where PM(x) = B(x)2/2µ0 is the magnetic pressure. This

quantity takes the maximal value in the middle of the layer:

Fmax = (B0 − B1)
2/4µ0. Given 1 ≪ R, components of the

mechanical stress tensor are defined as follows [6,9]:

σr ≈ −F(x) ≈ (B0 − B1)
2(x − x2/1)/µ01, (2)
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Figure 1. Magnetic system. 1 — solenoid with the quasi-force-free winding, 2 — conductor with axial current, 3 — magnet creating an

axial field.

σφ(x) ≈ −θF(x) − 1− θ

1

1
∫

0
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2

×
[

θ

(

x − x2

1

)

+ (1− θ)
1

6

] /

µ01. (3)

The ratios become valid when the solenoid inter-turn

space is filled with a high-modulus dielectric [4,10,11]. For
the winding with fixed ends, θ = µ/(1− µ), where µ is

the Poisson coefficient assumed to be 0.3. The maximal

values of stress moduli take place in the middle of the layer

(x = 1/2):
|σr,max| = Fmax,

|σφ,max| = Fmax(θ + 2)/3 = (2− µ)/3(1− µ)Fmax.

In the absence of crossed external fields, B1 = 0 and

Fmax = B2
0/4µ0. Provided B1 = (

√
2− 1)B0 ≈ 0.414B0,

magnetic pressure at the middle point is

PM(1/2) = (1/2µ0)B2
0, while that at the boundary is

PM(0) = (1/2µ0)
(

1 + (
√
2− 1)2

)

B2
0 (Fig. 2, a). Along

with this, Fmax = 0.172B2
0/2µ0, while the normalized stress

becomes ηmax ≈ 0.07. This effect gets achieved by using

external fields with inductions significantly lower than field

induction B0 at the magnet axis.

According to the defined task, in this work we consider

mechanical stresses arising in the pulsed mode when the

time during which the current flows in the winding is

comparable with the characteristic time of the magnetic field

diffusion into the conductor (τ ≈ µ01
2/ρ, where ρ is the

specific resistance).
Specific features of the winding stress state formation in

such a mode may be seen, for example, when external

fields with limiting induction values at the boundaries B1

get cut-off immediately after their establishment. As a

result, absolute values of induction at both boundaries

become equal to B0. In the above-considered example,

induction at the winding middle point retains its value

for the time much shorter than the field diffusion time:

B z (1/2) = Bϕ(1/2) = B0/
√
2. Thereat, the magnetic pres-

sure at the boundary takes the same value as at the middle

point: PM(0) = PM(1/2) = B2
0/2µ0. At this point, the

resultant and stresses become zero. Fig. 2, b shows that,

after the external field is cut off, the normalized stress does

not exceed 0.02 over the total winding turn thickness, i. e.

it decreases by approximately 3 times as compared with its

static-mode value. However, as time passes, the stresses

increase along with the additional field attenuation in the

entire volume of the conductor. This is demonstrated by

the time dependences of the resultant and normalized stress

(Fig. 2, c). By the moment t ≈ 0.07τ , the normalized stress

reaches 0.07; then the system returns to the state typical of

the static mode free of external fields (η = 0.2). Therefore,
in implementing the pulsed-mode quasi-force-free magnet,

it is reasonable to cut off the primary field prior to the

moment of the stationary state establishment.

The possibility of reducing the pulsed-field mechanical

stresses in practically valuable cases was considered via two

examples.

1. The time dependence of the primary winding pulsed

field had a form of one sine half-wave 2t0 in duration

and B0 in amplitude, while external fields were triggered

simultaneously with the primary one, increased with time

sinusoidally to amplitude B1 during time t1, and then

attenuated exponentially with the time constant t2 (the
sin−crowbar mode).

2. The primary and external fields were triggered simulta-

neously, increased with time sinusoidally to amplitudes B0

and B1 for times t0 and t1, respectively, and then attenuated

exponentially with the time constants t3 and t2, respectively
(the crowbar−crowbar mode).

Calculations devoted to minimizing the maximum of

normalized mechanical stresses ηmax were performed based
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Figure 2. a — the case of a stationary field: B z , Bϕ are the resulting induction components, η and F ′ are the normalized equivalent

mechanical stress and resultant (F ′ = 2µ0F/B2
0); b the same dependences at the moment t = 0.005τ after instantaneous cutoff of

additional fields; c — time dependences of η and F ′ in the middle of the layer.

Normalized mechanical stresses

B1/B0 t0/τ
sin−crowbar crowbar−crowbar

t1/τ t2/τ ηmax t1/τ t2/τ t3/τ ηmax

0.5 1.5 0.85 2.06 0.073 0.86 1.78 1.46 0.074

0.5 2 1.37 1.75 0.063 1.37 1.90 2.00 0.063

0.5 2.5 1.84 1.68 0.057 1.84 1.62 2.16 0.057

0.4 1.5 1.00 1.70 0.086 1.00 1.66 1.50 0.086

0.4 2 1.45 1.24 0.080 1.45 1.28 1.73 0.080

0.4 2.5 1.93 1.66 0.077 1.93 1.91 1.78 0.077

0.3 1.5 1.07 1.61 0.111 1.08 1.65 1.30 0.111

0.3 2 1.54 1.92 0.105 1.54 1.90 1.54 0.105

0.3 2.5 2.05 2.00 0.103 2.04 2.00 1.81 0.103

on the preset values of B0, t0 and B1. Values of parameters

t1/τ , t2/τ , t3/τ ensuring the minimal ηmax are given in the

table. These data allow selecting the pulse parameters based

on the acceptable level of ηmax. Fig. 3 presents the examples

of time dependences of quantities characterizing formation

of mechanical stresses in the primary winding. Time

dependences of those quantities presented for pulses with

parameters t0 = 1.5τ , B1 = 0.4B0 show that, in those cases,

deviation of the maximal value of normalized equivalent

mechanical stresses does not exceed ηmax = 0.086 over the

entire pulse duration; this value scarcely differs from the

result of static-mode calculations.

The two modes differ from each other only slightly. The

main factor affecting the normalized equivalent stresses

ηmax is the amplitude ratio B1/B0. Even weak field

(B1/B0 = 0.3) reduces ηmax approximately twice as com-

pared with that in the case of the field absence (B1/B0 = 0).

Thus, the goal of the study is achieved; its results

confirm the possibility of essentially reducing mechanical

stresses in the quasi-force-free winding of the solenoid

placed in crossed external fields, not only in the static

field but also in the pulsed one. In the case considered

in Fig. 3, the equivalent mechanical stress of 1GPa takes

place at ηmax = 0.086 in the field with induction of about
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Figure 3. Time dependences of inductions B z , Bϕ at the conductive layer boundaries and in its middle, and also those of normalized

mechanical stresses η and resultant F ′ in the middle of the layer. a — sin−crowbar, b — crowbar−crowbar.

170 T. This shows that the described method is promising

for obtaining megagauss pulsed magnetic fields in non-

destructible magnets.
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